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Numerical study of one-dimensional compression of granular materials.
I. Stress-strain behavior, microstructure, and irreversibility
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The behavior of a model granular material, made of slightly polydisperse beads with Hertz-Mindlin elastic-
frictional contacts, in oedometric compression (i.e., compression along one axis, with no lateral strain) is studied
by grain-level numerical simulations. We systematically investigate the influence of the (idealized) packing
process on the microstructure and stresses in the initial, weakly confined equilibrium state, and prepare both
isotropic and anisotropic configurations differing in solid fraction � and coordination number z. � (ranging from
maximally dense to moderately loose), z (which might vary independently of � in dense systems), fabric and
force anisotropy parameters, and the ratio K0 of lateral stresses σ2 = σ3 to stress σ1 in the compression direction
are monitored in oedometric compression in which σ1 varies by more than three orders of magnitude. K0 reflects
the anisotropy of the assembling process and may remain nearly constant in further loading if the material is
already oedometrically compressed (as a granular gas) in the preparation stage. Otherwise, it tends to decrease
steadily over the investigated stress range. It is related to force and fabric anisotropy parameters by a simple
formula. Elastic moduli, separately computed with an appropriate matrix method, may express the response
to very small stress increments about the transversely isotropic well-equilibrated states along the loading path,
although oedometric compression proves an essentially anelastic process, mainly due to friction mobilization,
with large irreversible effects apparent upon unloading. While the evolution of axial strain ε1 and solid fraction
� (or of the void ratio e = −1 + 1/�) with axial stress σ1 is very nearly reversible, especially in dense samples,
z is observed to decrease (as previously observed in isotropic compression) after a compression cycle if its initial
value was high. K0 relates to the evolution of internal variables and may exceed 1 in unloading. The considerably
greater irreversibility of oedometric compression reported in sands, compared to our model systems, should
signal contact plasticity or damage.

DOI: 10.1103/PhysRevE.95.032907

I. INTRODUCTION

The macroscopic mechanical properties of quasistatically
deformed, solidlike granular assemblies are traditionally de-
scribed and modeled in the realm of soil mechanics [1–3]
by phenomenological laws, often resorting to the concepts of
elastoplasticity, which need nevertheless to assume complex
forms if stress-strain curves are to be described with some
accuracy. These laws are applied in engineering practice
and have benefited, over the last decades, from sophisticated
laboratory measurements [4,5].

Beyond phenomenological description, investigations of
the mechanics of granular materials in connection with their
microscopic structural and rheophysical features are now being
pursued throughout a significantly wider, multidisciplinary
research community [6–8], ranging from geotechnical engi-
neering to condensed matter physics. To this end, particle-level
numerical simulations, analogous to molecular dynamics, and
often referred to as “discrete element modeling” (DEM) for
granular materials [9,10], provide very valuable information.

*mohamed-hassan.khalili@enpc.fr
†jean-noel.roux@ifsttar.fr
‡jean-michel.pereira@enpc.fr
§sebastien.brisard@ifsttar.fr
‖michel.bornert@enpc.fr

Such approaches have successfully been employed to investi-
gate grain-level origins of such important aspects of granular
mechanics as dilatancy properties by which dense and loose
configurations differ in their small strain response [11–13],
the role of grain shape or such features as rolling resistance
and angularity [14–17] in the development of internal friction.
An important concept, the “critical state” (an attractor state
under monotonically growing strains, as in homogeneous
quasistatic shear flow, which does not depend on initial
conditions) has been characterized and its properties related to
micromechanical aspects [12,18–20].

Unlike such steady states, the configurations and the
mechanical response of granular materials under small and
moderate strains are sensitive to the initial material structure.
In addition to their density, initial states are characterized in
terms of structural anisotropy, whose importance has long been
recognized in experiments [21–26], and more recently inves-
tigated by numerical means [27–29]. Coordination numbers
(i.e., average numbers of force-carrying contacts per grain)
have also been observed to vary, independently of density. As
coordination numbers are mostly inaccessible to experiment,
these observations were carried out in numerical studies [30–
32], although some indirect comparisons with laboratory
observations, through elastic moduli, were also proposed [33].
Compressive loads, in which stress intensities, rather than
stress directions, are varied, are crucially influenced by contact
deformability and elasticity. Isotropic compression [34,35] of
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isotropically assembled model granular materials is apparently
a simple process, in which the contact network gets enriched
due to a recruitment process closing gaps between neighboring
grains. This simplicity is partly deceptive, though: upon
unloading, while only a very small strain irreversibility is
observed, the contact network may undergo profound changes;
specifically, the final coordination number under low pressure
may be much smaller than its initial value, before the compres-
sion cycle. Simple prediction schemes based on the assumption
of homogeneous strain prove unable to capture such changes
in contact number [35].

Oedometric compression, an axially symmetric process in
which one principal strain component (ε1) is increased, the
others being maintained at zero (ε2 = ε3 = 0), is one of the
simplest anisotropic loading processes, representative of natu-
ral materials under gravity (e.g., sediments consolidating under
their weight). Oedometric compression leads to transversely
isotropic structures, with the symmetry of revolution about
axis 1.

This paper, the first in a set of two, reports on a numer-
ical study of oedometric compression of a model material
made of elastic-frictional spherical beads, investigating how
material anisotropy, either initially present or acquired in
the compression, couples to stresses and strains. We shall
systematically refer to ε1, σ1 as axial stress and strain,
and to ε2 = ε3 and σ2 = σ3 as the lateral or transverse
strains and stresses, respectively. Extending previous studies
of isotropically assembled and compressed materials [30,31],
a special attention is paid to the various possible initial states,
which differ in density, coordination number and anisotropy,
and their influence on the subsequent material response under
load. As in a number of recent experimental and numerical
studies [26,36–39], the ratio K0 of lateral to axial stresses,
which results from both the initial state and the effects of the
subsequent compression, is monitored, and related to internal
anisotropy. The effects of unloading and compression cycles
are explored, both macroscopically (strains, density, K0) and
microscopically (contact network and fabric). Elastic moduli
are investigated in order to assess the nonelastic, irreversible
nature of compression response. Elastic moduli are also
measurable characteristics apt to probe material microstructure
and anisotropy, but this aspect is dealt with in the companion
paper [40].

The paper is organized in the following way. The model
material and the simulation procedure are first described
in Sec. II. The different numerical packing methods and
the resulting initial states under low stress are presented in
Sec. III. Results on the oedometric compression of the different
initial states are reported in Sec. IV, both for the macro-
scopic behavior and the evolution of internal variables and
microstructure. Section V discusses the mechanical response
with reference to elasticity, frictional dissipation, and contact
network instabilities. Section VI then investigates the effects
of unloading and compression cycles. Section VII finally sums
up and discusses the results.

