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Shear transformation distribution and activation in glasses at the atomic scale
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We characterize shear transformations (STs) at the atomic scale in a model of amorphous silicon using a
mapping on Eshelby inclusions. We investigate the effect of pressure, glass relaxation, as well as damage on the
ST characteristics. We show that the characteristic ST effective volume, γ0V0, product of the ST plastic shear strain
γ0 and volume V0, does not depend significantly on an applied pressure but increases with accumulated plastic

deformation from about 10 Å
3

in the pseudoelastic regime to about 60 Å
3

once plastic flow sets in. Furthermore, by
using nudged elastic band calculations, we measure the energy barrier against ST activation. Analyzing different
paths leading to either an isolated ST or an avalanche, we show that the barrier is systematically controlled
by the first ST with an activation volume equal to the effective volume of the ST at the activated state, which
represents only a fraction of the complete ST volume. The activation volume is also found smaller for avalanches,
presumably because of accumulated local damage. This work provides essential information to build reliable
mesoscale models of plasticity.

DOI: 10.1103/PhysRevE.95.033005

I. INTRODUCTION

Amorphous solids are characterized by a high strength but
a low ductility [1–3], due to a pronounced localization of the
plastic deformation in shear bands, leading to catastrophic
failure [4] and preventing the use of glasses as structural
materials [2]. Understanding plastic deformation in glasses
and its localization in shear bands is therefore of utmost
importance.

It is generally accepted that the elementary process under-
lying plastic deformation in amorphous solids involves the
local rearrangement of small numbers of atoms [5–8]. These
events are commonly referred to as shear transformations (STs)
[6] or shear transformation zones (STZs) [8,9]. Although
details of the ST structure, size, and energetics may vary from
glass to glass, STs have been observed in many simulation
studies, covering different amorphous materials, from metallic
glasses [8,10,11] to amorphous silicon [12,13]. Also direct
evidence of STs was found in deformation experiments on
bubble rafts [5] and colloidal glasses [14].

STs are at the core of mesoscale models of plasticity
[9,15–20], which, despite differences in their detailed im-
plementation, all assume that macroscopic plasticity results
from the accumulation of STs that interact elastically and
can organize at the micron scale to form shear bands. Based
on Eshelby’s theory [21], STs are modeled as homogeneous
plastic inclusions in a continuous elastic matrix and are defined
by their volume V0 and plastic strain γ0, which have been
estimated in the case of metallic glasses from experimental
data [17]. Another important feature is that STs are thermally
activated, which has been modeled at the mesoscale by using a
kinetic Monte Carlo algorithm [9,15,17]. This approach relies
on an activation rate proportional to the Boltzmann probability
that the system overcomes the activation barrier associated
with the nucleation of a ST:

ṡ = ν0 exp

(
−�H

kBT

)
, (1)

where ν0 is the attempt frequency to jump over the enthalpy
barrier �H and kBT is the thermal energy. As proposed in

Ref. [15], the barrier to activate a ST under an applied shear
stress τ is written as

�H = �E − τV0γ
∗
0 , (2)

where �E is the activation energy in absence of applied
stress. The second term in Eq. (2) is the work done by the
applied stress between the initial and activated states of the
ST, assuming that the activated state has the same volume
V0 as the full ST and a plastic shear strain γ ∗

0 . The product
�V ∗ = V0γ

∗
0 is the ST activation volume, which reflects the

sensitivity of the activation barrier on the applied shear stress.
Usually, the parameters ν0, V0, γ0,�E of the elastoplastic

models are kept constant for all STs [9,17] or are drawn from
phenomenological statistical distributions [18,22,23] that have
not been verified at the microscopic scale. However, a local
dependence of �E on an internal state variable related to the
local excess free volume can be introduced to take into account
local damage which leads to an improved description of the
shear band formation [24]. These local fluctuations are in broad
agreement with the widely distributed activation energies
and attempt frequencies found from atomistic explorations of
the the potential energy landscape of glasses [25–27]. More
recently, Albaret et al. [12] measured effective volumes of STs
in atomistic models of amorphous silicon and also found distri-
butions, albeit exponential, justifying the use of characteristic
values for V0 and γ0. Still, the general consistency between the
mesocopic model and the atomistic scale simulation has been
obtained from simplifying assumptions and simple loading
conditions. Potentially important effects related to the level of
glass relaxation and damage [28] have not been considered to
extract effective volumes in Ref. [12] while the loading was
restricted to simple shear. Nonetheless, pressure and normal
stresses are known to strongly affect plastic flow in disordered
solids. This is the case of metallic glasses, where neither the
von Mises nor Tresca yield criteria, which depend only on
the deviatoric part of the stress tensor, are well adapted, while
the Mohr-Coulomb criterion, which takes into account the
effect of normal stress components, gives more satisfactory
results [29,30]. Also, the activation volumes of the STs used
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in Eq. (2) should be evaluated at the transition state. Homer
et al. [17] assumed that this activated state is at the middle
of the transition path with a plastic strain γ ∗

0 = γ0/2 and an
activation volume �V ∗ = γ0V0/2, where γ0V0 corresponds
to the fully relaxed effective volume after the transformation.
Up to now, the effective volumes extracted from atomistic
simulations are also associated with fully relaxed state. It is
therefore interesting to evaluate the STs transformation paths
through atomistic simulations, to access both the activation
volumes and the transient dilatation effects, which are often
incorporated in ST mesoscopic models [6,24,31].

