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Passive scalars: Mixing, diffusion, and intermittency in helical and nonhelical rotating turbulence
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We use direct numerical simulations to compute structure functions, scaling exponents, probability density
functions, and effective transport coefficients of passive scalars in turbulent rotating helical and nonhelical flows.
We show that helicity affects the inertial range scaling of the velocity and of the passive scalar when rotation
is present, with a spectral law consistent with ∼k−1.4

⊥ for the passive scalar variance spectrum. This scaling
law is consistent with a phenomenological argument [P. Rodriguez Imazio and P. D. Mininni, Phys. Rev. E 83,
066309 (2011)] for rotating nonhelical flows, which follows directly from Kolmogorov-Obukhov scaling and
states that if energy follows a E(k) ∼ k−n law, then the passive scalar variance follows a law V (k) ∼ k−nθ with
nθ = (5 − n)/2. With the second-order scaling exponent obtained from this law, and using the Kraichnan model,
we obtain anomalous scaling exponents for the passive scalar that are in good agreement with the numerical
results. Multifractal intermittency models are also considered. Intermittency of the passive scalar is stronger than
in the nonhelical rotating case, a result that is also confirmed by stronger non-Gaussian tails in the probability
density functions of field increments. Finally, Fick’s law is used to compute the effective diffusion coefficients
in the directions parallel and perpendicular to rotation. Calculations indicate that horizontal diffusion decreases
in the presence of helicity in rotating flows, while vertical diffusion increases. A simple mean field argument
explains this behavior in terms of the amplitude of velocity fluctuations.
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I. INTRODUCTION

The study of passive scalar advection, mixing, and diffusion
by anisotropic turbulence has gained more and more relevance
over the years. Nowadays, it is well known that passive scalars
share similarities with three-dimensional Navier-Stokes tur-
bulence [1,2], presenting a direct cascade, anomalous scaling
and intermittency [3,4]. Moreover, the study of passive scalar
mixing in turbulent anisotropic flows is of interest in a wide
variety of geophysical and astrophysical problems, such as
the transport of chemical elements in rotating stars [5–7], the
geodynamo [8], vertical transport and diffusion in the oceans
[9,10], and the transport of pollutants and aerosols in the
atmosphere [11].

Turbulent transport of passive scalars in rotating flows was
previously studied in [12–14], although it has received less
attention than the transport of passive scalars in isotropic
turbulence [2,4,15]. Moreover, the effect of helicity in the
passive scalar transport in rotating flows has been practically
ignored so far. It is known that helicity plays a key role in many
problems such as in the dynamo effect [16,17], and the effect
of flow helicity in the transport of passive vectors has been the
subject of study in astrophysics for many years [18]. Results
in [19,20] for isotropic turbulence indicate that passive scalar
transport is sensitive to whether the flow is helical or not. In
laminar flows, and in particular in biological flows, it has been
found that helicity enhances transport and mixing [21].

As helicity affects the direct cascade of energy in rotating
flows [22], leading to a steeper energy spectrum, it is to be
expected that the passive scalar cascade to smaller scales
should also be affected by the presence of helicity (see,
e.g., [14]). From this point, two questions naturally arise,
which this work tries to answer: Is intermittency and the
anomalous scaling of the passive scalar changed by the

presence of helicity? And, how is the transport and mixing
of the passive scalar affected? While the former question can
be answered by computing scaling exponents for rotating flows
with and without helicity, the latter requires quantification of
the turbulent transport in directions parallel and perpendicular
to the rotation axis.

The aim of this paper is then to characterize the turbulent
scaling, transport, and diffusion of passive scalars in rotating
helical flows. To this end, we use data from direct numerical
simulations of the Navier-Stokes equations in a rotating frame
plus the advection-diffusion equation for a passive scalar. We
use a spatial resolution of 5123 grid points in a regular periodic
grid.

The analysis is divided in two parts. First, to study the effect
of helicity in the turbulent scaling laws of the passive scalar,
we calculate velocity and passive scalar spectra. We compute
structure functions for the velocity and the scalar using an
axisymmetric decomposition, and consider the corresponding
scaling exponents to quantify intermittency in each field.
We also calculate probability density functions (PDFs) for
velocity field and passive scalar increments. As for nonhelical
rotating turbulence (see [14]), we find that the passive scalar
is more anisotropic than the velocity field at small scales.
However, unlike the nonhelical rotating case, the passive scalar
variance follows a spectral law consistent with ∼k−1.4

⊥ , where
k⊥ denotes wave vectors perpendicular to the rotation axis.
This scaling is shallower than the one found in the nonhelical
rotating case [14], and is correctly predicted by a simple
phenomenological relation for the energy and passive scalar
variance spectral indices. The passive scalar in the presence of
helicity also becomes more intermittent than in the nonhelical
rotating case.

Second, to study passive scalar diffusion, we compute effec-
tive anisotropic transport coefficients using the method used
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first in [23] for stratified flows, and later in [14] for rotating
nonhelical flows. Effective transport coefficients are obtained
by studying the diffusion of an initial concentration of the
passive scalar, and calculated using Fick’s law by measuring
the average concentration and average spatial flux of the scalar
as a function of time. For isotropic flows, results suggest that
helicity increases turbulent diffusion (when compared with
nonhelical flows), in good agreement with previous studies
and theoretical predictions [19,20]. In the presence of rotation,
the overall effect of rotation (irrespectively of the content of
helicity of the flow) is to decrease horizontal diffusion, while
vertical diffusion remains approximately the same as in the
isotropic case. Helicity further decreases horizontal diffusion,
but slightly increases vertical diffusion (compared with the
nonhelical rotating case). The decrease in horizontal diffusion
is explained using a simple model for turbulence diffusivity
based on the amplitude of the small-scale velocity fluctuations.

II. SETUP AND SIMULATIONS

A. Equations and numerical method

Data analyzed in the following sections stems from direct
numerical simulations of the incompressible Navier-Stokes
equations for the velocity u in a rotating frame, and of the
advection-diffusion equation for the passive scalar θ , given by

∂tu + u · ∇u = −2� × u − ∇p + ν∇2u + f, (1)

∂tθ + u · ∇θ = κ∇2θ + φ, (2)

∇ · u = 0. (3)

Here, p is the total pressure (including centrifugal forces)
divided by the mass density (with the mass density taken to be
uniform in all simulations as a result of flow incompressibility),
ν is the kinematic viscosity, and κ is the scalar diffusivity. Also,
f is an external force that drives the turbulence, φ is the source
of the scalar field, and � = �ẑ is the rotation angular velocity.

Equation (2) for the passive scalar θ is written in the
rotating frame of reference, in which only the velocity field u
is responsible for the advection (see, e.g., [12,14,24]). In the
laboratory frame of reference, a rigid body rotation should be
added to the velocity u.

The total pressure p is obtained dynamically from the
divergence of Eq. (1); using Eq. (3) this results in a Poisson
equation

∇2p = −∇ · (u · ∇u + 2� × u). (4)

Note that as in the rotating frame of reference this equation
does not depend explicitly on the spatial coordinates, it is a
common practice to study homogeneous rotating turbulence
in incompressible fluids using periodic boundary condi-
tions [22,25–30], for which powerful numerical methods are
available.

To solve Eqs. (1) and (2), we thus use a parallel pseu-
dospectral code in a three dimensional domain of linear size
2π with periodic boundary conditions [31,32]. The pressure is
obtained by solving Eq. (4) at every time step. All equations
are evolved in time using a second-order Runge-Kutta method.
The code uses the 2

3 rule for dealiasing, and as a result the

maximum resolved wave number is kmax = N/3, where N is
the number of grid points in each direction. In all cases, the
simulations are well resolved, in the sense that the Kolmogorov
dissipation wave numbers for the kinetic energy and passive
scalar variance, respectively kν and kκ , are smaller than the
maximum wave number kmax at all times. More details of the
numerical procedure can be found in [13].