II. NUMERICAL MODEL

Based on the integration of the equations of motion for
solid objects, involving linear and angular momentum, masses

and moments of inertia, the DEM simulations exploited here
are a standard tool in granular micromechanics, as used in
many articles [11,13,27] and described in more comprehen-
sive treatises [9]. We therefore dispense below with a full
presentation of all relevant equations, by referring adequately
to previous published work in which very similar models were
implemented [30,41]. Nevertheless, we need to fix notations,
introduce relevant control parameters, and provide a sufficient
definition of the numerical procedure.

A. Model material

We consider assemblies of spherical beads, interacting
in their contacts through contact elasticity and Coulomb
friction. The beads are slightly polydisperse, with diameter
D distributed according to the following probability density
function:

p(D) = 2D2
1D

2
2(

D2
2 − D2

1

) 1

D3
(D1 � D � D2), (1)

which ensures a uniform distribution by volume between
minimum value D1 and maximum value D2 = 1.2D1. This
distribution should avoid all crystallization phenomena (even
though no nucleation tendency was detected in a previous
study [30] applying a very similar treatment to monodisperse
bead assemblies).

For contact elasticity, the same simplified version of
the Hertz-Mindlin model [42] is adopted as in Ref. [30],
suitably adapted to a polydisperse bead collection. Specifically,
considering two beads i and j , with respective centers at
points ri and rj and radii Ri and Rj , and introducing notation
hij = ||rj − ri || − Ri − Rj , the normal force transmitted FN

ij

in their contact vanishes for hij > 0 (distant bead surfaces)
and depends otherwise on deflection −hij � 0 as follows.
Introducing the Young modulus E and the Poisson ratio ν

of the solid material the beads are made of, and using notation
Ẽ for E/(1 − ν2), one has

FN
ij = Ẽ

√
dij

3
|hij |3/2 (2)

in which dij = 4RiRj

Ri+Rj
is an effective diameter combining

surface curvatures in the contact region. Due to Eq. (2) the
normal stiffness expressing the response to small variations of
deflection |hij | in the contact varies as

KN
ij = Ẽ

√
dij

2
|hij |1/2 = 31/3

2
Ẽ2/3d

1/3
ij

(
FN

ij

)1/3
. (3)

The tangential elastic force FT
ij , as in [30], relates to the

relative tangential displacement in the contact δuT
ij involving

a (deflection-dependent) tangential stiffness coefficient KT

assumed proportional to KN :

dFT
ij = KT

ij d
(
δuT

ij

)
, with KT

ij = 2 − 2ν

2 − ν
KN

ij . (4)

Tangential stiffness KT has to be suitably adapted (rescaled)
whenever the normal elastic force decreases, in order to avoid
spurious elastic energy creation [30,43].

The Coulomb condition enforces inequality ||FT
ij || � μFN

ij ,
with the friction coefficient μ set to 0.3 in this study. It
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is taken into account by suitably projecting FT
ij onto the

circle of radius μFN
ij in the tangential plane, after applying

incremental relation (4), whenever necessary. Normal and
tangential contact force components also follow the general
motion of the grain pair in order to ensure the objectivity of
the model [30,44].

While we use the elastic properties of glass, E = 70 GPa
and ν = 0.3, in our simulations, results, if suitably expressed
in dimensionless form, exactly apply to all materials sharing
the same dimensionless characteristics μ and ν. (Moreover,
Poisson ratio ν only mildly affects elastic properties [33], while
material properties do not vary fast with the friction coefficient
in the range 0.2 � μ � 0.4 [45,46]).

Finally, a normal viscous force is added to the elastic-
frictional one, in order to ease the approach to mechanical equi-
librium under static loads. The same model as in Refs. [30,47]
is used, with a damping constant choice corresponding to a
velocity-independent, very low coefficient of restitution in
binary collisions.

B. Boundary and loading conditions

We consider cuboidal samples, periodic in all three di-
rections. We denote as L1, L2, L3 the dimensions of the
simulation cell parallel to the three axes of coordinates, to
which correspond basis unit vectors e1, e2, e3. In oedometric
compression, L2 and L3 are kept fixed, while L1 varies, either
enforcing the value of strain rate ε̇1 = −L̇1/L1 or requesting
the system to reach an equilibrium configuration under a given
level of the corresponding normal stress in direction 1, σ1.

In the stress-controlled case L1, the cell size in direction
1 satisfies an equation of motion such that it slowly increases
or decreases, according to the sign of the difference between
requested and measured values of σ1 [30,41,47]. Both strain-
rate-controlled and stress-controlled simulations are carried
out in such conditions that inertial effects remain small, by
enforcing small enough strain rates ε̇. Inertial effects are
controlled by requesting the inertial number I [48] to remain
very small. I is defined in terms of the mass m1 of a grain of
diameter D1 and characteristic stress σ1 as

I = ε̇

√
m1

D1σ1
. (5)

We request I not to exceed Imax = 10−3 in the preparation
stage, as a granular gas is gradually compressed to form
the initial solid configuration. In the subsequent strain-rate-
controlled, quasistatic oedometric compression, we set ε̇ to
a smaller value, corresponding to I = 10−5; upon unloading
(as σ1 and ε1 decrease), even smaller strain rates are imposed,
corresponding to I = 10−6. Such low values of I ensure the
absence of all rate influence on all measured quantities, and
avoid, in particular, instabilities associated with spuriously
large contact losses along the unloading path (as remarked in
Ref. [35]).

As in [30,41], the effect of global strains is equally felt
by the grains throughout the sample, upon decomposing
their motion into a fluctuating, periodic part and an affine
contribution; and, in the stress-controlled case, the equation for
cell dimensions Lα involves an acceleration term proportional
to the difference between the requested value of stress σαα

and the currently measured one, using the following classical
formula for stress components:

σαβ = 1

V

⎡
⎣ N∑

i=1

miv
α
i v

β

i +
∑

1�i<j�N

Fα
ij r

β

ij

⎤
⎦. (6)

Equation (6) expresses stress components as a kinetic term
involving masses mi and velocities vi of all N grains i

within sample volume V , added to a sum over pairs of
interacting grains i, j transmitting force Fij (from i to j )
in their contact, rij denoting the “branch vector” pointing
from the center of i to the center of j . The first (kinetic)
term of the right-hand side of Eq. (6) is of course negligible
at (or close to) mechanical equilibrium, but might somewhat
influence the system dynamics in the initial assembling stage.

Although this study focusses on oedometric compression,
in which only L1 varies, while L2 and L3 are fixed, we are
also interested in the consequences of the procedure by which
the initial solid configuration is assembled by compression
from a loose configuration (a “granular gas”), and we consider
both oedometrically and isotropically compressed initial con-
figurations under stress σαβ = Pδαβ , as in Refs. [30,41], all
three Lα’s being simultaneously reduced in the isotropic case.
Isotropic compression is, however, only applied to granular
gases at the assembling stage. The resulting granular packs are
then subjected to oedometric loading paths.

