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Background scalar-level anisotropy caused by low-wave-number truncation in turbulent flows

L. Fang*
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We rigorously show that the truncation at low wave numbers always leads to background scalar-level anisotropy
at large scales. Neither the resolution nor the spectral low-pass filter is dominant for this anisotropy, while the
shape of the energy spectrum at low wave numbers is an important influence factor. Quantitative results are
shown to provide references to the statistics in future postprocessing studies. Also, a simplified analytical model
is introduced to explain the single-mode effects for this anisotropy.

DOI: 10.1103/PhysRevE.95.033102

I. INTRODUCTION

Homogeneity and isotropy are two basic assumptions in
many fundamental turbulence studies. In order to numeri-
cally generate homogeneous isotropic turbulence, the present
method is to present the continuous physical field via a number
of discrete points and to involve periodic conditions on the
three dimensions [1–6]. The equivalent description of this
discretization in Fourier spectral space is using a number
of modes to represent the spectral information. As an ideal
numerical case in turbulence, the Fourier-based discretized
fields are expected to satisfy the spirit of homogeneity and
isotropy, however, in recent years researchers have found
several underlying defects of the Fourier description method.
As an example, it was discussed that this discretization
involves errors on a posteriori shell integrations [7]. Some
other defects are related to the two truncations: (i) the high-
wave-number truncation [8] yields a small-scale accumulation
on the kinetic energy and, (ii) on another side, on the effects
of the low-wave-number truncation, Brun and Pumir argued
that these low-wave-number modes lead to intermittency [9].
Davidson qualitatively remarked that the low-wave-number
truncation, which corresponds to the periodic conditions, will
lead to unphysical large-scale anisotropy (see Chapter 7.2 of
Ref. [10]). Recently, we have also shown that this anisotropy
exists in direct numerical simulation (DNS) databases [11].
However, to our knowledge, there are no quantitative rigorous
explanations for this anisotropy caused by low-wave-number
truncation.

In order to clarify the present idea, here we classify the
isotropy conditions in a homogeneous field to two levels:

(i) The scalar-level isotropy condition. In a homogeneous
scalar field, a two-point statistical quantity should be the
function of two-point distance �r only. The scalar-level isotropy
condition then requests that this statistical quantity is simply
a function of r with r = |�r|. For example, under the isotropy
condition the second-order correlation function of a statisti-
cally homogeneous scalar field Rθθ (�r) := 〈θ (�0)θ (�r)〉 with θ

scalar, 〈〉 ensemble average, and �r two-point distance should
be independent to the direction of �r , that is,

Rθθ (�r) = Rθθ (r). (1)
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This can also be defined by decomposing the scalar field into
different modes with definite behaviors under rotations via
the SO(3) symmetry group (cf. Refs. [12–16]) that Rθθ (�r) =∑

j,m aj,m(r)Yjm(�̂r), in which the scalar-level isotropy corre-
sponds to null coefficients for all nonzero modes. Similarly,
the summation correlation function of velocity field Rii(�r) :=
〈ui(�0)ui(�r)〉 with �u velocity, can also define a scalar-level
isotropy condition

Rii(�r) = Rii(r). (2)

(ii) The tensor-level isotropy condition. In a homogeneous
vector or tensor field, a two-point statistical quantity is usually
a tensor. The tensor-level isotropy condition then describes
the relation among the tensor components. For example, the
well-known relation between the second-order longitudinal
and transverse structure functions reads [17]

Dnn(r) = Dll(r) + r

2

dDll(r)

dr
, (3)

where Dll(r) := 〈(u1(r�e1) − u1(�0))2〉 is the longitudinal struc-
ture function, Dnn(r) := 〈(u1(r�e2) − u1(�0))2〉 is the transverse
structure function, and the subscripts l and n represent the
longitudinal and transverse components, respectively. From
the SO(3) decomposition the tensor-level isotropy implies
null coefficients for all nonzero modes of the tensor D
with D(�r) = ∑

q,jm aq,jm(r)Bjm(�̂r). Note that conceptually
the scalar-level isotropy condition is a precondition of the
tensor-level isotropy condition.