B. Dimensionless numbers and parameters

We will characterize the simulations using as dimensionless
numbers the Reynolds, Peclèt, and Rossby numbers, defined
as usual respectively as

Re = UL

ν
, (5)

Pe = ν

κ
Re, (6)

Ro = U

2L�
, (7)

where U is the rms velocity, and L is the forcing scale of the
flow defined as 2π/kF with kF the forcing wave number. In all
simulations, U is close to unity in the turbulent steady state,
and the kinematic viscosity is ν = 6 × 10−4. The molecular
scalar diffusivity is set equal to the kinematic viscosity for all
runs, resulting in Pe = Re.

C. Initial conditions and external forcing

We performed a set of nonhelical simulations and a set
of helical simulations with varying Rossby numbers (see
Table I). In all cases, we first conducted a simulation solving
only Eqs. (1) and (3) (i.e., the incompressible Navier-Stokes
equations without a passive scalar), starting from the fluid
at rest (u = 0), and applying a random isotropic external
mechanical forcing f to reach a turbulent steady state. This
turbulent steady state was integrated for at least 13 turnover
times. The mechanical forcing f used to sustain the turbulent
velocity field was a superposition of Fourier modes with
random phases, delta-correlated in time, with tunable injection
of helicity using the methods described in Ref. [33]. Briefly, to
control the total amount of helicity in the forcing, two random

TABLE I. Parameters used for the simulations: kF is the forcing
wave number, � is the rotation rate, Ro is the Rossby number, ν is the
kinematic viscosity, Re is the Reynolds number, and H = 〈u · ∇ × u〉
is the mean helicity. Note that runs labeled with “A” have helicity
fluctuating around zero, while runs labeled with “B” have nonzero
helicity.

Run kF � Ro ν Re H

A1 2 0 ∞ 6 × 10−4 525 0
A2 2 8 0.02 6 × 10−4 525 0
A3 2 16 0.01 6 × 10−4 525 0
B1 2 0 ∞ 6 × 10−4 525 ≈2
B2 2 8 0.02 6 × 10−4 525 ≈2
B3 2 16 0.01 6 × 10−4 525 ≈2
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fields are generated in Fourier space at each time step

v
(1)
j (k) = A(|k|)eiφj , v

(2)
j (k) = A(|k|)eiψj , (8)

where j = 1,2,3 are the Cartesian components of the fields,
φj (k) and ψj (k) are random phases, and A(k) (with k = |k|) is
a real amplitude used to control the isotropic spectrum of the
forcing (in our case, a narrow function centered around kF ).
Two normalized and incompressible fields are then constructed
as

f(1) = ∇ × v(1)

〈|∇ × v(1)|2〉1/2
, f(2) = ∇ × v(2)

〈|∇ × v(2)|2〉1/2
. (9)

We finally correlate these two incompressible random fields
to build a forcing with helicity. We compute ωf = ∇ ×
[sin(α)f(1) + cos(α)f(2)], where α ∈ [0,π/4] is a free parame-
ter that controls how helical the forcing is. Then, we build the
forcing function as

f(k) = f0

[
cos(α)f(1)(k) + sin(α)f(2)(k) + ωf (k)

k

]
, (10)

where f0 is the global amplitude of the forcing. The amount
of helicity in the forcing is then proportional to sin(2α), which
results in zero helicity for α = 0, and maximum helicity for
α = π/4.

The procedure described above resulted in several runs
as listed in Table I, with runs named with the letter “A”
corresponding to simulations for wich the forcing injected
zero mean helicity, and runs labeled as “B” corresponding
to runs with maximal injection of helicity. The final state of
the velocity field in the turbulent steady state of these runs
was used as initial condition for multiple runs in which the
external mechanical forcing f was maintained, but a passive
scalar was injected either as an initial concentration θ (t = 0,x),
or randomly injected in time using the source φ.

These two different ways to inject the passive scalar
depended on the properties of the scalar that were studied.
To characterize scaling laws and intermittency of the passive
scalar in rotating helical and nonhelical flows, the source term
φ was used to reach a turbulent steady state in the variance
of the scalar as well as in the kinetic energy. To this end, the
source φ was chosen as a superposition of Fourier modes with
random phases, delta-correlated in time, injected at the same
wave numbers kF used in the mechanical forcing f.

Instead, to study passive scalar turbulent diffusion, and
to compute effective transport coefficients, we turned off the
source term in Eq. (2) (i.e., we set φ = 0). We then imposed two
different initial conditions for the passive scalar, and integrated
the velocity field and the passive scalar from those conditions
to characterize horizontal and vertical diffusion. In each case,
we used as initial condition Gaussian profiles as follows:

θ (t = 0,xi) = θ0e
−(xi−μ)2/σ 2

, (11)

where i = 1 or 3 (i.e., the initial profile can be a function solely
of x1 = x, or solely of x3 = z), μ = π (the profile is centered
in the middle of the box, with the box of length 2π ), and σ = 1.
When x1 = x is used, this allows us to study the diffusion of
the initial profile in the direction perpendicular to rotation (or
“horizontal”), while when x3 = z is used, we study diffusion
in the direction parallel to rotation (or “vertical”). For all runs,

we also verified explicitly that the diffusion in the x and y

directions was the same (to be expected as rotating flows tend
to be axisymmetric). These runs with no source term φ and
with Gaussian initial profiles for the scalar will be labeled with
a subindex indicating the dependence of the initial profile (e.g.,
runs labeled A1x or A1z indicate the run A1 was continued
with an initial Gaussian profile for θ that depends, respectively,
on x or on z).

III. TURBULENT SCALING LAWS

In this section, we present numerical results for the energy
and passive scalar spectra, structure functions, and PDFs for
helical and nonhelical rotating flows. To get the results in this
section, the simulations in Table I were continued forcing the
velocity and the passive scalar to reach a turbulent steady state
in both quantities. We first present the methods used to analyze
the data, then present the results for the spectra and inertial
range scaling laws, and finally we characterize intermittency
using structure functions and PDFs. We also compare the data
with predictions from a simple phenomenological model, with
Kraichnan model for the passive scalar, and with a multifractal
model.

A. Methods

In this first part of the paper, the analysis consists on
the characterization of flow anisotropy, scaling laws, and
intermittency. To this end, we consider power spectra, structure
functions, and PDFs of passive scalar and velocity field
increments for all runs.

As a result of the anisotropy introduced by rotation, we
consider reduced perpendicular energy and passive scalar
spectra, namely E(k⊥) and V (k⊥). These reduced spectra are
defined by summing the power of all (velocity or passive
scalar) modes in Fourier space over cylindrical shells with
radius k⊥, with their axis aligned with the direction of the
rotation axis.

To compute structure functions and PDFs, field increments
must be defined first. Given the preferred direction intro-
duced by rotation, it is natural to consider an axisymmetric
decomposition for the increments. In general, the longitudinal
increments of the velocity and the increments of the passive
scalar fields are defined, respectively, as

δu(x,l) = [u(x + l) − u(x)] · l
|l| , (12)

δθ (x,l) = θ (x + l) − θ (x), (13)

where the increment l can point in any direction. Structure
functions of order p are then defined as

Sp(l) = 〈|δu(x,l)|p〉 (14)

for the velocity field, and as

Tp(l) = 〈|δθ (x,l)|p〉 (15)

for the passive scalar field. Here, angular brackets denote
spatial average over all values of x.