III. SAMPLE PREPARATION, INITIAL STATES

A. Motivation

Although widely recognized as crucially important for
small strain mechanical response of granular materials, the
assembling processes by which granular packs are prepared
in a solid state are relatively seldom investigated, either
experimentally [23–25,49] or numerically [28,50]. One serious
difficulty in the numerical modeling of such processes is
the dependence [27,28] of the final microstructure (density,
coordination number) on dynamical dissipation parameters
(such as restitution coefficients) which are not well known, and
for which modeling choices are often guided by computational
convenience as much as by physical realism.

We chose here to implement idealized assembling models,
with the objective of obtaining a variety of initial structures
representative of a wide range of possible material states.
Although admittedly not conforming to laboratory procedures,
those numerical preparation methods can be argued to exhibit
some of the basic features resulting from such procedures
as vibration or gravity deposition. Their main advantage is
the possibility of varying, through rather wide intervals, the
basic state variables: solid fraction �, coordination number
z, and anisotropy in contact orientations. We also record the
proportion of rattlers (i.e., grains that do not carry any force, in
the absence of gravity), denoted as x0, and other data pertaining
to interneighbor distances and force networks.

B. Numerical assembling process and stress control

In practice, all configurations are obtained on compressing
a loose configuration (� � 0.45, no intergranular contact, no
kinetic energy) to equilibrium under low initial stress σ0.
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Specifically, one requests σ1 = σ0 for oedometric compres-
sion, or σ1 = σ2 = σ3 = σ0 for isotropic compression. We
use σ0 = 10 kPa, assuming the particles are glass beads. This
stress level is expressed in dimensionless form using a stiffness
parameter κ , defined, as in [30,41,48], by

κ =
(

Ẽ

σ1

)2/3

. (7)

With glass beads (Ẽ � 77 GPa), σ0 = 10 kPa corresponds to
κ0 � 39 000. Definition (7) is such that the typical ratio of
contact deflection [−hij in Eq. (2)] to grain diameter is of
order κ−1 [30].

Defining F1 = σ1D
2
1 as the relevant force scale, we request,

as a practical equilibrium condition, all forces to balance on
each grain within tolerance 10−4F1, all torques to balance
within tolerance 10−4F1D1, while the kinetic energy per grain
should not exceed 10−8F1D1 and controlled stress components
should be measured equal to their set values, within relative
error 10−4.

C. Different initial packing states

The assembling procedure is designed such that these
configurations equilibrated under σ1 = σ0 in the oedometric
case, or σ1 = σ2 = σ3 = σ0 in the isotropic case, vary in
density and in coordination number. We thus obtain six
different initial states, as described below. Their properties
are listed in Table I.

Maximally dense states with high coordination number.
In order to maximize density, as in [30], we set the friction
coefficient μ to zero in the assembling stage. In the isotropic
case, this results in the random close packing state (RCP), as
often investigated in the literature [30,41,51,52] for monodis-
perse spherical beads. The results obtained here are almost
not affected by the slight polydispersity, as the solid fraction
averages to 0.638 with 4000 beads, hardly larger than the
value 0.637 reported on applying the same treatment with
the same number of grains in the monodisperse case [30].
The coordination number of nonrattler grains z∗ = z/(1 − x0)
approaches the isostatic value of 6 in the limit of rigid grains
(κ → ∞), while x0 remains quite small. We refer to this initial
state as DHi for dense, high coordination number, isotropically
compressed in the assembling stage.

TABLE I. Solid fraction �, coordination numbers of all grains z

and of nonrattler ones z∗, rattler fraction x0, and stress ratio K0 for
the initial states, according to preparation procedure. K0 = 1 in all
isotropically assembled states (denoted as “XYi”). Values averaged
over three configurations of N = 4000 grains (sample to sample
differences lie below given accuracy level, except for x0).

LLo LLi DHo DHi DLo DLi

� 0.584 0.589 0.639 0.638 0.634 0.637
z 4.22 4.14 5.98 5.99 4.06 4.17
z� 4.63 4.63 6.07 6.07 4.54 4.65
x0 (%) 8.8 10.3 1.5 1.3 10.4 10.37
K0 0.72 1 0.94 1 0.51 1

Using oedometric, rather than isotropic, compression to
reach an equilibrated configuration with σ1 = σ0, still without
intergranular friction, we obtain the DHo state (dense, high co-
ordination number, oedometrically assembled). Its properties
are similar to DHi, save for a slight anisotropy, evidenced in the
observed value K0 � 0.94 of the ratio of transverse to axial
stress. As studied in Ref. [41], frictionless bead assemblies
may transmit anisotropic stresses, but the corresponding states
(dubbed “anisotropic random close packing states” in [41])
share the same density and coordination numbers as the
isotropic ones.

Maximally dense packing with low coordination number.
In order to mimic laboratory procedures in which dense
configurations are obtained through agitation or vibration, and
to obtain presumably more realistic values of coordination
numbers, a very small isotropic dilation is applied to DHi
configurations (multiplying bead center coordinates by 1.001),
so that all contacts open; the system is then subjected (after a
mixing step as in [30]) to an isotropic compression, with the
final value μ = 0.3 of the friction coefficient (the one used in
the subsequent study of the solid, quasistatic response), until
an equilibrium state is obtained. The solid fraction is close
to the initial RCP value, but the coordination number is now
about 4, with a large rattler fraction. This final state is referred
to as DLi (dense, low coordination, isotropically assembled).
The same procedure may also be applied, with an oedometric
final compression stage (with μ = 0.3). We note, in that case,
that the mixing stage is not necessary to obtain a small final
coordination number. We denote the final state as DLo (dense,
low coordination, oedometrically assembled). Interestingly,
this DLo state exhibits a rather large preparation-induced stress
anisotropy, with K0 � 0.51.

Looser states. States obtained on directly compressing
the loose “granular gas” configurations (� = 0.45), with the
final value μ = 0.3 of the intergranular friction coefficient
(and condition I � Imax = 10−3), are low coordination states
with many rattlers, but looser than DLi or DLo, with solid
fractions between 0.58 and 0.59. Depending on whether they
are isotropically or oedometrically assembled, we refer to
these initial static configurations as LLi or LLo, in accordance
with previous notation conventions (loose, low coordination,
isotropically or oedometrically assembled). K0, in the LLo
case, shows a significant level of stress anisotropy, but smaller
than for DLo. Although rather loose, the LLo state is likely
not the loosest possible structure of a rigid bead assembly with
μ = 0.3. Different procedures, possibly involving capillary
cohesion in an initial stage [53], could result in lower solid
fractions.

All six initial states of Table I were prepared for three differ-
ent samples of 4000 grains, over which recorded measurements
are averaged. One additional system with 13 500 grains was
assembled in the DLo state, in order to check for the absence
of size effects. Data pertaining to this larger sample are labeled
“DLo+” on some figures below.