These two levels were not well clarified in much of the
literature. Usually, in the validation of DNS and large-eddy
simulation (LES) cases (cf. Refs. [18,19]), researchers used
Eq. (3) to estimate the “isotropy” of the generated turbulent
field. However, as stated above, this “isotropy” belongs to the
tensor level, which indeed depends on a scalar-level anisotropy
condition that was not rigorously visited in literature.

References [10,11] qualitatively shows that periodic condi-
tions lead to a background large-scale scalar-level anisotropy;
however, underlying mechanism and quantitative description
are still lacking. The present contribution aims at rigor-
ously explaining the link between the large-scale scalar-
level anisotropy and the low-wave-number truncation, and
quantitatively showing the relation between this anisotropy
and several possible factors, including the low-wave-number
energy spectra.
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II. THEORETICAL ANALYSIS

In the present contribution, the second-order summation
correlation function Rii(�r) := 〈ui(�0)ui(�r)〉 is chosen as an
example for investigating the scalar-level anisotropy caused
by low-wave-number truncation. We consider a discrete nu-
merical case with period 2π and 2n + 1 independent grids [20]
in each direction, thus all grid points constitute the following
set in physical space:

R = {(r1,r2,r3)|r1,r2,r3 = 2πj

2n + 1
,j = 0,1, . . . ,2n + 1}.

(4)

The discrete Fourier transform of these discrete points corre-
sponds to the following set in spectral space:

K = {(k1,k2,k3)|k1,k2,k3 = −n, − n + 1, . . . ,

− 1,0,1, . . . ,n − 1,n}. (5)

From the properties of discrete Fourier transform and by using
the homogeneous condition [21], we can write the following
relations for the correlation function:

Rii(�r) = 〈ui(�0)ui(�r)〉 =
∑
�k∈K

〈ûi(�k)ûi(−�k)〉ei�k·�r

=
∑
�k∈K

E(k)

2πk2
ei�k·�r , (6)

where

ûi(�k) = F (ui(�r)) = 1

8π3

∑
�r∈R

ui(�r)e−i�k·�r , (7)

and E(k) is the energy spectrum. Note that besides the
second-order correlation functions, we can also write the
third-order relations between physical and spectral quantities
by using a similar procedure [21]; by contrast, the expressions
for higher-order moments will not be obvious, which usually
depends on an assumption of closure, such as the Gaussian
assumptions [22–24]. In addition, although this expression
is formally similar to the continuous results (cf. Ref. [21]),
the discrete sets K and R are the spirits for describing the
numerical truncations, as will be analyzed in the following
parts. The minimum wave number is 1, implying that the
period in each direction is always set as 2π in the present
study.

III. RESULTS

As presented in the previous section, Eq. (6) describes
the relation between the second-order correlation function
and the energy spectrum via a discrete summation, which
represents the effect of low-wave-number truncation. In this
section, we will show that for a given energy spectrum, this
discrete summation always leads to a scalar-level anisotropy
for the second-order correlation function. In order to support
this conclusion, the relation between this anisotropy and other
factors will also be discussed in the following subsections,
respectively.

A. Quantitative descriptions on background
scalar-level anisotropy

As stated in the above parts, the background scalar-level
anisotropy implies that the value of Rii(�r) depends on not only
the length but also the direction of �r . Extreme directions such as
the axis direction and the face or cube diagonal directions can
be chosen for comparison. Also, we can quantitatively define
the standard variation in the spherical surface with radius r

and denote

A(r) = 1

Rii(�0)

×
√

2

π

∫ π/2

θ=0

∫ π/2

φ=0
[Rii(r,θ,φ) − μ(r)]2 sin θdφdθ,

(8)

with μ(r) the surface average of the scalar field under spherical
coordinate Rii(r,θ,φ)

μ(r) = 2

π

∫ π/2

θ=0

∫ π/2

φ=0
Rii(r,θ,φ) sin θdφdθ. (9)

Note that here the spherical averages are performed in a 1/8
sphere because of symmetry. We remark that this is only a
general description on the background scalar-level anisotropy.
If we want to investigate more details about the anisotropy at
different modes, an SO(3) decomposition should be necessary.