These structure functions depend on the direction of the
increment (i.e., they do not assume any symmetry in the
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flow). In simulations without rotation, the field is isotropic
and the SO(3) decomposition is used to calculate the isotropic
component of the structure functions [34–36]. In the rotating
case, due to the axisymmetry of the flow, we will consider
only increments perpendicular to ẑ (the rotation axis), and
increments parallel to ẑ. We denote the former increments
using l⊥, the latter with l‖, and we follow the procedure
explained in detail in [13,37] to average over several l⊥
directions.

This procedure to average Eqs. (14) and (15) over several
directions can be summarized as follows. Velocity and passive
scalar structure functions are computed from Eqs. (12) and (13)
using 26 different directions for the increments l, generated
by integer multiples of the vectors (1,0,0), (1,1,0), (2,1,0),
(3,1,0), (0,1,0), (−1,1,0), (−1,2,0), (−2,1,0), (−1,2,0),
(−1,3,0), (−3,1,0), (−1,3,0) (all vectors are in units of
grid points in the simulations), the 13 vectors obtained by
multiplying them by −1, and the two vectors (0,0,±1) for the
translations in z. Once all structure functions were calculated,
the perpendicular structure functions Sp(l⊥) and Tp(l⊥) are
obtained by averaging over the 24 directions in the x − y

plane, and the parallel structure functions Sp(l‖) and Tp(l‖) can
be computed directly using the generators in the z direction.

For all runs, this procedure was applied to Ns snapshots of
the velocity and of the passive scalar fields, separated by at least
one turnover time each. For large enough Reynolds number,
the structure functions are expected to show inertial range
scaling, i.e., we expect that for some range of scales Sp ∼ l

ξp

⊥
and Tp ∼ l

ζp

⊥ , where ξp and ζp are, respectively, the scaling
exponents of order p of the velocity and scalar fields. Scaling
exponents shown below are calculated for all the snapshots
analyzed in each simulation, and averaged over time. Errors
are then defined as the mean square error; e.g., for the passive
scalar exponents, the error is

eζp
= 1

Ns

√√√√ Ns∑
i=1

(
ζpi

− ζp

)2
, (16)

where ζpi
is the slope obtained from a least square fit for the ith

snapshot, and ζp is the mean value averaged over all snapshots.
The error in the least square calculation of the slope for each
snapshot is much smaller than this mean square error and
neglected in the propagation of errors. Extended self-similarity
(ESS) [38,39] is not used to obtain the scaling exponents,
except when explicitly stated.

B. Energy and passive scalar spectra

In the presence of rotation and in the absence of helicity, the
spectral behavior of the passive scalar is strongly anisotropic
and quasi-two-dimensional [13]. As previously shown in [13],
E(k⊥) ∼ k−2

⊥ for the velocity field and V (k⊥) ∼ k
−3/2
⊥ for

the passive scalar. The presence of helicity in rotating flows
affects the cascade of energy and of the passive scalar to
smaller scales. Numerical simulations in [22] showed that,
when helicity is present in rotating flows, the direct cascade
of helicity dominates over the direct cascade of energy in
the inertial range. This is the result of the development of an
inverse cascade of energy, which leaves less energy available

for the system to transfer to small scales. Assuming the direct
cascade of helicity is dominant, the direct flux of helicity δ in
the inertial range can be estimated as

δ ∼
(

hl⊥

τl⊥

)(
τ�

τl⊥

)
, (17)

where hl⊥ is the characteristic helicity at scale l⊥, τl⊥ ∼
l⊥/ul⊥ is the eddy turnover time at that scale (with ul⊥
the characteristic velocity), and τ� ∼ 1/� is the rotation
period. The factor τ�/τl⊥ on the right accounts for the
slowdown of the transfer to small scales due to the nonlinear
interaction of inertial waves in the presence of rotation (see,
e.g., [40–42]). For a helicity spectrum H (k⊥) ∼ hl⊥/k⊥, and
for an energy spectrum E(k⊥) ∼ u2

l⊥/k⊥, it follows from
Eq. (17) that E(k⊥)H (k⊥) ∼ δ�k−4

⊥ (see [22,43]). In other
words, if the energy spectrum satisfies E(k⊥) ∼ k−n

⊥ , then
the helicity must follow a spectrum H (k⊥) ∼ k4−n

⊥ . It follows
from Schwarz’s inequality that |H (k)| � kE(k). As a result,
the energy spectrum becomes steeper as the flow becomes
more helical, with the limit of a spectral index n = 2.5 for the
energy in the case of a turbulent flow with maximum helicity,
for which |H (k)| = kE(k). In practice, this limit cannot be
attained since in a flow with maximum helicity the nonlinear
term becomes negligible, resulting in no net energy transfer
(see [43] for details).

Figure 1 shows compensated energy and passive scalar
reduced perpendicular spectra for runs A3 and B3 (both
runs with rotation, and respectively without and with net
helicity). The compensated isotropic spectra for run A1
(without rotation) are also shown as references. In the rotating
cases, the kinetic energy spectrum is steeper in the presence
of helicity, compatible with E(k⊥) ∼ k−2.2

⊥ scaling, while the
passive scalar is close to V (k⊥) ∼ k−1.4

⊥ scaling. Although
resolution is moderate in these simulations (see [13] for more
detailed studies of spectral scaling), the scaling laws can be
further confirmed in Fig. 2, where a detail of the compensated
energy and passive scalar spectra for run B3 are shown. In
Fig. 2 we also present the helicity spectrum compensated by
k−1.8
⊥ (to confirm that the helicity spectral index and energy

spectral index add to 4). Similar scaling laws were observed
in the rest of the helical rotating runs listed in Table I.

In [13] we presented a phenomenological argument to
predict the scaling of the passive scalar spectrum in the
presence of rotation, inspired in the classical Kolmogorov-
Obukhov scaling for isotropic and homogeneous turbulence.
Using this argument, we can explain the effect of helicity in
the scaling of the passive scalar spectrum. From Eq. (2), the
passive scalar flux σ can be estimated as

σ ∼ θ2
l⊥

τl⊥
∼ θ2

l⊥ul⊥

l⊥
. (18)

Note that the passive scalar flux is not affected directly by
rotation, as � does not appear explicitly in Eq. (2). However,
the scaling of the passive scalar will be affected by changes in
the scaling of the velocity field, which depend on rotation.
If we assume that the passive scalar has a direct cascade
with constant flux σ in the inertial range, then the passive
scalar power spectrum V (k⊥) ∼ θ2

l⊥/k⊥ can be estimated,
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FIG. 1. (a) Reduced perpendicular passive scalar variance spectra
V (k⊥), compensated by k−n

⊥ . The solid line corresponds to run B3
(rotating and helical) with n = 1.4, and the dashed line corresponds
to run A3 (rotating and nonhelical) with n = 1.5. As a reference,
the compensated isotropic spectrum V (k)kn for run A1 (no rotation)
with n = 5

3 is shown by the dotted line. (b) Same for the reduced
perpendicular energy spectrum E(k⊥). The solid line corresponds to
run B3 with n = 2.2 and the dashed line corresponds to run A3 with
n = 1.5. The dotted line corresponds to the compensated isotropic
spectrum E(k)kn for run A1 with n = 5

3 . Note the bottleneck in the
energy spectrum of the simulation without rotation. All the spectra
are averaged in time.

using Eq. (18), as

V (k⊥) ∼ σ l2
⊥

ul⊥
. (19)

FIG. 2. Reduced perpendicular energy spectrum compensated by
k−2.2

⊥ (solid line), reduced perpendicular passive scalar spectrum
compensated by k−1.4

⊥ (dashed line), and reduced perpendicular
helicity spectrum compensated by k−1.8

⊥ (dashed-dotted line) in run
B3 (with rotation and helicity).