D. Other characteristics of initial states

The possibility to obtain a low coordination number z for
a solid fraction � nearly equal to its maximum (random close
packing) value was first pointed out in previous studies of
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FIG. 1. h-dependent coordination number z(h) for the different
initial states (σ1 = 10 kPa or κ � 39 000).

isotropic packings [30].1 It is generalized here to anisotropic
packings DLo. Apart from the data listed in Table I, initial
states might also be characterized in terms of force distribution,
friction mobilization, and neighbor distance statistics. Some of
these properties are studied in Sec. IV, in which state variable
evolutions under oedometric compression are studied.

Although grains should tend to have more neighbors in
denser systems, arbitrarily small displacements suffice to open
contacts in the rigid limit (κ → ∞), whence the possibility of
widely different z values. It is instructive to explore at which
scale neighbor distance statistics are correlated to contact
statistics. Figure 1 shows, for different initial states, plots of
growing function z(h), defined as the number of neighbor
grains separated by a gap lower or equal to distance h, and
such that z(0) = z. As in the isotropic, monodisperse sphere
packings of Ref. [30], z(h) functions take larger values in
denser systems, except for small values of h (say, h � 0.05D1)
as the value of the contact coordination number is approached.
Thus, direct observations of bead packs by microtomography
techniques [54] should be able to resolve distances of order
D1/100 to provide information on coordination numbers. In
Ref. [30], it is also shown that the treatment of rattlers (which
would tend to rely on neighboring grains underneath in the
presence of gravity) might significantly affect function z(h) at
small distance. In view of the close similarity with the results
obtained in isotropic systems, the structure of (orientation
averaged) pair correlations is not pursued further in this paper,
which focuses more on anisotropy.

IV. OEDOMETRIC COMPRESSION

We now report on the observed material evolution in
oedometric compression. Once the details of the numerical
loading procedure are specified in Sec. IV A, the variation of
the simplest, scalar state variables is monitored and discussed

1Save for the small grain size polydispersity, states DHi, DLi, and
LLi are identical to the states respectively denoted as A, C, and D in
Ref. [30], dealing with monodisperse bead assemblies.

in Sec. IV B. Observations of stress anisotropy, as expressed
by coefficient K0, are then reported and compared to literature
results (Sec. IV C). The anisotropy of force networks, as
investigated in Sec. IV D, is directly related to K0, as shown
in Sec. IV E.

A. Loading process

In order to dispel all possible confusion, let us first insist
that the main objective of this study is oedometric compression
of the chosen model material with intergranular friction
coefficient μ = 0.3. All samples of 4000 grains in all six initial
states, even though some of them were prepared, as described
above in Sec. III, without friction and/or by isotropic rather
than oedometric, compression of a granular gas, are subjected
to quasistatic oedometric compression, for which μ is set to
0.3. In such slow, quasistatic compression processes, the value
of viscous damping parameters in contacts is known to be
irrelevant to the material behavior [9].

We apply a strain-rate-controlled loading program [main-
taining small values of I (Eq. 5), see Sec. II B]. Intermediate
configurations are recorded when σ1 reaches, for glass beads,
values 31.62 kPa, 100 kPa, 316.2 kPa, 1 MPa, 3.162 MPa,
10 MPa, 31.62 MPa (increasing as a geometric progression,
with factor

√
10), corresponding to κ decreasing (by constant

factor 101/3) from 39 000 at 10 kPa down to 181 at 31.62 MPa.
Each of those intermediate configurations is subjected to equi-
libration under constant σ1, using the same numerical tolerance
on equilibrium criteria as stated in Sec. III, before strain-rate-
controlled compression is resumed. This equilibration step
is carried out in order to record accurate characterizations
of contact networks. It results in a very small “creep” strain
increment (typically of order 10−5 for dense states, up to 10−4

in looser systems), in which z increases by a small amount
(from 0.5% to about 3.5%, the highest increases corresponding
to the less coordinated states).2 In the following, state variables
are, unless specified otherwise, measured in equilibrated
configurations. We checked that those measurements, and the
subsequent behavior recorded on resuming constant strain-rate
compression, neither depend on the chosen compression rate,
provided I remains below 10−3, nor on changing the values of
σ1 corresponding to equilibration stages.

B. Evolution of scalar state variables

1. Density

Solid fractions for the different initial states are plotted
versus σ1 or κ−1 in Fig. 2. Two different sets of curves
are obtained, pertaining to initially dense and initially loose
systems. Quite unsurprisingly, the density increase with
applied stress is of the same order as κ−1, characterizing
contact deflections, and tends to be larger in looser systems.
The influence of the initial coordination number seems quite
secondary, only noticeable, on the figure, for DLi and LLi
systems under low stress. Note the DLo+ data points, showing

2This small numerical creep phenomenon, which stops once the
system reaches equilibrium, should not be confused with creep
observed in the laboratory.
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FIG. 2. Evolution of solid fraction � with axial stress σ1 in
oedometric compression for different initial states.

the same behavior in a larger sample (N = 13 500 grains), save
for a very small systematic density increase, compatible with
the slight size dependence (proportional to N−1/2) recorded
for the RCP density in [30,51].

A comparison with similar isotropic compression re-
sults [35] reveals a density increase of the same order, but, as
one should expect, somewhat smaller under axial stress σ1 than
under isotropic stress P = σ3 = σ2 = σ1. Thus, dense systems
reach solid fractions of about 0.658 under isotropic stress
P = 31.6 MPa [35] while oedometrically compressed dense
samples (DHo or DLo) do not exceed solid fraction 0.654.
Axial strain ε1, on the other hand, is larger in the oedometric
compression case, as it accounts for the whole density change
��, rather than ��/3 in isotropic compression.

2. Coordination number and rattler fraction

The variation of coordination number z under growing
stress, as shown in Fig. 3, is slightly more unexpected: while it
gradually increases with σ1 in low coordinated states, whatever
their density, it tends to decrease in a first stage if initially
high (in DHi and DHo systems). Note the absence of sample
size dependence: results for N = 13 500 and 4000 grains are
identical. The rattler fraction, on the other hand, steadily de-
creases in compression for all initial states. The nonmonotonic
variation of z, if initially high, is a first clue that the oedometric
compression is not always as simple and predictible as might
be expected on assuming homogeneous shrinking of distances
along the axial direction. Such a uniform strain assumption
necessarily predicts coordination number z to increase. It
would tend to explain, nevertheless, the faster increase of z

in DL systems than in LL ones: the creation of new contacts
in compression is achieved sooner in more densely packed
structures. Quite detailed tests of the homogeneous shrinking
assumption were carried out for isotropic compression in
Ref. [35], revealing fairly correct predictions of coordination
number increases under compression: within 20%–30% of the
measured values in low coordination number systems. [Yet, the
homogeneous strain assumption proved unable to capture the
evolution of coordination numbers on unloading (see Sec. VI).]
As for �, changes in z under compression prove smaller in the
present oedometric case than in the isotropic compressions of

FIG. 3. Coordination number z (a) and rattler fraction x0 (b)
versus axial stress σ1 along oedometric loading path for the different
sample preparations.