Here, we extend the characterization of STs from the atomic
scale initiated by Albaret et al. [12] to investigate the effect
of pressure, glass relaxation, as well as of damage on the
ST characteristics. We focus on the STs effective volumes
which represent explicit parameter in mesoscopic models.
Additionally, we explore the thermal activation of STs by
measuring directly their enthalpy barriers using the nudged
elastic band (NEB) method [32]. In doing so, we test in
Eq. (2) the relation between the activation volume �V ∗ and
the effective ST volume V0γ

∗
0 at the activated state. To this end,

we consider both simple and complex events, corresponding to
the activation of either an isolated ST or an avalanche of STs.

II. METHODOLOGY

Amorphous silicon (a-Si) is a prototypical amorphous solid,
which provides generic insights into the mechanical behavior
of glasses. Models of a-Si were obtained by following a proce-
dure similar to Ref. [13]. The samples consist of 32 768 atoms
interacting through the Stillinger-Weber (SW) potential [33].
A three-dimensional simulation box with a linear size of about
87 Å was used. The amorphous configurations were obtained
by quenching at 1011 K/s a liquid equilibrated at 3500 K
down to 0 K. The atomic positions were further relaxed until
the maximum force on all atoms was below 10−3 eV/Å.
The cell size was also relaxed until the pressure was below
0.5 MPa. The effect of pressure and normal stresses on the
plastic properties of a-Si was investigated through athermal
quasistatic deformations. Constant normal stress components
were imposed by adapting the cell size using an Andersen
barostat [34]. A shear strain increment δγ = 1×10−3 in the xy

plane was employed. After each strain increment, the potential
energy was minimized using the same force criterion as above.

A similar protocol was employed to access the activation
properties of STs. In this case, simple shear deformation
simulations were performed at constant volume. In order
to identify mechanically stable states between elementary
or complex plastic events, a smaller strain increment δγ =
2×10−5 was used and the amorphous configuration was
relaxed until the maximum force was less than 1×10−5 eV/Å.
Starting from minimum energy configurations, standard NEB
calculations [32,35,36] were performed to identify transition
paths associated with plastic events.

STs were identified and characterized following the
methodology presented in Ref. [12]. Details on the method can
be found therein. Briefly, this procedure can be summarized
in three steps. First, STs are identified from the variation of
the local potential energy, which provides a measure of the
local plastic activity. The plastic activity around each local

maximum can be well approximated by a decaying exponential
function, whose characteristic length λ is taken as the ST size.
The ST is then assumed spherical with a volume V0 = 4

3πλ3.
Finally, the ST plastic strain is extracted by taking advantage
of the Eshelby inclusion theory [21]. Namely, the atomic
displacements in the simulation cell are fitted on a collection
of Eshelby inclusions, to extract for each inclusion the full
Eshelby strain tensor ε0. The plastic shear strain γ0 is then
calculated as the largest difference between the eigenvalues of
the deviatoric part of the strain tensor.

III. IMPACT OF PRESSURE ON THE SHEAR
DEFORMATION IN A-SI

Shear simulations under a constant pressure P varying
from +10 GPa in compression and −10 GPa in tension
are shown in Fig. 1. The resulting yield stresses σY , taken
as the maximum stress along the stress-strain curves, is
plotted in Fig. 1(b) as a function of P . Both σY and P are
normalized by the yield stress σY0 obtained at P = 0. Before
the yield point, the shear stress shows the same trend at all
pressures. A quasilinear stress-strain relationship is found at
small deformation, indicating a dominant elastic behavior.
Irreversible plastic deformation increases in intensity at
larger γ values, beyond which plastic flow sets in except at
P = −10 GPa (this case will be discussed below).
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FIG. 1. Quasistatic shear deformation simulations under a con-
stant pressure P. (a) Sketch of the loading conditions: positive shear
strain increments δγxy are applied in the xy plane, giving rise to a
total strain γ and shear stress σxy , at a constant pressure P . (b) Yield
stress σY as a function of the applied pressure P . Both σY and P are
normalized by σY,0, the yield stress at P = 0 GPa. (c) Stress-strain
curves obtained under quasistatic shear at a constant applied pressure
P , ranging from −10 to 10 GPa.
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The behavior in tension and compression is asymmetrical.
As shown in Fig. 1(b), the yield stress remains approximately
constant in tension while it decreases in compression. Further-
more, the onset of plastic flow occurs at smaller γ values in
compression compared to tension. These asymmetries indicate
a more ductile behavior of the a-Si sample in compression,
suggesting that ST activation is facilitated in this case. This
finding is explained by the peculiarity of the present SW
potential that favors five- rather than threefold coordinated
defects [13,37,38]. Accordingly, atomistic rearrangements
producing over-coordinated atoms around the ST cores are
more easily obtained and induce local densifications. This
analysis is supported by the negative trace of the average
Eshelby strain tensors ε0 distribution that was already evi-
denced in a previous work [12] and that we will confirm below.
The activation of STs is therefore helped under compression,
leading to the more ductile behavior seen in Fig. 1. This
behavior is rather unusual among glasses, where plastic events
classically create excess free volume and therefore induce
local dilatations [39,40]. Note that this result relies on the
actual bond character and directionality of the present SW
interaction potential [12,13], these parameters therefore play
a critical role in the activation of STs, reversing the usual sign
of dilatation by plastic deformation. This will also be evident
from the characterization of ST activation paths in Sec. IV.