For an energy spectrum E(k⊥) ∼ k−n
⊥ , and therefore for a

characteristic velocity at scale l satisfying ul⊥ ∼ l1−n
⊥ , the

passive scalar spectrum in Eq. (19) results

V (k⊥) ∼ σ l
5−n

2
⊥ ∼ σk

− 5−n
2

⊥ . (20)

Therefore, the spectral index for the passive scalar inertial
range is

nθ = 5 − n

2
. (21)

This relation was shown in [13] to be compatible with
the scaling law followed by the passive scalar spectrum in
numerical simulations of nonhelical flows in the presence of
rotation. Here, we confirm that this argument remains valid in
the presence of helicity in the rotating flow. Moreover, when
rotation is zero, we recover nθ = 5

3 , in good agreement with the
Kolmogorov scaling previously observed for passive scalars in
isotropic turbulence (see, e.g., [2]).

C. Structure functions and scaling exponents

Structure functions and scaling exponents for the passive
scalar in nonhelical rotating flows were studied in detail in
[13]. As a result, here we focus on the simulations with helical
forcing. Figure 3 shows the axisymmetric and perpendicular
(i.e., only for perpendicular increments l⊥) structure functions
for the passive scalar and for the velocity field up to seventh
order for run B3. Each curve corresponds to an average
over Ns = 8 snapshots of the turbulent steady state of the
simulation. The structure functions show a range of scales

FIG. 3. Averaged axisymmetric structure functions (only for l⊥
increments) up to seventh order in run B3 (rotating and helical) for
(a) the passive scalar and (b) the velocity field. The insets show the
structure functions in the inertial range, compensated (a) by l

ζp

⊥ and
(b) by l

ξp
⊥ , where ζp and ξp are, respectively, the scaling exponents of

the passive scalar and of the velocity field.
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FIG. 4. Averaged axisymmetric structure functions using ESS
(only for l⊥ increments) up to seventh order in run B3 (rotating
and helical) for (a) the passive scalar and (b) the velocity field.

with approximately power-law scaling at intermediate scales
(see the insets in Fig. 3), while at the smallest scales approach
the ∼lp scaling expected for a smooth field in the dissipative
range.

As the inertial range observed in Fig. 3 is rather narrow
(specially for the highest orders considered), Fig. 4 shows the
same structure functions as in Fig. 3, for the velocity field and
for the passive scalar, but using the ESS hypothesis [38]. When
using ESS, the structure functions are plotted as a function of
the second-order structure function of the same field, which
results in an extended range of scales with power-law scaling.
This is the case in our simulations except at small scales and
for the highest order considered. Thus, we will consider below
the scaling exponents up to seventh order for all simulations,
keeping in mind that for this order convergence is not as good
as for the other orders.

Figure 5 shows a detail for run B3 of the passive scalar and
velocity field second-order perpendicular structure functions,
respectively T2(l⊥) and S2(l⊥), as well as the structure
functions for increments parallel to the rotation axis T2(l‖)
and S2(l‖). Stronger anisotropy is observed at small scales for
the passive scalar than for the velocity field, manifested as a
larger difference between T2(l‖) and T2(l⊥) than between S2(l‖)
and S2(l⊥). Also, an inertial range with power-law scaling
can be identified at intermediate scales in T2(l⊥) and S2(l⊥).
The range of scales is consistent with the wave numbers of
the inertial range in the corresponding spectra. The slopes
indicated as a reference in Fig. 5 correspond to the time average
of the second-order scaling exponents, obtained from a best
fit in the inertial range of all structure functions at different
times (the insets in Fig. 5 also show an estimation of the
slope based on the local derivative of the structure functions).
From the best fit, the second-order scaling exponents (in the

FIG. 5. Axisymmetric second-order structure functions for run
B3 (helical with rotation) for (a) the passive scalar and (b) the velocity
field. In both panels, solid lines correspond to the parallel structure
functions, while dashed lines correspond to the perpendicular struc-
ture functions. Slopes indicated as references correspond to the time
average of the scaling exponents, obtained from a best fit in the inertial
range of the structure functions at different times. The insets show the
local slope of the structure functions, obtained independently from
a computation of the local derivative. Note that while perpendicular
structure functions (dashed lines) show a narrow range of scales with
approximately constant slope, the parallel structure functions (solid
lines) decrease rapidly.

perpendicular direction) are ζ2 = 0.41 ± 0.01 for the passive
scalar and ξ2 = 1.22 ± 0.01 for the velocity field. These
values are in good agreement with the spectra V (k⊥) ∼ k1.4

and E(k⊥) ∼ k2.2, which from dimensional analysis lead to
T2(l⊥) ∼ l0.4

⊥ and S2(l⊥) ∼ l1.2
⊥ .

From the curves in Fig. 3 or in Fig. 4, scaling exponents can
also be computed for lower and higher orders. As mentioned
above, based on the amount of statistics available, velocity
and passive scalar exponents in the direct cascade range
were computed for all runs up to the seventh order. We also
compared the resulting exponents when using (or not) the ESS
hypothesis (i.e., using, as an example for run B3, the data
displayed, respectively, in Figs. 3 or 4), obtaining consistent
results in all cases. Thus, we present below only the scaling
exponents without ESS.

Figure 6 shows the resulting velocity scaling exponents
ξp and passive scalar exponents ζp for runs B2 and B3
(both helical, with Ro = 0.02 and 0.01, respectively). The
scaling exponents for the case without rotation and without
helicity (run A1) are also shown for comparison. Linear
(nonintermittent) scalings for ζp and for ξp are shown as a
reference as well, based on the values of the second-order
exponents ζ2 and ξ2 for runs B2 and B3. Finally, and as a
reference, in Fig. 6 we also show the the prediction of the
Kraichnan model [3], which is a model for the advection and
diffusion of a passive scalar in a random, delta-correlated in

033103-6



PASSIVE SCALARS: MIXING, DIFFUSION, AND . . . PHYSICAL REVIEW E 95, 033103 (2017)

FIG. 6. Scaling exponents (with error bars) as a function of the
order p in simulations of helical rotating turbulence, for the velocity
field (triangles for run B2 and stars for run B3, both with helicity and
with decreasing Rossby number), and for the passive scalar (diamonds
for run B2 and squares for run B3). The solid line corresponds to
the linear scaling expected for the velocity field exponents in the
absence of intermittency, while the dashed-dotted line corresponds to
nonintermittent scaling for the passive scalar exponents. The dotted
and dashed lines correspond to Kraichnan’s model with ζ2 = 0.4
and, respectively, with d = 2 and 3. As a reference, we also show the
scaling exponents for the simulation A1 (without rotation, i.e., for
isotropic and homogeneous turbulence): crosses correspond to the
velocity field exponents, and circles to the passive scalar exponents.

time velocity field in a space with dimensionality d (another
model is presented below). The scaling exponents for the
passive scalar in the Kraichnan model are

ζp = 1
2 [

√
2dζ2p + (d − ζ2)2 + (d − ζ2)]. (22)

For the curves in Fig. 5, these exponents were evaluated with
the value of ζ2 obtained from the simulations, and using either
d = 2 or 3.