Ref. [35], with maximum values of z below 6.5 (for DHi-DHo),
in range 5.8–6 (DLi-DLo states), or below 5.5 (Li-Lo states), as
opposed to, respectively, � 6.8, � 6.6, and 5.9 under isotropic
load with the same value of σ1.

The results of Fig. 3 also signal the enduring effects of initial
anisotropy: the differences between systems DLi and DLo do
not tend to vanish, even after the applied stress increased by
more than three orders of magnitude.

3. Force distribution

From (6), in equilibrium, the average normal force 〈FN 〉 in
the contacts is readily related to the pressure P = (σ1 + σ2 +
σ3)/3, as

〈FN 〉 = π〈D3〉P
z�〈D〉 . (8)

This formula, involving the first and third moments of the
diameter distribution, assumes a decorrelation between normal
force intensity FN

ij and intercenter distance Ri + Rj in contacts
i,j , which is satisfied in good approximation (the maximum
relative error is 1.4%, for the highest stress level). The
evolution of the normal force distribution in compression
is well characterized on normalizing forces by 〈FN 〉. The
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FIG. 4. Probability density function of f = F N/〈F N 〉 in oedo-
metric compression of initial state DLo, for different axial stress
levels.

probability distribution function (PDF) of f = FN/〈FN 〉 was
observed in the isotropic case [35] to concentrate on a narrower
interval about its average as compression proceeds, the faster
the better coordinated the system. In the present case of
oedometric compression, this effect is still present, although
considerably smaller. Figure 4 shows the PDF of f for different
stresses σ1 for initial state DLo, and exhibits little change,
except for large forces. The shape of force distributions may
be characterized [35] with reduced moments

Z(α) = 〈(FN )α〉
〈FN 〉α . (9)

As shown in Fig. 5, the reduced second moment Z(2) decreases
quite slowly (except for the initial evolution of high z states,
likely correlated with the nonmonotonic variation of z) as a
function of σ1. Similarly, Z(1/3) (not shown on the figure),

FIG. 5. Evolution of reduced second moment of normal contact
forces 〈(F N )2〉/〈F N 〉2 in oedometric compression.

which from Eqs. (3) and (8) relates the average contact stiffness
to P 1/3 [35] hardly changes in oedometric compression: for all
systems, it stays between 0.92 and 0.95. Unlike the isotropic
compression studied in [35] for similar stress levels, the
oedometric compression does not cause strong changes in
force distributions.

C. Stress ratio K0

Traditionally, coefficient K0 (termed “coefficient of earth
pressure at rest”) is regarded as a basic characteristic of
material response under oedometric load, and expected to
remain constant as axial stress σ1 increases (in a horizontal,
homogeneous sand layer under its weight, both vertical and
horizontal stresses thus increase proportionally to depth).
However, some preparation techniques reportedly produce
initial state dependent K0, which might also vary with σ1, thus
raising the question of the conditions in which K0 might indeed
be regarded as a constant ratio [37,55,56]. The availability of
the six widely different initial states, in this study, provides an
opportunity to investigate this issue.

1. Results

The variations of K0 along the oedometric loading path
are displayed in Fig. 6, in which isotropically assembled
initial states are distinguished from oedometrically assembled
ones, on separate plots. Systems that are first assembled by
isotropic compression only gain stress anisotropy in the course
of the subsequent oedometric compression, and thus exhibit
K0 values decreasing from 1, faster for a higher density, and
faster for a larger coordination number. Thus, K0, in the DHi
case, reaches values slightly above 0.6 at σ1 = 1 MPa (or
κ−1 � 6.10−4), and hardly changes under larger axial stress.
K0, in DLi systems (dense with low initial coordination) and
LLi (loose) ones, steadily decrease as functions of σ1, without
approaching an asymptotic value, even under quite high stress
levels (tens of MPa). Among the three different oedometrically
assembled initial states, the dense, highly coordinated one,
DHo, is in a nearly isotropic stress state (K0 = 0.94) and close
(see Table I) to fully isotropic state DHi. Consequently, the
behavior of K0 is quite similar in oedometric compression for
DHo and DHi. However, the looser anisotropic initial state
(LLo), and the dense, yet poorly coordinated one (DLo),
both exhibit quite different K0 evolutions in oedometric
compression, with a remarkably constant value (�0.5) for
DLo, and a very slowly decreasing one for LLo (if a smaller
interval of σ1 is considered, K0 � 0.7 might be considered
constant, as a good approximation, for LLo as well). Constant
K0 values are thus observed in situations for which the
anisotropy of the assembling process is similar to that of the
subsequent quasistatic oedometric loading history.

2. Comparison to experimental and numerical literature

Okochi and Tatsuoka [55] published a detailed experimental
study of factors affecting K0 values measured in a reference,
well characterized sand, subjected to many different initial
treatments in the preparation stage, including a first compres-
sion (which is not oedometric as lateral strains are not set to
zero), up to a relatively small stress level (about 20 kPa),
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FIG. 6. K0 versus axial stress σ1 in oedometric compression (dots joined by solid lines, as specified in legend). Dots joined by dashed lines:
predictions of Eq. (17) (see Sec. IV E). (a) Oedometrically assembled systems (“XYo”). (b) Isotropically assembled ones (“XYi”).

in which σ2/σ1 is kept constant by separately controlling
axial and lateral stresses (in a triaxial cell). In the subsequent
oedometric compression to higher stress values, they observed
lower values of K0 in denser systems, and, a decrease of
K0 for increasing σ1, from an initial isotropic state of stress.
Interestingly, K0 converges to an asymptotic value (close to
0.5) as σ1 increases to about 200 kPa. This asymptotic value
does not appear to depend on the initial stress ratio applied
in the first compression. The numerical results appear to be
in qualitative agreement with these observations, except that,
in the numerical case, a limiting, high stress value of K0 is
not approached as soon as σ1 is merely multiplied by 10.
The experimental setup of [55] does not, however, enable
the simpler procedure which consists in, first, depositing
the sample under gravity, and then applying an exactly one-
dimensional compression (zero lateral strain). Carried out in
an oedometer, equipped with tactile pressure sensors to record
lateral stresses, rather than a triaxial cell, the measurements
of Gao and Wang [56] allow for such a simpler procedure
to be applied. Using air pluviation (i.e., deposition under
gravity, under controlled conditions) to assemble the solid
sample, these authors observed a constant K0 in the subsequent
oedometric compression. Thus, regarding the oedometric
assembling procedure, defining initial states LLo and DLo
(Table I), as roughly similar to pluviation, it should be
noted that simulations agree with laboratory observations in
this respect: K0 remains constant for assembling procedures
resembling one-dimensional compression.3

The experiments of Lee et al. [37] also reveal a roughly
constant K0 when the tested granular materials (assembled by
some unspecified process) are first oedometrically compressed
from 16 to 115 kPa. Tested materials include glass beads
prepared at intermediate solid fractions: � � 0.603, for which

3The experiments of [56] are complex, involving creep periods
of several days, during which K0 increases, but K0 reverts to its
previous value as standard oedometric compression is resumed. Creep
phenomena are not studied here.