Normal stresses also influence the way STs organize. We
see in Fig. 1(c) that the first shear band, which is marked
by a large stress drop, occurs at increasing γ when we move
from compression (P > 0) to tension (P < 0). The case P =
−10 GPa is particular because no shear band occurs until
γ ∼ 0.3, the point at which the glass fails and fractures in two
halves. Compressive stresses therefore facilitate the activation
of STs and lead to early shear bands, the latter are stabilized
by the confining pressure allowing for steady-state shear flow.
In tension the system displays less plastic activity with a more
homogeneous distribution of STs and a slightly higher yield
stress. At the negative pressure P = −10 GPa, the sample
attempts to form a shear band at γ ∼ 0.3 but the resulting
local damage weakens too much the glass, which can no longer
sustain the tensile stresses and breaks.

A. Stress-strain curves from Eshelby model

Plastic events in simple shear atomistic simulations of a-
Si were successfully mapped onto a collection of Eshelby
inclusions in Ref. [12]. This allows one to reproduce with
accuracy the atomistic stress-strain curve and justifies the usual
decomposition of plasticity into STs. In the following, we show
that the Eshelby model also applies well when normal-stress
components are considered.

The shear stress variation induced by each Eshelby inclu-
sion depends on the elastic shear modulus G, Poisson’s ratio ν,
and on the characteristic volume V0 and xy plastic strain tensor
component εxy,0 of the inclusion. By taking into account the
contribution of all the STs identified during the quasistatic
shear deformation simulations, we calculated the resulting
shear stress as a function of γ . In Fig. 2, we compare the
atomistic stress strain curves (solid lines) with the shear stress
predicted by the Eshelby inclusion model (dashed gray lines).
The curves obtained by imposing P from −10 to 10 GPa are
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FIG. 2. Comparison between stress-strain curves obtained with
atomistic simulations (solid color lines) and Eshelby model (dashed
gray lines) for different values of the applied pressure.

shown. Similar results were obtained by applying a normal
stress along either the x or y directions. As seen in Fig. 2,
the Eshelby model reproduces well the atomistic stress-strain
curves. The discrepancy between the atomistic results and the
model predictions, noticeable on the curves, originates from
the accumulation of small errors in fit of the Eshelby strain
for each event. This is mainly due to the difficulties to clearly
separate plastic events and to the local fluctuations due to
the discrete atomic structure. On one side the displacements
associated with weak plastic events originate mainly from the
local fluctuations due to the discrete atomic structure, which
cannot be represented by the continuum expressions. On the
other, when large stress drops associated with shear bands
occurs, too much overlap between STs prevents to clearly
separate them (these events can collect up to few hundred
inclusions), resulting in a less accurate fit of the Eshelby strain.

B. Distributions of ST effective volume and trace

1. Pressure and effective volumes

In order to establish a link between atomic-scale properties
and ST representation in mesoscale models, we analyzed the
STs identified in the atomistic simulations using the Eshelby
formalism. In Fig. 3, we report the distribution of effective
volumes γ0V0, i.e., the product of the Eshelby shear strain
and volume. This effective volume appears in the classical
expression of the ST activation volume [Eq. (2)] and while in
our analysis, V0 can be defined in different ways, resulting in
different γ0 distributions, the distribution of γ0V0 is uniquely
defined [12].