We perform a numerical case to show this background
scalar-level anisotropy. We select n = 35 (corresponding to
a 713 resolution) and the Kolmogorov 3/5 energy spectrum at
all nonzero wave numbers,

E(k) =
{

0, if k = 0,

k−5/3, otherwise.
(10)
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FIG. 1. Rii(�r) with r3 = 0 fixed. Rii(�0) is used for normalization.
The energy spectrum is Eq. (10). The half-grid number is n = 35. The
dashed and the dash-dotted curves correspond to r = 3 and r = 5,
respectively.
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FIG. 2. Rii(�r) with �r in axis direction, face diagonal direction, and cube diagonal direction, respectively. Rii(�0) is used for normalization.
The energy spectrum is Eq. (10). The half-grid number is n = 35. The dash-dotted curve is the spherical average value of Rii(�r) over the sphere
with radius r . (a) Normal view; (b) log view.

Note that in the present case the discretization in spectral space
implies that E(k) is truncated at low wave numbers k = 1, and
therefore Eq. (10) does not imply a discontinuous spectrum.

A two-dimensional contour at the r1-r2 plane where r3 =
0 is presented in Fig. 1 to show the dependence of Rii(�r)
with the direction of �r . Clearly, at short scales where r is
small (see the bottom-left corner in the figure), the constant
value lines are approximately circular arcs, illustrating the
fact of approximate small-scale isotropy. However, when r is
large, this isotropy is broken. For instance, the value of Rii(�r)
is not a constant along the r = 3 arc (the dashed curve in
the figure); this anisotropy is more obvious when r is larger,
for instance, when r = 5 (see the dash-dotted curve in the
figure). In addition, in the bottom-right, upper-left, and upper-
right corners the values of Rii(�r) are 1, corresponding to the
periodicity at the low truncation wave number k = 1. In Fig. 2
we also compare the values of Rii(�r) in typical directions
to show this background scalar-level anisotropy. Similarly to
the above discussion, the curves are almost the same at small
r , but diverge at larger scales, implying that the background
scalar-level anisotropy is a large-scale effect.

The quantitative description is shown in Fig. 3 by introduc-
ing the standard variation A(r) defined in Eq. (8). Consistent
to the above discussions, the value of A(r) increases with the
two-point distance r . The milestones of 1‰ and 1% variations
correspond to r = 1.44 and 2.56, respectively. At larger scales,
this variation can reach the order of 10%, which is in agreement
of our previous study in DNS postprocessings [11].

B. Influence of resolution and spectral low-pass filters

The above calculations use n = 35 as the half-grid number.
As presented in Fig. 4, changing the resolution does not
lead to an obvious difference on the background scalar-level
anisotropy. In each subfigure the curves are very close to each
other, which means that the anisotropy effect is insensitive
to resolution. Indeed, as the low-wave-number truncation is
always fixed to k = 1, different resolutions only affect the
high-wave-number descriptions, which correspond to small-

scale details in physical space. Clearly, these small-scale
details are not dominant for the background scalar-level
anisotropy which occurs at large scales. This validation of
resolution shows that the above discussion at n = 35 is robust
to give resolution-independent results.

In practice we often use a low-pass filter in spectral space
in numerical simulations, that is, using the set

K′ = {�k ∈ K and |�k| � n} (11)

to replace the set K in Eq. (6). Figure 5 clearly shows that
there is no evident influence for the background scalar-level
anisotropy by using the low-pass filter. The reason is the same
as the effect of resolution, that all differences are in high wave
numbers, which are not dominant for the background scalar-
level anisotropy which occurs at large scales.

r

A(
r)

0 1 2 3 4 5 6
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FIG. 3. The standard variation A(r). Rii(�0) is used for normal-
ization. The energy spectrum is Eq. (10). The half-grid number is
n = 35. The dash-dotted lines show the positions of 1‰ and 1%
variations, respectively.
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FIG. 4. Comparison of different resolutions. (a) Spherical average value μ(r) (subfigure: log view); (b) standard variation A(r). Rii(�0) is
used for normalization. The energy spectrum is Eq. (10).