K0 � 0.55, and � � 0.614, for which K0 � 0.51, values with
which (despite possible different contact friction coefficients)
our numerical results for dense system DHo approximately
agree.

The experimental study of Khidas and Jia [26], carried
out on glass beads in oedometric conditions, considers two
different initial densities (� � 0.605 and � � 0.643), and
aims at a characterization of anisotropic elastic properties.
Values of K0 are noted, though corresponding to a secondary
compression process, after a first compression cycle, which
we shall briefly discuss in Sec. VI.

On the numerical side, two recent publications are partic-
ularly relevant for comparisons with this study, Refs. [38,39].
Both Lopera Perez et al. [38] and Gu et al. [39] consider
spherical grains, with the polydispersity of the Toyoura sand
particles of Ref. [55], and prepare samples by varying the
friction coefficient, in the initial assembling stage by isotropic
compression, from zero to its actual value used in quasistatic
compression: μ = 0.5 in [39] (0.600 � � � 0.629), μ =
0.25 in [38] (0.600 � � � 0.648). Those initial states thus
interpolate between DHi and LLi. Investigated stress ranges
in these studies are narrower than in our case, extending from
25 to 1250 kPa in [38] (where particles with elastic properties
of glass beads are also simulated), and from about 130 to
1040 kPa in [39] (once stresses are rescaled in order to compare
systems of equal stiffness level κ). Gu et al. also prepared
samples by direct oedometric compression (similar to a series
of systems interpolating between DHo and LLo).

Our results for isotropically compressed systems for DHi
and LLi agree semiquantitatively with those of [38,39] for K0

values and trends, but the decrease of K0 values for growing
σ1 is notably slower in our case. Similarly, our observations
contradict those made by Gu et al. as regards the difference
between LLi and LLo. These authors obtain roughly constant
(σ1-independent) K0 values for oedometrically assembled
systems, and find that K0 in isotropically assembled systems
approaches this value as soon as σ1 increases by a factor of
10 or 20, while, in this study, K0 values for LLi and LLo
still differ after a thousandfold increase of σ1. One possible
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explanation for these discrepancies is that we could approach
the quasistatic limit in compression with better accuracy: the
rate of compression, as measured by the inertial number, is
250 times as small in our simulations as in [38] (while its
value is left unspecified in [39]). Neither one of those two
groups studied initial states of different coordination numbers
for the same density, and thus our DLi and DLo results are, to
our knowledge, entirely new. (Coordination numbers are not
specified in [38]; values of z∗ specified in [39] in the looser
samples approximately agree with our LLi or LLo results for
the same value of κ; Gu et al. do not prepare systems as dense
as our “DXy” ones.)

D. Anisotropy

We now characterize anisotropy appearing in oedometri-
cally compressed systems, both in the contact network, in the
correlations between neighboring grains, and in force intensity
and friction mobilization.

1. Contact and neighbor pair anisotropy

As a result of oedometric compression, the distribution of
the orientation of unit normal vectors in contacts, on the unit
sphere, ceases to be isotropic, although it remains rotationally
symmetric about the compression direction (referred to as
the axial direction and denoted “1” throughout the paper).
Defining angle θ between direction 1 and that of normal
unit vector n, with 0 � θ � π , the orientation distribution (or
fabric) anisotropy is conveniently expressed by the probability
density function (PDF) of cos θ = n1 over interval −1 � n1 �
1, p(n1). By construction, it is an even function (n and −n are
equivalent), constant with value 1

2 in an isotropic system. p(n1)
might be expanded in the series of Legendre polynomials, with
only terms of even order. Truncating the series after the term
of order 4, one has

p(n1) = 1 + A2
(
3n2

1 − 1
) + A4

(
35n4

1 − 30n2
1 + 3

)
, (10)

in which coefficients are related to moments of the distribution:
thus, coefficient A2, given by

A2 = 15

4

(〈
n2

1

〉 − 1

3

)
= 15

4

∫ 1

−1
p(n1)n2

1dn1 − 5

4
, (11)

is directly related to the difference between the second moment
and its isotropic value, for which we introduce the notation

c̃2 = 〈
n2

1

〉 − 1
3 . (12)

Figure 7 shows that expansion (10) truncated at order 2
is already quite a good representation of the PDF of |n1| [i.e.,
P (|n1|) = 2p(n1)], and that adding the term of order 4 achieves
an excellent fit.

As σ1 increases in oedometric compression, c̃2 evolves, for
the six different investigated states, as displayed in Fig. 8.
Isotropic packings, as well as nearly isotropic DHo ones,
progressively acquire an anisotropic structure under growing
oedometric load, faster in dense systems than in the LLi case:
from the results of Fig. 3, contact networks undergo more
changes for higher densities. Under large stress, the level of
fabric anisotropy of initially isotropic systems is comparable to
its value in the LLo case, which is roughly stress independent
(c̃2 � 0.04). The larger value of c̃2 in the most anisotropic

FIG. 7. Anisotropy of contact orientations: histogram of |n1|
values in system DLo at σ1 = 100 kPa, and its representation with
expansion (10), truncated after order 2 (solid line) or order 4 (dashed
line).

system, DLo, decreases slightly for the larger stress levels. The
high coordination numbers reached at large σ1 in dense systems
(Fig. 3) preclude very large fabric anisotropies, as many neigh-
bors in contact with the same central grain, by steric exclusion,
tend to be more isotropically distributed at its periphery [57].

It is worth investigating over which length scale the
distribution of neighboring grains is similarly anisotropic. To
this end, Fig. 9 plots function c̃2(h) obtained on extending
the definition of c̃2 (its value for h = 0) to the orientation of
normal vectors joining neighbors at distance below h, both in
the initial states, and under a high stress level. While the strong
anisotropy of the DLo state, and the moderate ones observed
under stress in DHo and initially isotropic ones, tend to vanish
at distances reaching 0.05 to 0.1 − 0.2D1, the distribution of
neighbor pairs in the LLo case is still notably anisotropic over
a much larger range of interparticle gaps, extending beyond
0.3D1. The anisotropic structure of loose systems, resulting
from the assembling process, should be easier to detect with
microtomography techniques.

FIG. 8. Anisotropy parameter c̃2, versus σ1 or κ−1, for all six
different initial states.
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FIG. 9. Anisotropy of orientation of pair of near neighbors as
expressed by h-dependent coefficient c̃2(h). (a) σ1 = 10 kPa (or κ �
39 000, initial states). (b) σ1 = 10 MPa (or κ � 390).