In order to investigate the potential dependence of the
effective volume on damage and therefore, on the applied
deformation, we determined the distribution of γ0V0 in three
different regimes: (I) the quasielastic regime for 0 < γ < γI,
where γI is determined by a stress deviation of 20% respect to
an ideal elastic stress σ el = γGγ=0; (II) the regime of plastic
transition spans from γI to γII, where γII corresponds to the
first shear band (including it); and (III) the regime of plastic
flow after the first shear band (γ > γII). Although these three
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FIG. 3. Probability density function (Pdf) of the effective Eshelby
volume γ0V0 in different regions of strain: (a) γ < γI (∼0.1), the
deformation is mainly elastic; (b) γI � γ � γII, transition region,
which contains the yield stress and the first shear band; (c) γ > γII,
plastic flow. γII varies with the applied pressure P and corresponds to
the development of the first shear band. Three pressures, from −10
to +10 GPa are considered. Inset: characteristic effective volume �0,
calculated as the width of the γ0V0 distributions fitted with a decaying
exponential function, as a function of P in the three selected γ ranges.

regimes are determined with the same rules, they lead to strain
ranges that depend on the normal stress state with the particular
case of P = −10 GPa, which has no third regime. Actual
values of γI and γII are shown in Fig. 2.

As shown in Fig. 3, the distributions are rapidly decreasing
and they can be well fitted by decaying exponentials, allowing
us to define characteristic effective volumes, noted here �0.
The latter is reported in the inset of Fig. 3(a) in the three strain
regions as a function of the applied pressure. In the first regime,
which is quasielastic, the distributions of effective volumes
are not affected by the applied pressure. The characteristic
size of the distribution is approximately constant, with �0 =
13 ± 1 Å

3
. In the second regime, where plastic flow begins, the

γ0V0 distributions under a negative pressure do not differ from
the one obtained at P = 0 GPa. The characteristic effective
volume �0 increases with respect to the first regime, with

�0 = 25 ±2 Å
3

for P ranging from −10 to 5 GPa. A broader

distribution with �0 = 35 ±1 Å
3

is found at P = 10 GPa,
probably linked to the damage induced by the enhanced plastic
activity in compression. More widespread distributions are
obtained in the third regime of plastic flow: �0 varies from

57 ± 1.5 Å
3

to 64 ± 1.5 Å
3

when P increases from −5 GPa
to 0 GPa and remains approximately constant in compression.

The main outcome from Fig. 3 is that the characteristic
Eshelby volume �0 increases with deformation: with the

exception of P = 10 GPa, the characteristic volume is low,

between ∼ 13 and 25 Å
3

until the plastic flow sets in and then

increases up to about 65–70 Å
3

in the plastic flow. STs are
therefore larger in size when they occur in a glass damaged by
shear bands compared to the initial well-relaxed glass. On the
other hand, the distributions of γ0V0 are not strongly affected
by pressure. The larger �0 value obtained at P = 10 GPa in the
intermediate regime can be attributed to the enhanced plastic
activity leading to early onset of shear banding in compression.
The transition between the second and third regime is quite
sharp in compression and at zero pressure, but is not as well
defined at P = −5 GPa as denoted by the smaller amplitude of
the stress drop associated with the first shear band (γ = 0.206)
in the stress-strain curve. This may explain the smaller �0

value obtained at P = −5 GPa in the third regime. From this
analysis, the marked differences observed in Fig. 1 between the
stress-strain curves are mainly due to the pressure dependence
of the strain ranges that determine the different regimes. Under
a large tensile stress (P = −10 GPa) the lower plastic activity
is associated with a system that experiences a unique regime
with small effective volumes STs over the whole strain range.

The decaying exponential distributions of γ0V0 obtained
under the influence of pressure extend the validity of the as-
sumption of a constant effective volume adopted in mesoscale
models and show that the characteristic ST shear strain is not
strongly affected by pressure or normal stresses. In mesoscale
simulations of plasticity in amorphous metals, γ0 ∼ 0.1 [15]

and V0 ∼ 800–1600 Å
3

[9,17,24] have been used, leading to

γ0V0 ∼ 80–160 Å
3
. This value is larger, but of the same order

as that found here. However, a more complex behavior results
from the present atomic-scale ST analysis, suggesting that the
effective ST volume should increase with the accumulated
deformation and converge to a constant value only after the
development of shear bands.

2. Effect of glass relaxation on effective volumes

To further analyze the effect of damage on STs, we
calculated the distributions of �0 in the three regimes described
above for three a-Si samples obtained at different quench rates
(1011, 2×1012, and 3×1016 K/s). The shear deformation for
these samples were done at constant volume with pressures in
the range −1 < P < 0 GPa. In the first regime, we obtained

a larger �0 value (28.5 ± 0.5 Å
3
) only for the less relaxed

structure (i.e., highest quench rate), and in the second and
third regimes we found no influence of the initial level of
relaxation on the distributions, which is expected since the
accumulated plastic deformation erases the memory of the
initial state. The initial level of relaxation has therefore a
weaker impact on the distributions of �0 than the damage
induced by shear-banding. A marked effect is only apparent
in samples prepared at extremely high quenching rate where
the first and second regimes almost collapse with a single
characteristic effective volume.