Scaling exponents for the velocity field are similar up to
p = 4 in both runs with rotation. The second-order velocity
field exponent is ξ2 = 1.22 ± 0.02 for run B2 and ξ2 =
1.23 ± 0.01 for run B3. The velocity field exponents display
the well-known deviations from linear scaling associated with
intermittency, more evident for the higher order exponents
and in the simulation with larger Rossby number (i.e., smaller
rotation rate). The deviation from strict scale invariance is
often quantified in terms of the intermittency exponent μ =
2ξ3 − ξ6, which for these runs is μ = 0.6 ± 0.2 for run B2
and μ = 0.2 ± 0.1 for run B3. The decrease in the values
of μ suggest a reduction of intermittency with increasing
rotation, as observed before in simulations and in experiments
[13,29,37,44–47].

The passive scalar exponents for these two runs also
display similar values. The second-order scaling exponent
is ζ2 = 0.41 ± 0.01 for both runs. Deviations from linear
scaling are observed, and the intermittency exponents are
μs = 0.36 ± 0.06 for run B2 and μs = 0.27 ± 0.04 for run B3.
For runs B2 and B3, Kraichnan’s model adjusts the numerical
data best with ζ2 = 0.4 and d = 2. The value of d is compatible
with quasibidimensionalization in the spatial distribution of
the passive scalar in the presence of rotation, as reported in
the presence of rotation in [13] (see also a recent study of
bidimensionalization of rotating turbulence in [48]). However,
it may also be the case that the exponents for the passive scalar

FIG. 7. Scaling exponents (with error bars) as a function of the
order p in simulations of rotating turbulence with and without helicity,
for the velocity (triangles for run A3 without helicity and stars for
run B3 with helicity) and for the passive scalar (diamonds for run A3
and squares for run B3).

deviate from Kraichnan’s model for d = 3 as the velocity
field in the numerical simulations is intermittent, affecting the
scalar statistics, while Kraichnan’s model assumes a random
nonintermittent velocity. To gain a better understanding of the
multifractal properties of the passive scalar distribution, we
thus derive another intermittency model in the next subsection.

Overall, the decrease in the values of μ observed for both
the velocity field and the passive scalar indicate a reduction of
intermittency with decreasing Rossby number. However, this
reduction is significantly more pronounced for the velocity
field than for the passive scalar. In Fig. 6, note intermittency
is not necessarily associated with how small the scaling
exponents are for large values of p, but rather with how much
the exponents deviate from a straight line that goes through
the p = 2 scaling exponent. This is evident for the velocity
field exponents ξp, but less evident for the passive scalar
exponents ζp.

Finally, we present a comparison between the scaling
exponents in rotating turbulence with and without helicity.
Figure 7 shows the velocity field and passive scalar exponents
for runs A3 and B3 (respectively without and with helicity). In
this case, deviations from linear (nonintermittent) scaling are
clearly larger for the passive scalar in B3, indicating stronger
intermittency in the presence of helicity.

D. Multifractal model for the passive scalar

In recent years, a number of models have been proposed
to consider intermittency corrections to velocity and passive
scalar exponents (see, e.g., [49,50]). In these models, correc-
tions to the linear (nonintermittent) scaling exponents result
from the consideration that the fields are defined over a fractal
or a multifractal set (i.e., that the structures in the inertial
range are not space filling). This in turn follows from the
consideration that the cascade (and thus local dissipation) has
fractal or multifractal distribution, or from assumptions on the
underlying probability distribution of the local flux of energy
and of passive scalar variance towards smaller scales.

While the Kraichnan model [3] is important as it was
derived exactly from the passive scalar equation for a simple
(and nonintermittent) velocity field, these multifractal models
can give a better fit to the data, and provide complementary
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information on the geometrical properties of the inertial range
structures, and of how much space filling are these structures
[51]. One of the most successful of these models is that of
She and Leveque [49], which has been extended to the case
of passive scalars in isotropic and homogeneous turbulence
[50]. We thus take this latter model as a motivation to derive
a multifractal model for the passive scalar in the presence of
rotation.

Following their approach, we assume that the locally
averaged (on a scale l⊥) passive scalar dissipation rate σl results
from a hierarchy of fluctuating structures with scaling〈

σ
p

l⊥

〉 ∼ l
τp

⊥ . (23)

Note that we are using l⊥ as we assume the scaling is
anisotropic in the presence of rotation, and that in the turbulent
steady state σl is also a proxy for the locally averaged scalar
flux.

From the Monin and Yaglom result [52], or equivalently
from the locally averaged Eq. (18), we can write〈

δθ2
l⊥δul⊥

〉 ∼ σl⊥ l⊥, (24)

which can be easily rewritten as a relation between the passive
scalar exponents ζp, the velocity scaling exponents ξp, and the
exponents τp as

ζp = p

2
+ τp/2 − ξp/2. (25)

As shown in Fig. 6, intermittency of the velocity field in the
rotating case is very weak. We can thus neglect intermittency
corrections in ξp and simplify this latter equation using
ξp = αp (i.e., linear dependence of the exponents), where
α is a constant to be determined from the kinetic energy
spectrum. For inertial range scales E(k⊥) ∼ k−n

⊥ and thus
〈δup

l⊥〉 ∼ l
(n−1)/2
⊥ , which results in α = (n − 1)/2. Replacing

in Eq. (25), the passive scalar exponents of order p can be
written as

ζp = (3 − n)

4
p + τp/2. (26)

As in the She-Leveque model for the velocity field in
isotropic and homogeneous turbulence, the exponents τp can
be estimated using geometrical arguments. She and Leveque
assumed a scaling law for successive powers of the dissipation
at scale l. For the passive scalar dissipation, this assumption
corresponds to the relation

σ
(p+1)
l⊥ ∼ (

σ
(p)
l⊥

)β(
σ

(∞)
l⊥

)β−1
, (27)

where σ
(p)
l⊥ = 〈σp+1

l⊥ 〉/〈σp

l⊥〉. Here, σ
(∞)
l⊥ ∼ θ2/tl⊥ is the max-

imum variance of the scalar that can be dissipated by the
most intermittent structures in a time tl⊥ . As in the She-
Leveque model, we can assume that the mixing rate of fluid
elements that determine the time scale for the dissipation is
homogeneous in space, and simply write tl⊥ ≈ lx⊥ where x is
a parameter of the system to be determined later. Introducing
the codimension of the intermittent structures C0 = d − D

(with d the space dimensionality as before, and D the
fractal dimension of the structures), standard She-Leveque
phenomenology then leads to [49,50]

τp = −xp + C0(1 − βp). (28)

FIG. 8. Passive scalar scaling exponents with error bars for runs
A1 (circles, isotropic and homogeneous turbulence) and B3 (squares,
rotating helical turbulence). The full line represents the multifractal
model from Eq. (29), and for parameters for run B3 (helical). The
Kraichnan model with ζ2 = 0.4 and using d = 2 (dashed line) and
d = 3 (dotted line) are also shown for comparison.

In this last expression, we already imposed the condition τ0 =
0, to have ζ0 = 0 in Eq. (26). From the condition τ1 = 0,
which follows from asking ζ2 to be compatible with the slope
of the spectrum of the passive scalar variance, we obtain C0 =
x/(1 − β). Thus, Eq. (26) finally takes the form

ζp = (3 − n − 2x)

4
p + C0(1 − βp/2), (29)

which has only two free parameters, x and C0, which can
be associated with geometrical properties of the structures
of the passive scalar in the inertial range. In [50] it was
argued that the codimension of the passive scalar C0 should
be between 0.75 and 1, as the scalar tends to create sharp
fronts (C0 = 1 corresponds to surfacelike structures). Other
authors have found C0 ≈ 0.6 [53]. As will be shown below,
this expression adjusts well our data with C0 = 0.65, which
indicates strong gradients of the passive scalar takes place
in spatial regions similar to those observed in isotropic and
homogeneous turbulence. This will be later confirmed by
spatial exploration of the passive scalar concentration, where
we will also see that these regions tend to be aligned with the
axis of rotation.