C. Influence of energy spectrum

In the previous subsection, it was shown that the differences
at high wave numbers are not dominant for the background
scalar-level anisotropy. In order to investigate the influence of
low wave numbers, we choose different energy spectra via the
following formula:

E(k) =
{
k2, if k � kp

k−5/3, otherwise,
(12)

with kp the peak location which analogically corresponds
to the energy-containing wave number. kp = 1 is the case
corresponding to Eq. (10). In this subsection we consider
different energy spectra with kp = 1,2,3,4, and 5, respectively,
as presented in Fig. 6.

The spherical average values μ(r) are shown in Fig. 7(a).
Clearly, with increasing kp, the correlation function Rii drops
to zero faster. The underlying reason is that increasing kp

also damps the low-wave-number energies, which is dominant
for the large-scale background anisotropy. Another analytical
explanation will also be shown in Sec. IV. This property helps
to reduce the large-scale background anisotropy, as shown in
Fig. 7(b). For example, when kp = 3, the milestones of 1‰ and
1% variations correspond to r = 2.09 and 5.20, respectively.
Comparing to the kp = 1 case in Sec. III A, this means that the
isotropic range in the database is wider. Furthermore, we list in
Table I the wave numbers in each case, respectively. In brief,
larger value of kp can efficiently reduce the background scalar-
level anisotropy, because of the damping of low-wave-number
energies.

We remark that in numerical simulations of forced turbu-
lence, the forcing is usually added at energy-containing scales.
From the present contribution we may conclude that if the
forcing scale is close to the periodic size, then this forcing will
definitively involve large-scale scalar-level anisotropy. In order
to generate ideal isotropic turbulence, we therefore suggest
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FIG. 5. Comparison of using isotropic filter in spectral space. (a) Spherical average value μ(r) (subfigure: log view); (b) standard variation
A(r). Rii(�0) is used for normalization. The half-grid number is n = 35. The energy spectrum is Eq. (10).
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FIG. 6. Sketch of model spectra.

keeping a small forcing scale by comparing to the periodic
size. In addition, by giving different forcing sizes, respectively,
it might be interesting in future studies to investigate how
the large-scale scalar-level anisotropy is transferred to small
scales.

IV. A SIMPLIFIED ANALYTICAL MODEL

It is very difficult to give an analytical simplification for the
correlation function Rii using Eq. (6) under an arbitrary energy
spectrum. However, here we introduce a simplified analytical
model for separated single modes and obtain analytical
relations to approximately explain the background scalar-
level anisotropy. In this section we consider the correlation
function of a scalar field Rθθ instead of Rii for the modeling
convenience, but the treatments for Rii are exactly similar and
the results do not change.

We assume that the energy spectrum is non-null at one wave
number m, while it is null at other wave numbers. Specifically,

the spectrum is isotropic and assumed to be discretized on only
three axis directions in spectral space. This leads to a simple
formula for the scalar field

θ (x1,x2,x3) = cos(mx1) + cos(mx2) + cos(mx3). (13)

Due to the condition of spatial homogeneity, it is possible
to translate the ensemble average operator to spatial average
(similar ideas can be found in Refs. [25–27]). Therefore, when
we select �r with length r , in axis, face diagonal, and cube
diagonal directions, respectively, the corresponding average
value Rθθ (denoted as Ra

θθ , Rf
θθ , and Rc

θθ , respectively) can be
analytically calculated as

Ra
θθ (r) = 1

64π3Rθθ (�0)

∫ 2π

−2π

∫ 2π

−2π

∫ 2π

−2π

θ (x1 + r,x2,x3)

× θ (x1,x2,x3)dx1dx2dx3

= 2

3
+ 1

3
cos(mr),

Rf
θθ (r) = 1

64π3Rθθ (�0)

∫ 2π

−2π

∫ 2π

−2π

∫ 2π

−2π

θ

(
x1 +

√
2

2
r,x2

+
√

2

2
r,x3

)
θ (x1,x2,x3)dx1dx2dx3

= 1

3
+ 2

3
cos

(√
2

2
mr

)
,

Rc
θθ (r) = 1

64π3Rθθ (�0)