3. Local volume variation

The asymmetric mechanical response in tension and com-
pression of the a-Si sample is better explained by investigating
the change of volume generated by STs. To characterize the
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FIG. 4. Probability density function (Pdf) of the Eshelby volume
variation �V0 = εTrV0 in the same three strain regimes described in
the caption of Fig. 3. εTr is the trace of the Eshelby strain tensor and
V0, the Eshelby volume.

volume variation induced by STs, we reported in Fig. 4 the
distributions of εTrV0, where εTr is the trace of the Eshelby
strain transformation tensor ε0 and V0, the ST volume. As for
the effective Eshelby volume γ0V0, we observe a progressive
broadening of the εTrV0 distributions with increasing γ , from
the linear to the transition regime. The distribution averages
are shifted towards increasing volume for decreasing values
of the pressure. In agreement with the tendency of the
present SW potential to produce over-coordinated atoms and
local densification, the average ST volume variation remains
negative in all the regimes under compression and at zero
pressure. Under tension, the average ST volume variation
can however become positive, that means that the average
nature of the underlying STs should differ from the typical
ST which involves production of over-coordinated defects. In
the third regime the amplitude of the average volume variation
decreases. Such a behavior is consistent with an evolution
towards a steady state where the plastic events occur in a
damaged glass, which already contains a large fraction of
defective Si atoms, resulting in no volume change on average.

This asymmetric distribution of characteristic ST hydro-
static strain is consistent with the more ductile behavior
observed in compression. It has been shown that STs tend to
localize on over-coordinated local defects that they themselves
produce, leading to an enhanced plasticity interpreted as an
autocatalytic effect already pointed out in previous stud-
ies [13,38,41]. Therefore, STs inducing a volume contraction
are favored in this material, they are prone to organize in a

strongly correlated manner to produce shear banding. Since
these STs imply local densification, these effects are enhanced
under compressive normal components. On the contrary, STs
associated with local volume contractions cannot accommo-
date an imposed tension, and STs with an average dilatation
are instead obtained. No autocatalytic effect is expected in this
case and the overall plastic activity is reduced and homoge-
neously distributed. To conclude, we assign the asymmetric
pressure behavior in these SW samples to the different nature
of the STs implied either in compression or in tension.

IV. ST ACTIVATION BY NUDGED ELASTIC
BAND CALCULATIONS

The energy barriers and activation volumes involved in
plastic rearrangements are other important parameters for
mesoscale models, required to address the strain-rate sen-
sitivity of glass plasticity. To extract these quantities from
atomistic simulations, the activation path of elementary and
complex plastic events, identified on the stress-strain curves,
have been investigated. Although the pressure dependence of
the activation barriers would be of interest, the calculation of
transition paths also require heavier computational power. We
therefore report energy barrier calculations at constant volume,
corresponding to a pressure −1 < P < 0 GPa.

In Fig. 5, details of a stress-strain curve centered on
two plastic events are shown. As expected for quasistatic
deformations [42], linear elastic segments are interrupted by
abrupt stress drops, which correspond to irreversible plastic
events. Two critical values of the applied strain γc, at which
the system reaches an instability, are highlighted in Fig. 5.
In order to characterize the activation of these events, we
calculated their energy barrier using the NEB method, as a
function of γc − γ . The procedure was as follows. First, we
selected two configurations before and after the instability.
Starting from these configurations, we reversed the applied
strain quasistatically as described in Sec. II, with a negative
strain increment δγ = −2×10−5. We thus obtained pairs of
equilibrium configurations at the same applied strain, one
configuration before and the other after the plastic event.
They correspond to pairs of green and red circles on the
stress-strain curves of Fig. 5. NEB calculations were used
to identify the minimum energy path (MEP) between these
configurations from which the height of the energy barrier,

FIG. 5. Plastic stress drops due to (a) an isolated ST and (b) a
cascade of STs are identified on the stress-strain curve at different
critical shear strains γc. Pairs of equilibrium configurations, one
before and the other after the plastic event, are shown as green and
red circles, respectively, for different γ − γc values.
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which controls the plastic event, was calculated as well as the
evolution of the plastic rearrangement along the MEP. The
NEB method is a well-established technique to find the MEP
and saddle point between given configurations [32,35]. Briefly,
an initial path is constructed using a chain of intermediate
configurations (called images), typically constructed by linear
interpolation between the initial and final states. The energy
along the chain is then minimized, keeping the distance
between neighboring images constant by adding springs
between images in configuration space. After minimization,
the activation energy is obtained as the energy difference
between the initial configuration and the image of maximum
energy. We show in the following the results for two different
scenarios: the first selected event [Fig. 5(a)] corresponds to
the activation of an isolated ST, while the second event arises
from a cascade of STs [Fig. 5(b)].