Simulations with and without helicity differ in the spectral
scaling of the velocity field, and thus on the value of n in
Eq. (29). The multifractal model is in good agreement with
the exponents of all rotating cases as long as n is varied
following the kinetic energy spectrum of each simulation.
As we are mostly interested in the helical case here, Fig. 8
shows the passive scalar scaling exponents for run B3 (rotating
and helical, with n = 2.2 as obtained from the kinetic energy
spectrum), and the exponents obtained from Eq. (29) with x =
0.32. As a reference, we also show the exponents obtained from
Kraichnan’s model, and the scaling exponents in the simulation
without helicity nor rotation (run A1). As mentioned above,
the value of x in the multifractal model is associated with
the scaling of the most dissipative structures. In isotropic and
homogeneous turbulence x ≈ 2

3 for both the velocity and the
passive scalar [49,50], while in magnetohydrodynamics the
magnetic field (which is more intermittent) has x ≈ 1

2 [54].
The value found here is x ≈ 1

3 and is in agreement with an
even more intermittent distribution of the scalar field.
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FIG. 9. Probability density functions in run B3, for five different
horizontal spatial increments l = 1.6 (solid line), 0.8 (dashed line),
0.4 (dashed-dotted line), 0.2 (dashed-triple-dotted line), and 0.1 (long
dashes), and for (a) the passive scalar, and (b) the x component of
the velocity field. A Gaussian curve with unit variance is indicated
by the dotted curve. As intervals are decreased, curves depart more
and more from the Gaussian distribution developing stronger tails.

E. Probability density functions

Intermittency and small-scale anisotropy can be also stud-
ied considering the PDFs of the field increments. In this
section, we briefly discuss the PDFs of longitudinal increments
of the x component of the velocity field, as well as increments
and spatial derivatives of the passive scalar concentration.
Quantities shown are normalized by their variance, and a
Gaussian curve with unit variance is shown as a reference.

Figure 9 shows the PDFs of the velocity and of the passive
scalar increments for four different values of the spatial
increment (l = 1.6, 0.8, 0.4, 0.2, and 0.1) in run B3 (with
helicity). All the increments were considered in the x direction
(perpendicular to the axis of rotation), and for the velocity the
x component was used to build longitudinal increments. As a
reference, and to compare with the values of the increments
considered, the forcing scale in this runs is ≈π , and the
dissipative scale is ≈0.05. Therefore, increments l = 0.8 and
0.4 correspond to scales in the inertial range. The PDFs of
velocity and passive scalar increments for l = 1.6 are close to
Gaussian, while for smaller spatial increments non-Gaussian
tails develop. Note also that in the PDFs of passive scalar
increments, a strong asymmetry develops for l = 0.4, 0.2,
and 0.1.

IV. TURBULENT DIFFUSION

In this second part of the paper, the aim is to characterize
the turbulent diffusion of the passive scalar in rotating helical

turbulence, and to compare it with turbulent diffusion in
nonhelical rotating turbulence, as well as with turbulent
diffusion in isotropic turbulence. To this end, we simulate
the flows starting from an initial Gaussian profile for the
concentration of the passive scalar, and we let it diffuse in
directions parallel and perpendicular to the rotation axis. We
then quantify effective transport coefficients by measuring the
time evolution of the averaged concentration, and using Fick’s
law.

A. Methods

Before presenting the method used to measure the tur-
bulent diffusion, we briefly recall how the simulations were
conducted for this second study. As in the previous section,
simulations in group A (see Table I) correspond to simulations
with zero mean helicity, while simulations in group B
correspond to simulations with helical forcing and nonzero net
helicity. As explained in Sec. IV A, for each run in the turbulent
steady state of the velocity field, the simulation was extended
twice with the same parameters and mechanical forcing, but
with two different initial conditions for the passive scalar: a
Gaussian profile for the concentration in the x direction (to
study horizontal diffusion) and a Gaussian profile in the z

direction (to study vertical diffusion). To identify these runs,
an additional subindex is used in this section to differentiate
between simulations with different dependence of the initial
Gaussian profile. As examples, a run labeled A1x stands for a
simulation with the parameters of run A1 (i.e., with zero mean
helicity and no rotation) and with initial profile of the passive
scalar in the x direction, while the label B2z indicates the run
has helicity, rotation, and an initial dependence of the passive
scalar in the z direction.

In each of these runs, we let the initial profile diffuse for
several turnover times. Meanwhile, we compute and store
quantities averaged over the two directions perpendicular
to the direction over which the original Gaussian profile
varies. In particular, we consider the averaged passive scalar
concentration θ , and the spatial passive scalar flux θui , where
i = 1 or 3 depending on the initial dependence of the Gaussian
profile, and where the averages denoted by the overbars are
done over the two remaining Cartesian coordinates. Note
the spatial flux θui represents the amount of passive scalar
transported in the i direction per unit of time by the fluctuating
(or turbulent) velocity since there is no mean flow in our
simulations (we use delta-correlated in time random forcing);
in other words, ui is the fluctuating velocity.

Then, the pointwise effective turbulent diffusion coefficient
is given by [23]

Di(xi,t) = θui

∂xi
θ
. (30)

This coefficient corresponds to how much passive scalar is
transported by the fluctuating velocity per unit of variation of
θ with respect to xi . As already mentioned, i = 1 stands for
horizontal diffusion, while i = 3 stands for vertical diffusion,
where the dependence on the direction of this coefficient is the
result os the flow being anisotropic.

From Fick’s law, the actual turbulent diffusion coefficient
is the average of Di(xi,t) over the coordinate xi , and if the
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system is in a turbulent steady state, over time. From Eq. (30),
we can define these averaged diffusion coefficients as follows.
We can first average over the coordinate xi to obtain a time
dependent turbulent diffusion

Di(t) = 1

2π

∫ 2π

0
Di(xi,t)dxi, (31)

and we can further average over time, to obtain the mean
turbulent diffusion

Di = 1

T

∫ t0+T

t0

Di(t)dt. (32)

Here, t0 and T are characteristic times of the flow. In practice, in
our simulations the turbulent diffusionDi(t) first grows in time
as the initial Gaussian profile is mixed by the turbulence, then
reaches an approximate steady state value for a few turnover
times, and then decreases as the scalar becomes completely
diluted (which happens after three or four turnover times).

B. Isotropic helical turbulence

In the absence of rotation, diffusion coefficients are ex-
pected to be isotropic, and therefore horizontal and vertical
turbulent diffusion should be the same within error bars.
Figure 10 shows the mean passive scalar profile θ (x,t), the
horizontal flux θux(x,t), and the pointwise value of Dx(x,t),
at five different times for run A1x (no rotation and no net
helicity).

As time evolves, the mean profile θ (x,t) flattens and widens.
The flux is antisymmetric: it is positive for x > π and negative
for x < π . This behavior for the flux is to be expected, as at t =
0 there is an excess of passive scalar concentration at x = π

that must be transported by turbulent diffusion towards x = 0
and towards x = 2π . The pointwise value ofDx(x,t) fluctuates
around a mean value (which increases with time), except
close to x = π where it rapidly takes very large positive and
negative values as in that point ∂xθ approaches zero. The mean
spatial value ofDx(x,t) increases to its saturation value around
t0 ≈ 1.5; after this time, it fluctuates around its value (see more
details below).