2. Angular distribution of normal force amplitudes

Contact force values tend to reflect stress anisotropy,
resulting both from one-dimensional loading and from the
initial packing process (for oedometrically assembled states).
Classifying contacts by the orientation of normal vector n,
some classes tend to carry larger forces than others. We denote
as F(n) the average normal force amplitude for contacts with
normal direction n, normalized by the global average 〈FN 〉,
such that its integral over the unit sphere �, weighed by the
orientation distribution p(n), satisfies∫

�

p(n)F(n)d2n = 1. (13)

Similarly to p(n), F , a function of |n1|, may be expanded in a
series of Legendre polynomials. We define

f̃2 = 1

4π

∫
�

F(|n1|)n2
1d

2n − 1

3
, (14)

which vanishes in isotropic systems. Figure 10 shows the evo-
lution of f̃2 in oedometric compression. Under compression,
the force anisotropy parameter f̃2 steadily increases in all
studied systems. This increase is strikingly fast in initially
isotropic states, especially those with a large coordination

FIG. 10. Force anisotropy parameter f̃2, versus σ1 or κ−1, for all
six different initial states.

number. Unlike fabric, which requires changes in the contacts
(presumably related to finite strains), force anisotropy might
change quickly by redistributing the forces within the existing
network. Such redistributions are easier in better coordinated
ones, whereas force values are more strongly constrained
by the network geometry in poorly coordinated states with
relatively low force indeterminacy.

E. Estimation of K0 from anisotropy parameters

Relating stresses to fabric and force anisotropy parame-
ters is quite a standard, well-known procedure in granular
micromechanics [41,58,59], which was, in particular, suc-
cessfully applied to oedometric compression in the recent
numerical studies discussed in Sec. IV C 2 [38,39]. We use
it here, in a particularly simple form, to relate K0 to anisotropy
parameters c̃2 and f̃2, and to discuss the roles of both kinds of
anisotropies. Remarkably, the contribution of tangential forces
to stresses σ1 and σ2 = σ3 remains very small (below 6%) in all
configurations throughout the compression cycle. Ignoring it,
we obtain the desired approximative relation on truncating at
the second order the expansions of p(n) and F(n), and neglect
the products of anisotropic coefficients c̃2 and f̃2 (those small
coefficients are dealt with to first order).4 The normal force
contribution to principal stresses, given (α = 1, 2, 3) by

σα = 3z�〈FN 〉〈D〉
∂〈D3〉

∫
�

p(n)F(n)(nα)2d2n, (15)

becomes

σα � 3z�〈FN 〉〈D〉
π〈D3〉

[〈
n2

α

〉 + f
(α)
2 − 1

3

]
, (16)

using the notation

f
(α)
2 =

∫
�

n2
αF(n)d2n.

4It is consistent with this order of approximation to replace p(n) by
1 under the integral in normalization relation (13).
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Knowing that 〈n2
2〉 = 〈n2

3〉 = 1
2 (1 − 〈n2

1〉), one may finally
estimate K0 as

K0 = σ22

σ11
� 2 − 3(c̃2 + f̃2)

2 + 3(c̃2 + f̃2)
. (17)

This estimate of K0 agrees quite well with measured values
(see Fig. 6).

Thus, anisotropy parameters c̃2 and f̃2 appear combined
into the sum c̃2 + f̃2, and their relative effect is appreciated
on comparing their values, as plotted in Figs. 8 and 10. Force
anisotropy is clearly the dominant effect in stress anisotropy
(expressed by ratio K0, deviating from 1) in isotropically
prepared systems, except for the loose initial state under high
stress. In oedometrically assembled ones, with initial fabric
anisotropy, both effects, of fabric and force anisotropies, are
of the same order, except in the case of DHo, with its very
small initial value of c̃2.

V. ELASTICITY AND FRICTION

We now investigate the nature of stress-strain response in
oedometric compression, discussing the role of elastic and
frictional response.

A. Oedometric compression and elastic response

Elastic moduli in the six anisotropic states subjected
to oedometric compression are specifically studied in the
companion paper [40], in which their connection to density,
coordination number, fabric and force anisotropies are inves-
tigated in detail. The issue we wish to address here first is
whether and how the quasistatic stress-strain or stress-density
curves (Fig. 2) recorded under oedometric load relate to elastic
response.

1. Measurement of elastic moduli

An elastic response, in granular materials, is measured
when small stress and strain increments about a prestressed,
equilibrated configuration, are related in a reversible way,
associated with an elastic potential energy. Elastic moduli may
then be measured either statically, with adequate devices apt
to capture very small strains, or deduced from sound wave
velocities in granular materials [26,60–64]. An elastic response
is only observed for small strain intervals, and should in fact
be viewed as an approximation, as dissipation mechanisms are
always present (in particular, solid friction) and preclude the
general definition of an elastic energy. The relative amount of
dissipation decreases as the size of the probed strain interval
approaches zero, and it is often observed, for usual conditions
in which granular materials are probed, that an elastic model
is satisfactory for strain increments not exceeding some upper
bound of order 10−6 or 10−5. For that reason, the material
behavior is best characterized as “quasielastic” in that limited
range. In Ref. [33], a numerical study of elastic properties
of isotropic spherical bead assemblies, carried out with the
same model material as the present one (except for the small
polydispersity, absent in [33]), observations were made, quite
similar to those of the experimental literature, as to the am-
plitude of the “quasielastic” domain. In simulations, an elastic
model is considered for well-equilibrated configurations, in

which the contact structure behaves just like a network of
linear elastic springs. One may then build the stiffness matrix
(also known as the “dynamical matrix”) for this network,
with stiffness parameters KN and KT as determined by
Eqs. (3) and (4), by the procedure explained in Ref. [33],
where details are provided about the necessary approximations
to obtain an elastic response. The elastic moduli are then
obtained by solving appropriate systems of linear equations,
for the small (linear and angular) displacements of all the
grains associated with global strains and stresses. We refer
to [33] and to the companion paper [40] for details about
the stiffness matrix and its treatment. In the present case,
we obtain all five independent elastic moduli appropriate
for a transversely isotropic material (as in [26,41,63]).
Specializing to diagonal matrix components, the relation
between stress increment �σ and strain increment �ε reads
as ⎛

⎝�σ1

�σ2

�σ3

⎞
⎠ =

⎛
⎝C11 C12 C12

C12 C22 C23

C12 C23 C22

⎞
⎠ ·

⎛
⎝�ε1

�ε2

�ε3

⎞
⎠, (18)

with a symmetric positive definite matrix of elastic moduli
Cαβ , 1 � α, β � 3, abiding by the rotational invariance about
axis 1. Postponing a more complete study of the (transversely
anisotropic) tensor of elastic moduli in oedometric compres-
sion to the companion paper [40] (in which shear moduli are
also measured), we focus here on moduli C11 and C12, which
express the response to varying axial strain ε1. Those moduli
increase with σ1 in the compression, mainly due to the contact
law. In view of Eqs. (3) and (4), moduli tend to scale as σ

1/3
1 .

As in the isotropic case [33], they are primarily sensitive to
coordination numbers, with values in poorly coordinated dense
systems DLo and DLi close to the ones observed in loose
systems.