A. Activation of an isolated shear transformation

Isolated STs can be identified along the stress-strain curve
by the amplitude of their stress variation. Indeed, we can
estimate the amplitude of the stress drop induced by a single
ST from its characteristic effective volume, �0. Since the
events analyzed here belong to the second regime, we can

take �0 = 25 Å
3
, and from Eshelby’s model we have

|�σ0| = 2G
�0

Vcell
. (3)

With G = 25 GPa, the shear modulus calculated in plastic
transition regime (regime II) [12] and Vcell = 660 nm3, the
simulation cell volume, we obtain |�σ0| ∼ 1.9 MPa. In
Fig. 5(a), the shear stress variation �σxy related to the
discontinuity at γc = 0.16 is approximately −2 MPa, which
makes such plastic event a good candidate to investigate the
activation of an isolated shear transformation.

Results of the NEB calculations between the local minima
before and after the plastic event at γc = 0.16 are shown in
Figs. 6 and 7. The total number of images adopted in the NEB
calculation is 100, and the strength of the NEB spring constant,

1 eV/Å
2
. Relaxation of the NEB image configurations was

stopped when the amplitude of the maximum force was lower

FIG. 6. Effective Eshelby volume γ0V0 for the two most active
STs identified along the NEB path calculated at γc = 0.16. Inset:
characteristic size λ of the two STs.

FIG. 7. Variation of the internal energy �E (a), shear stress �σxy

(b), and pressure �P (c) along the NEB paths of the isolated ST,
that occurred at γc = 0.16 in Fig. 5(a). The different curves were
obtained at increasing values of γc − γ . Inset: Barrier height �Ea as
a function of the distance from the instability. Empty diamonds are
used to visualize the position of the activated state on each curve.

than 1×10−2 eV/Å. The initial chain of NEB images was
obtained by linear interpolation of the atomic coordinates
between the initial and final states. In order to verify that the
plastic rearrangement identified at γc = 0.16 corresponds to a
single ST, we performed the Eshelby analysis summarized in
Sec. II along the NEB path.

The evolution of the characteristic size λ and effective
volume γ0V0 along the NEB path for the two most active events
(i.e., the events characterized by the largest plastic activity) is
reported in Fig. 6. We can see that the ST volume is constant
along the path, justifying the usual assumption. Also, we can
see from the effective volumes that one event clearly dominates
the evolution of the plastic strain. We can thus examine this
irreversible rearrangement as the activation of a single ST.
Since the size of the ST core does not change along the path,
the increase of the ST effective volume γ0V0 in Fig. 6 is due
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to a continuous increase of the plastic strain γ0 along the NEB
path, which reflects a continuous growth of the elastic field
produced by the atomic displacements in the ST core.

The internal energy variation �E with respect to the initial
configuration is shown in Fig. 7(a). The different curves
were obtained at different values of γc − γ . The height of
the energy barrier �Ea is plotted as function γc − γ in the
inset of Fig. 7. The energy barrier is zero at the instability
(γ = γc) and increases as a power law with a 3/2 exponent
expected for a saddle-node bifurcation [43]. The energy barrier
is asymmetric, with the saddle configuration close to the initial
configuration, rather than near the middle of the path as
assumed for simple thermally-activated paths. The activated
state moves toward the middle of the path as the distance
from the instability increases, but its effective volume remains
smaller than half the final effective volume, in contrast with
the usual assumption made in mesoscale models [17].

The shear stress and pressure variations along the NEB
path are reported in Figs. 7(b) and 7(c). The shear stress σxy

decreases almost linearly along the paths, which is consistent
with the evolution of the shear strain amplitude γ0 reported in
Fig. 6. The pressure difference �P also decreases along the
path. There is a transient dilatation along the path, which is
marked by a local relative increase of the pressure near the
middle of the path. However, this transient dilatation occurs
after the transition state, in contrast with simple hard-sphere
models [6], which assume that the activated state corresponds
to when atoms cross one another and thus corresponds to
a maximum local dilatation in the glass. We repeated the
same calculations with several other low-stress drop events
corresponding to isolated STs and giving rise to either positive
or negative total pressure variations. Along every calculated
NEB paths, a transient volume expansion was found, but
systematically after the activated state. We can therefore
conclude that, at least for the a-Si glass studied here, a transient
dilatation exists but is not directly connected to the activated
state and therefore does not affect the pressure sensitivity of
the activation energy. We also investigated the sensitivity of
the activation barrier on the applied pressure but the latter
is significantly weaker than the dependence on the shear
stress. This prevented us to quantify the influence of P on
Eq. (2) starting from the plastics events identified on the shear
stress-strain curve.

B. Activation of a cascade of shear transformations

The activation of a first ST often triggers the activation of
several others, potentially leading to an avalanche. To analyze
this process, we selected an event at γc = 0.1624 in Fig. 5(b),
with a stress drop amplitude (|�σxy | = 13.5 MPa) much
larger than the absolute value of the stress variation (|�σ0| ∼
1.9 MPa) characteristic of individual STs. The corresponding
NEB calculations are shown in Figs. 8 and 9. We have checked
by repeating the same calculations with other events that the
present rearrangement is representative of large plastic events
involving several STs.