Figure 11 shows the same quantities at five different
times for run B1x (i.e., in a simulation without rotation but
with injection of net helicity). The behavior of the mean
concentration of the passive scalar, the horizontal scalar flux,
and the pointwise value of Dx(x,t) is qualitatively the same as
in the nonhelical run A1x . However, the helical run displays
a larger diffusion of the mean concentration of the scalar [as
evidenced by the smaller maximum value of θ (x,t) around
x = π and by the stronger tails close to to x = 0 and 2π ,
when curves at the same time are compared in Figs. 10 and
11]. Also, the spatial flux θux takes larger extreme values in the
helical simulation, and the spatial average of Dx(x,t) seems to
result in larger values for the turbulent diffusion in this run.

The increased turbulent diffusion in the presence of helicity
is consistent with Fig. 12, which shows the horizontal turbulent
diffusion as a function of time for runs A1x and B1x . In
both runs, Dx(t) grows from an initially small value to its
saturation value around t0 ≈ 1.5. As observed above, turbulent
diffusion saturates at similar times for the helical and the
nonhelical cases, but to a slightly larger value in the presence

FIG. 10. (a) Averaged horizontal concentration θ in run A1x (no
rotation, no helicity) at times t = 0 (solid line), 0.5 (dotted line),
1 (dashed line), 1.25 (dashed-dotted line), and 1.5 (dashed-triple-
dotted line). (b) Horizontal flux at the same times. (c) Dx(x,t) at the
same times.

of helicity. Although in isotropic turbulence helicity does
not affect significantly the energy scaling [14,22,55,56], an
increase in the turbulent diffusion in the presence of helicity
was predicted in [20]. Using renormalization group techniques,
the authors estimated that turbulent diffusion in a helical flow
can be up to a 50% larger than in a nonhelical flow. In
our simulations, after averaging Dx over two simulations to
decrease uncertainties, the averaged in time value of Dx(t)
is ≈0.3 ± 0.1 for the nonhelical case and ≈0.44 ± 0.07 for
the helical case, in reasonable agreement with the theoretical
result. However, note that error bars are large. These errors
could be decreased further by performing an ensemble of
simulations to study Dx(t). Such a study is left for future
work.

It is worth mentioning that the same analysis was performed
in simulations A1z and B1z (i.e., the same runs but with an
initial Gaussian profile in the z direction). As expected from
the flow isotropy, the same behavior was obtained.
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FIG. 11. (a) Averaged horizontal concentration θ in run B1x (no
rotation, helical) at times t = 0 (solid line), 0.5 (dotted line), 1
(dashed line), 1.25 (dashed-dotted line), and 1.5 (dashed-triple-dotted
line). (b) Horizontal flux at the same times. (c) Dx(x,t) at the same
times.

FIG. 12. Horizontal turbulent diffusion as a function of time for
runs A1x (solid line, no rotation and no helicity) and B1x (dashed
line, no rotation but with helical forcing). The diffusion coefficient
averaged over the steady state, and for each case averaged over two
simulations as the ones shown in this figure, is Dx = 0.3 ± 0.1 for
the nonhelical case and Dx = 0.44 ± 0.07 for the helical case.

FIG. 13. (a) Averaged horizontal concentration θ in run B3x , at
times t = 0 (solid line), 0.25 (dotted line), 0.5 (dashed line), 0.75
(dashed-dotted line), and 1 (dashed-triple-dotted line). (b) Horizontal
flux at the same times. (c) Dx(x,t) at the same times.

C. Rotating helical turbulence

1. Horizontal diffusion

Figure 13 shows the mean profile of the passive scalar
θ (x,t), the horizontal flux θux(x,t), and the pointwise value
of Dx(x,t) at five different times for run B3x (helical and
with Ro = 0.01). In this case, note that the average profile
and the flux become asymmetric, i.e., there is an excess of
concentration of θ(x,t) for x < π , and the absolute value of
the flux is larger for x < π than for x > π . This asymmetry is
caused by the Coriolis force and has been previously observed
for rotating nonhelical flows in [12,14]. In our runs, the passive
scalar at t = 0 is concentrated in a narrow band around x = π .
The average flux is thus towards positive values of x for x > π

and towards negative values of x for x < π (i.e., in the direction
of −∇θ , see, for instance, Fig. 13). The Coriolis force in Eq. (1)
is −2�ẑ × u, and creates an overturning in the x − y plane
of the initially only dependent on x Gaussian profile, as will
be shown later in more detail in spatial visualizations of the
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FIG. 14. Horizontal turbulent diffusion as a function of time for
runs A2x (solid) and B2x (dashed) (Ro = 0.02, respectively, without
and with helicity). The diffusion coefficient averaged over the steady
state, and for each case averaged over two simulations as the ones
shown in this figure, is Dx = 0.40 ± 0.06 for the nonhelical case and
Dx = 0.2 ± 0.1 for the helical case.

passive scalar. This overturning also results in the asymmetry
observed in Fig. 13 (for more details, see also [14]).

By computing the mean value of Dx(x,t) over the spatial
coordinate, we obtain the turbulent diffusion coefficient.
Figure 14 shows first the horizontal turbulent diffusion as a
function of time for runs A2x and B2x (both with Ro = 0.02,
without and with helicity, respectively), and then Fig. 15 shows
the same quantity for runs A3x and B3x (Ro = 0.02, without
and with helicity, respectively). For both rotation rates, we
observe that horizontal diffusion is smaller in the presence
of helicity. This result is the opposite to that observed for
the isotropic runs in the previous section, for which helicity
slightly increased the turbulent diffusion.

As already mentioned, while in isotropic turbulence helicity
does not affect the energy spectrum scaling [14,22,55,56],
in rotating turbulence the presence of helicity results in
shallower horizontal spectrum for the energy, in comparison
with rotating nonhelical turbulence [14,22]. As a result, a
smaller turbulent diffusion can be expected, as small-scale
velocity field fluctuations should be less energetic in the helical
rotating case. Indeed, in most two point closure models, the
turbulent diffusivity is proportional to the mean kinetic energy

FIG. 15. Horizontal turbulent diffusion as a function of time for
runs A3x (solid line) and B3x (dashed line) (Ro = 0.01, respectively,
without and with helicity). The diffusion coefficient averaged over
the steady state, and for each case averaged over two simulations as
the ones shown in this figure, is Dx = 0.4 ± 0.1 for the nonhelical
case and Dx = 0.19 ± 0.06 for the helical case.

in the turbulent fluctuations, u2/2, and if the kinetic energy
spectrum is steeper, then the diffusivity should decrease. A
simple mean field argument can illustrate this. We can split the
velocity in a mean flow u, and a fluctuating component u′, such
that u = u + u′. In our runs, u = 0 and u = u′. Splitting the
passive scalar in the same way we have θ = θ + θ ′. Replacing
in Eq. (2) and averaging we obtain

∂θ

∂t
= −∇ · (uθ ′), (33)

and subtracting this equation from Eq. (2) we then obtain

∂θ

∂t
= −∇ · (uθ ). (34)

We can integrate this last equation assuming the flow is
correlated over the integral eddy turnover time τ , to obtain

θ ′ ≈ −τ∇ · (uθ ) = −τu · ∇θ, (35)

where incompressibility was used. Then, replacing in Eq. (33),

∂θ

∂t
≈ ∂

∂xi

(
τuiuj

∂θ

∂xj

)
, (36)

where the coefficient τuiuj can be interpreted as a turbulent
diffusion. If the flow is isotropic, then D ≈ τu2. A more
refined mean field derivation of this expression can be found in
[21,57,58], while two point closure derivations can be found
in [59,60].