∫ 2π

−2π

∫ 2π

−2π

∫ 2π

−2π

θ

(
x1 +

√
3

3
r,x2

+
√

3

3
r,x3 +

√
3

3
r

)
θ (x1,x2,x3)dx1dx2dx3

= cos

(√
3

3
mr

)
, (14)
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FIG. 7. Comparison of using different energy spectra. (a) Spherical average value μ(r) (subfigure: log view); (b) standard variation A(r).
Rii(�0) is used for normalization. The half-grid number is n = 35.
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FIG. 8. Rii(�r) with �r in axis direction, face diagonal direction, and cube diagonal direction, respectively. Rii(�0) is used for normalization.
The simplified analytical model is used. (a) m = 1; (b) m = 3.

where

Rθθ (�0) = 1

64π3

∫ 2π

−2π

∫ 2π

−2π

∫ 2π

−2π

θ (x1,x2,x3)2dx1dx2dx3

= 3(4m2π2 + mπ sin(4mπ ) − 2 cos(4mπ ) + 2)

8m2π2

(15)

is employed for normalization.
This model can be then applied for explaining the back-

ground scalar-level anisotropy described in previous sections.
Figure 8 presents the values of Rθθ (�r) on these three typical
directions by employing Eq. (14), with fixed modes m = 1
and m = 3, respectively. It is observed that the curves are
almost the same at small r but diverge at larger scales,
which agrees with the previous results (cf. Fig. 2). Also,
higher wave numbers lead to faster reduction for Rθθ at
small scales, which agrees with the conclusion of Sec. III C.
We remark that this analytical model is only a quantitative
theoretical explanation for the single-wave-number situation,
which differs with real cases in which there are many nonlinear
interactions among the wave numbers. As an example, when
we consider the subharmonic functions in a turbulence field
with specified energy relations [28], analytical models might
also be derived. This will be an interesting investigation in
the future. However, the objective of this analytical model
is to introduce a preliminary theoretical framework, which is
expected be improved in the future to take account of more
complicated situations.

V. CONCLUSIONS

In the present study we rigorously show, by introducing
the discrete Fourier transform, that the truncation at low wave
numbers always yields large-scale anisotropy. This effect of
anisotropy is compared with other effects and is considered as
a background scalar-level anisotropy. It is shown that neither
the resolution nor the spectral low-pass filter is dominant for
this anisotropy; by contrast, the shape of energy spectrum at

low wave numbers is quite important. Increasing the peak wave
number leads to smaller anisotropy variation.

We then summarize the following conclusions and sugges-
tions:

(a) The background scalar-level anisotropy is a congenital
defect of numerical simulations for generating isotropic
turbulent flows, which differs from traditional studies of the
tensor-level anisotropy effect. This means that with low-wave-
number truncation, there will always be anisotropic structures
at large scales, which cannot be completely avoided. This may
affect the accuracy of statistics in the numerical data of DNS
and LES, since usually we wish they to be “isotropic”. In
particular, the quantitative results in the present contribution,
for instance in Table I, could be a reference for guiding the
statistics in future postprocessing studies.

(b) Although the background scalar-level anisotropy can-
not be eliminated, it can be efficiently reduced by simply
damping the low-wave-number energies or increasing the
energy-containing wave number (analogically corresponding
to kp of the present study). In practice, this means that
the energy-containing scale should be much smaller than
the period. This is indeed consistent with many existing
high-quality DNS databases [2,4,18,29]. By contrast, neither
the resolution nor the spectral low-pass filter is dominant for
the background scalar-level anisotropy.

(c) The present conclusions are consistent to the structure
functions Dii due to the relation Dii = 2 − 2Rii [using
Rii(�0) for normalization]. Furthermore, the similar method
can be extended to higher-order structure functions by using
the Gaussian assumptions. Indeed, it can be found that for
higher-order structure functions, the background scalar-level

TABLE I. Wave-number positions of 1‰ and 1% variations using
different energy spectra. The half-grid number is n = 35.

kp = 1 kp = 2 kp = 3 kp = 4 kp = 5

1‰ variation 1.44 1.16 2.09 2.14 4.08
1% variation 2.56 2.68 5.20 6.15 >2π
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anisotropy is more obvious, since it is affected by even larger
deviations depending on the “dynamical” evolution of the
velocity field. Indeed, the presence of a periodic box is trivially
breaking isotropy of any field at large scales, and it will be
efficient to use the SO(3) decomposition in the future to have
a systematic control of isotropic and anisotropic fluctuations
for any scalar or tensor correlation function.
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