Figure 8 shows the evolution of the effective volume of
the four most active STs along the path computed at γ = γc.
As can be seen, the STs do not appear simultaneously, but
develop in stages. In particular, the stepwise growth of the

FIG. 8. Effective Eshelby volume γ0V0 for the four most active
STs identified along the NEB path characteristic of a plastic
rearrangement involving several STs.

FIG. 9. Variation of the internal energy �E (a), shear stress �σxy

(b), and pressure �P (c) along the NEB paths of the cascade of STs
that occurred at γc = 0.1624 in Fig. 5(b). The different curves were
obtained for increasing values of γc − γ . Inset: Magnification at the
beginning of the energy path in (a), showing the growth of the energy
barrier.
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ST effective volumes suggests that the activation of one
event is triggered by the expansion of a preceding event. The
cooperative evolution of the plastic events is characterized by a
rather complex activation path. In Fig. 9(a), we observe several
bumps that can be assigned to the activation of successive STs.
The inset of Fig. 9(a) shows that the energy barrier is located
at the very beginning of the path, within the 15 first images,
when there is a single active ST, as seen in Fig. 8. The energy
barrier, therefore, corresponds to this very first ST, which then
triggers the other events.

The footprints of consecutive activation of several STs
is also visible on the shear stress and pressure curves
[Figs. 9(b) and 9(c)]. The initial smooth decrease of the
shear stress and smooth variation of the pressure correspond
to the activation of the first event. After image ∼25, when
new STs are activated, the shear stress and pressure curves
start to vary rapidly, due to the concurrent activation of
new STs and expansion of existing ones. The pressure curve
is particularly intricate, with rapid positive and negative
variations that result in a final positive pressure variation, i.e.
a local volume expansion, but after a much larger transient
contraction. Moreover, while the shear stress systematically
decreases during plastic events, the final pressure variation can
be either positive or negative. Interestingly, at the beginning of
the path, when there is a single active ST (image number <25),
the pressure first decreases and then slightly increases. This
local dilatation occurs again after the activated state, consistent
with the pressure evolution seen for an isolated ST in previous
subsection. This corroborates the conclusion that, contrary to
simple hard sphere models, the transitory dilatation occurs
after the ST activated state and therefore does not affect its
activation energy.

C. Activation volume

The activation paths of about 20 events, among which we
identified both isolated and extended plastic rearrangements,
have been studied by the NEB method. For such selected
events, we obtained the energy profiles for different values of
(γc − γ ) as in the two examples shown in Figs. 7(a) and 9(a).
A first important parameter that we extracted is the activation
barrier �Ea , i.e., the maximum energy difference between the
NEB image and the initial configuration. Without exception,
the energy barriers increased with the distance from the
instability. At γc − γ = 0.005, �Ea values vary from 1 to about
10 meV. Barrier heights close to the instability remain small
and represent approximately one tenth of the energy difference
between the initial and final states in the case of isolated STs.
The barrier associated with events involving several STs is of
the same order of magnitude, if not slightly lower. This sug-
gests that plastic events involving the cooperative action of sev-
eral STs remain triggered by a single ST. Also, this points out
that broad atomic rearrangements involving cascades of STs
do not require to overcome higher barriers than isolated events.

A second quantity of interest extracted from the NEB
calculations is the activation volume of the STs. Following
a thermodynamic approach, the activation volume is given by
the derivative of the energy barrier �Ea with respect to the
applied shear stress σxy . Furthermore, by taking advantage of
the linear relationship between stress and strain in the elastic

segments leading to the plastic instabilities, we can express
�Va as a function of the distance from the instability:

�Va = −∂�Ea

∂σxy

= −∂�Ea

∂εxy

∂εxy

∂σxy

= ∂�Ea

∂(γc − γ )

1

G
. (4)

As mentioned above, the identified energy barriers follow
the scaling relation �Ea = C(γc − γ )3/2 expected close to a
saddle-node bifurcation. By inserting this analytic expression
in Eq. (4), we find the following scaling law for �Va:

�Va = 3

2

C

G
(γc − γ )1/2. (5)

Inspired by Argon’s model [6] and Eq. (2), the activation
volume can also be expressed as the ST effective Eshelby
volume γ ∗

0 V0 computed at the activated state along the NEB
path, as shown in Figs. 6 and 8:

�Va = (γ0V0)∗ ∼ V0γ
∗
0 , (6)

since the ST volume does not vary significantly along the
paths.