Although the argument above is only illustrative, it gives
an interesting hint to the possible cause of the reduced
perpendicular diffusion in helical rotating flows. As the
perpendicular energy spectrum in this case is steeper than in
the absence of helicity, then the smaller energy at small scales
results in less mixing and diffusion.

2. Vertical diffusion

Figure 16 shows the mean vertical passive scalar concen-
tration θ (z), the mean vertical flux θvz(z), and the pointwise
value of Dz(z) at different times in run B3z. In this case, the
profiles are more similar to those obtained in the isotropic
and homogeneous case: θ (z) and θvz(z) are, respectively,
symmetric and antisymmetric with respect to z = π .

As in the case of horizontal diffusion, we can obtain the
vertical turbulent diffusion coefficient as a function of time by
computing the mean value of Dz(z,t) for all values of z. Fig-
ure 17 showsDz(t) for runs A3z and B3z (both with Ro = 0.01,
respectively, without and with helicity). Note that horizontal
turbulent diffusion is larger in the presence of helicity.

D. Spatial distribution and structures

Results shown above suggest that both horizontal and
vertical diffusion are affected by rotation and by the presence
of helicity. Figure 18 shows a horizontal slice of the passive
scalar concentration in runs A3x and B3x at t = 1 (i.e., around
the time the turbulent diffusion coefficients Dx and Dz reach a
turbulent steady value). As also observed in [14], the initial
Gaussian profile in the nonhelical rotating flow (run A5x)
diffuses in time, and also bends and rotates. As previously
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FIG. 16. Averaged vertical concentration θ in run B3z, at times
t = 0 (solid line), 0.25 (dotted line), 0.5 (dashed line), 0.75 (dashed-
dotted line), and 1 (dashed-triple-dotted line). (b) Horizontal flux at
the same times. (c) Dx(x,t) at the same times.

FIG. 17. Vertical turbulent diffusion as a function of time for runs
A3z (solid line) and B3z (dashed line). The former run has no net
helicity, while the latter has helical forcing. The diffusion coefficient
averaged over the steady state is Dx = 0.34 ± 0.04 for the nonhelical
case and Dx = 0.6 ± 0.1 for the helical case.

FIG. 18. Passive scalar concentration in a horizontal slice of
runs A3x (left) and B3x (right) at time t = 1. Note how the initial
concentration (Gaussian, centered around x = π , and independent of
the y coordinate) gets distorted and diffused.

mentioned, the overturning of the profile is caused by the
Coriolis force (see also [12]). In the helical rotating flow (run
B3x), we also observe this overturning, although the initial
profile is less diffused (as indicated, e.g., by the most extreme
values in the x coordinate for which a significant concentration
of the passive scalar can be observed, which are larger in
run A5x).

Diffusion in the parallel direction in rotating flows is
of a different nature than vertical diffusion (see Fig. 19,
which shows vertical slices of the passive scalar concentration
in runs A3z and B3z at t = 0.5 and 1.5). In the rotating
nonhelical case, the passive scalar initial profile is diffused
in vertical stripes, created by updrafts or downdrafts inside
columnar structures of the velocity field [14]. These columnar
structures in the velocity and vorticity fields have been
reported in rapidly rotating flows, and are associated with the
bidimensionalization of the flow [28,40,61]. Recently, these
columns were also observed to efficiently transport particles
along the direction of the axis of rotation, in a so-called
“elevator effect” [62]. As time increases, the stripes observed
in the passive scalar in Fig. 19 are further stretched, resulting in
larger mixing and diffusion. Note, however, that in the presence
of helicity, the stripes are increased even further, in good
agrement with the increased diffusion in helical flows reported
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FIG. 19. Passive scalar concentration in a vertical slice of runs
A3z (left) and B3z (right) at time t = 0.5 (top row) and at time t = 1.5
(bottom row).

above. This can be understood as the presence of helicity
in the flow requires the three components of the velocity to
be nonzero, resulting in a more three-dimensional flow. In
all cases, from the visualization of the passive scalar in real
space, it can be observed that the passive scalar displays strong
gradients concentrated along surfacelike regions (which in the
rotating case tend to be aligned with the rotation axis), in good
agreement with the codimension of C0 ≈ 0.65 found in the
multifractal model in Sec. III D.

V. CONCLUSIONS

We analyzed data from direct numerical simulations of
advection and diffusion of a passive scalar in rotating helical
and nonhelical turbulent flows. A total of 18 simulations
with spatial resolution of 5123 grid points were performed,
using different Reynolds and Rossby numbers, and changing
the forcing and initial conditions of the passive scalar, to
measure energy and passive scalar spectra, anisotropic velocity
and passive scalar structure functions, probability density
functions, and diffusion coefficients in the directions parallel
and perpendicular to the rotation’s axis.

In the first part of the paper, we studied scaling laws of
the energy and passive scalar variance, using spectra and
structure functions in the horizontal and vertical directions.
We showed that helicity affects the inertial range scaling of
the passive scalar, with its variance following a spectral law
consistent with ∼k−1.4

⊥ . This scaling is shallower than the one
found for passive scalars in nonhelical rotating turbulence
[14], and consistent with a phenomenological argument that

states that if the energy follows a power law ∼k−n in the
inertial range, then the passive scalar variance should follow a
power law ∼k−nθ with nθ = (5 − n)/2. This argument, already
proposed in [14] for rotating and nonrotating nonhelical flows
and which follows from Kolmogorov-Obhukov scaling, was
found here to uphold also in the presence of helicity. The
study of structure functions confirms these scaling laws, and
indicates that the passive scalar is more anisotropic at small
scales than velocity field. Also, the passive scalar was found
to be more intermittent than the velocity field, a well known
result, and which becomes more pronounced in the presence
of rotation and of helicity. The anomalous scaling exponents
for the passive scalar can be approximated using Kraichnan’s
model with the second-order exponent ζ2 obtained from our
phenomenological model, and with a dimensionality d = 2.
As in the case of rotating nonhelical flows studied previously
in [13], this value of d was interpreted as a result of the
quasibidimensionalization of the distribution of the passive
scalar in the presence of rotation. However, the fact that the
velocity field itself is intermittent in our simulations, or at
least that the velocity field has structures and is not completely
random (unlike the velocity in Kraichnan’s model), may also
contribute to the increase in the intermittency of the passive
scalar when compared with the d = 3 case. To obtain a better
fit to the data, we also derived a multifractal model based on the
She-Leveque model and on recent extensions of this model to
consider the case of the passive scalar. The scaling exponents
from the model are in better agreement with the data for a
codimension of structures C0 ≈ 0.65, which is compatible
with values previously obtained for the passive scalar in
isotropic and homogeneous turbulence, and which indicates
that the geometry of regions with strong scalar gradients is
similar to that found in the absence of rotation (independently
of the anisotropy).

In the second part of the paper, the analysis of the effective
diffusion coefficients calculated from Fick’s law suggests that
for isotropic flows (i.e., without rotation) helicity increases
turbulent diffusion, in agreement with previous models and
theoretical predictions [19,20]. In the presence of rotation,
results indicate that the overall effect of rotation (irrespec-
tively of the content of helicity of the flow) is to decrease
horizontal diffusion, while the effect on vertical diffusion
is less pronounced. Helicity further decreases horizontal
diffusion but increases vertical diffusion (compared with the
nonhelical rotating case). The decrease in horizontal diffusion
was explained with a simple model for turbulence diffusivity
based on the available energy for the small-scale turbulent
fluctuations.
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