In Fig. 10, we plotted �Va as a function of (γc − γ )
as obtained by using both definitions of Eqs. (4) and (6).
The solid curves are obtained by fitting parameter C in
Eq. (5) to the data calculated by following the thermodynamic
approach (red circles). The results obtained following both
approaches are in remarkable agreement. Also, the scaling
law in Eq. (5) reproduces correctly the evolution of �Va with
(γc − γ ). A noteworthy result is that the effective Eshelby
volume at the saddle point corresponds effectively to the
activation volume obtained from the thermodynamic approach.
Furthermore, we find that the activation volumes correspond
to a fraction of the effective Eshelby volume at the final state,

γ0V0. For example, �Va is 17 and 2 Å
3

for the two selected
events at γc − γ = 0.005 (see Fig. 10), while γ0V0 in the final

states is 45 and 75Å
3
, respectively.

The activation volume for large plastic events (|�σ | �
|�σ0|) coincides with the effective Eshelby volume of the first

FIG. 10. ST activation volume calculated in two different ways:
as the negative derivative of the energy barrier �Ea with respect to the
shear stress σxy (red circles) and as the Eshelby effective volume γ ∗

0 V0

of the first plastic event identified along the NEB path computed at
the saddle point (blue diamonds). Activation volumes are calculated
for an isolated ST (top curve, |�σ | ∼ |�σ0|) and for a cascade of
STs (bottom curve, |�σ | � |�σ0|).
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(a) (b)

FIG. 11. Activation volume as a function of γc (a) and of shear
stress drop amplitude produced by the plastic event |�σxy | (b). �Va

is calculated as the negative derivative of the energy barrier �Ea with
respect to the shear stress σxy at (γc − γ ) = 0.005 for several plastic
events involving either isolated or cascades of STs.

activated ST, demonstrating again that the first ST triggers the
subsequent avalanche. Furthermore, the activation volume for
large plastic events is significantly smaller than for isolated
STs, even though the final effective volume is larger. To
check this correlation more quantitatively, we reported in
Fig. 11 the distribution of activation volumes calculated at
(γc − γ ) = 0.005 as a function of γc in Fig. 11(a) and of |�σxy |
in Fig. 11(b), i.e., the amplitude of the stress drop induced by
the plastic event. Values of �Va at (γc − γ ) = 0.005 can be
considered as a sensible measure of the activation volumes
since the activation volume scales as (γc − γ )1/2 [see Eq. (5)]
and therefore increases slowly away from the instability.

Values between 2 and 20 Å
3

are found. Since both isolated STs
and complex plastic events of different sizes were considered,
this gives estimates of the upper and lower bounds of �Va .

We see in Fig. 11(a) that there is no correlation between
the activation volume and the deformation value. On the other
hand, Fig. 11(b) shows a decreasing trend of the activation vol-
ume with increasing stress drops |�σxy |, which is a signature of
the extent of the collective plastic reorganization. Therefore,
isolated STs which produce small plastic deformations are
characterized by a higher activation volume than STs, which
induce cascades of STs and large plastic deformations. This
correlation may be a manifestation of the deformation history
of the a-Si sample. The smaller activation volume associated
with extended plastic rearrangements indicate the development
of regions where STs are favored, i.e., easier to shear.

V. CONCLUSIONS

In summary, we investigated the impact of damage, pres-
sure and glass-relaxation on the characteristics of the shear
transformation zones in an a-Si model. We also presented the
detailed activation mechanism coupled with the STs analysis
on some representative single and collective plastic events.

We showed that the asymmetric behavior of a-Si under
tension or compression condition is linked to the elementary
operation mechanism of STs. While the higher strength of
metallic glasses under compression is attributed to a temporary
volume expansion involved in ST activation, in the present a-Si
samples, STs inducing volume contraction are favored with
respect to those that promote volume expansion. The transitory
dilatation predicted from ST theory is found systematically
after the activated state, suggesting that it does not affect the
plastic properties in this material. Even though this result
is peculiar to the SW potential, it demonstrates that bond
character and directionality have an impact on the shear
transformation process. This elementary mechanism in turn,
may affect the response under pressure or normal-stress
components of diverse glasses, e.g., oxide or silica glasses.

Decaying exponential distributions of the effective ST
volumes, V0γ0, are found, justifying the common assumption
made in mesoscale models of constant γ0 and V0 values.
However, the characteristic size of these distributions increases
with the level damage, which can be induced by plastic activity,
rapid quenching, and especially by the localization of the
deformation in shear bands. On the contrary, such distribu-
tions are not strongly affected by pressure or normal stress
components. Moreover, we extracted the activation energy and
volume, which integrated in mesoscale models may give access
to thermal effects and strain-rate sensitivity. Interestingly, the
activation volume associated with isolated STs and extended
plastic reorganizations produced by avalanches corresponds to
the effective Eshelby volume calculated at the saddle point of
the initial, and possibly only, ST involved in the plastic event.
The measured activation volume corresponds to a fraction of
the effective Eshelby volume in the final sheared state. Addi-
tionally, smaller activation volumes are found for avalanches,
suggesting that damage has also a strong impact on the activa-
tion properties of STs, although the question of how to quantify
structural damage in glassy systems remains an open question.
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