2. Stress increments and elasticity

Note that the assumption of elastic response underlying
relation (18) implies that sliding contacts are absent or have
negligible effects, and that the contact network is stable. This
may of course be checked by confronting the predictions
of (18) to a complete DEM computation, in which a steadily,
very slowly growing strain is applied, and the effects of friction
and of network rearrangements are taken into account. Such a
comparison, carried out in the isotropic case [33], showed the
elastic response and the complete computation to coincide for
small enough strain or stress intervals, in good agreement with
laboratory results.

In this study, a growing strain ε1 is imposed in the
axial direction, and the elastic response of an equilibrium
configuration to a small increment �ε1 should be

�σ1 = C11�ε1,
(19)

�σ2 = �σ3 = C12�ε1.

Figure 11 compares the predictions of (19) for �σ1, with
modulus C11 identified from the stiffness matrix (thereby
assuming an elastic behavior in all contacts), to the full
DEM-computed mechanical response to small σ1 increments,
in one DLo and one DHo system, equilibrated for different
intermediate values of σ1 along the oedometric curve. The
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FIG. 11. Ratio of stress increments �σ1 to initial stress σ1, versus
strain increment �ε1. Dots: DEM results, after system equilibrates
under application of growing �σ1. Dotted lines: elastic prediction
(slope C11/σ1). Data recorded for different σ1 values as indicated.
(a) In one DLo sample and (b) a DHo one.

elastic modulus correctly describes the initial slope and
the first data points recorded on the curve (while the strain
increment is of order 10−6 or 10−5), and then the material
response turns softer. A similar comparison is made for �σ2

in Fig. 12, showing similar small strain and stress intervals
for which the lateral stress increments abide by the elastic
prediction, using modulus C12. This time, the material gets
stiffer as it departs from the elastic response.

The results on the six different systems (one sample of
each type) for the amplitude of the strain interval for which
the quasielastic model applies are gathered in Fig. 13. The
convention was adopted here that the elastic response is
correct as long as the relative error made on predicting stress
increments with Eq. (19) remains below 5%. As noted earlier
in isotropic systems [33], this quasielastic range, expressed as a
strain interval, is of the same order as observed in experiments.
It tends to be larger in better coordinated systems: DHo, DHi,
and also DLo and DLi once z has significantly increased
under compression (Fig. 3). It also increases with σ1, roughly

FIG. 12. Ratio of stress increments �σ2 to initial stress σ1, versus
strain increment �ε1. Dots: DEM results, after system equilibrates
under application of growing �σ1. Dotted lines: elastic prediction
(slope C12/σ1). Data recorded for different σ1 values as indicated, in
one DHi sample.

FIG. 13. Quasielastic range, defined as ε1 interval for which (19)
holds within 5%, versus equilibrium stress in probed system. (a) Axial
stress response (�σ1). (b) Lateral stress response (�σ2). Dashed lines
have slopes 2/3.
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FIG. 14. Plot of K0 versus C12/C11. Data points correspond to all
six prepared initial states, as indicated in the legend, and pertain
to the different equilibrated configurations along the oedometric
compression curve.

proportionally to σ
2/3
1 . This exponent [33] may be regarded

as a reflection of a roughly σ1-independent quasielastic range,
if expressed in terms of relative stress increase �σ1/σ1. As
moduli tend to scale as σ

1/3
1 , a constant �σ1/σ1 translates into

the observed scaling σ
2/3
1 for strain increments.

3. K0 and elasticity

Should stress variations with axial stress ε1 satisfy elastic
behavior and relations (19), then stress ratio K0 should be
related to elastic moduli. Specifically, defining an “incremen-
tal” stress ratio K ′

0 = �σ2/�σ1, as in Ref. [39], K ′
0 should be

equal to C12/C11. However, as already apparent in Figs. 11
and 12, stress increments differ from the predictions of the
tangential quasielastic behavior and, consequently, coefficient
K0 and ratio C12/C11 vary independently, as visualized in
Fig. 14. This figure makes it clear that both quantities are quite
different, with much lower values of C12/C11. As remarked
before, modulus C11 overestimates the variation of axial
stress, �σ1 with ε1, while C12 underestimates the variation of
lateral stress �σ2. Both effects entail that C12/C11 is smaller
than K0 = �σ2/�σ1. Furthermore, ratio C12/C11 is nearly
constant in systems DHi and DHo, while K0 changes to a
large extent. The opposite is true for the four other states, in
which C12/C11 changes much more than K0. Elastic moduli,
in general, are thus quite uncorrelated to K0.

These remarks raise the question of the status and validity of
simulated experiments in which elastic moduli are measured,
as in the case of the results shown in Figs. 11 and 12. One
may wonder how one can observe, e.g., a constant stress ratio
K0 along the quasistatic compression curve, on the one hand,
and a different ratio of stress increments �σ2/�σ1 = C12/C11

for small probes applied to any intermediate equilibrium
state along the curve, on the other hand. The solution to
this conundrum is provided by the very small “numerical
creep” phenomenon observed when well-equilibrated contact
networks are obtained along the primary, strain-rate-controlled
compression curve (Sec. IV A). As the system evolves towards
a well-equilibrated configuration (which is necessary to build a
nonsingular stiffness matrix), it is observed that the population
of contacts with full friction mobilization (i.e., for which the

FIG. 15. Quasielastic range (same definition as for the results of
Fig. 13) versus σ1 in one DLo system, for loading (positive) and
unloading (negative) axial strain increments.

Coulomb inequality is satisfied as an equality ||FT|| = μFN )
disappears. Instead, a number of contacts carry force values
barely inside the Coulomb cone (typically, ||FT||/μFN >

0.95). This is enough to allow for a small interval of strains
within which the elastic model, assuming friction is irrelevant,
applies as a good approximation.

It should be recalled that experimental measurements of
elastic moduli by static means, along a stress-strain curve,
are often carried out in a similar way [64,65]: first equilibrated
under static stresses, samples are subjected to small oscillatory
probes; while the first cycles tend to cause small amounts of
strain to accumulate, the subsequent ones are reproducible
and quasielastic. Upon resuming the compression curve (most
usually a triaxial compression test) at fixed strain rate, the
initial slope of the stress-strain curve coincides with the elastic
modulus.

Another way to observe an elastic response is to reverse
the loading direction [33]. Anelasticity being largely due
to friction mobilization, reversing the sign of strain rate ε̇1

tends to cause tangential relative displacements to change
sign, thereby bringing back contact forces inside the Coulomb
cone. Consequently, upon gradually applying a negative ε̇1

(with due caution, keeping accelerations very small), the
obtained stress-strain curve exhibits a quasielastic range which
is larger than in the forward direction (typically by one order
of magnitude), as shown in Fig. 15.

Like in experiments, on resuming the strain-rate-controlled
compression after a static elastic probe, the evolution of
stresses versus ε1 in our numerical oedometric tests tends to
return to the previous (nonelastic) behavior. Figure 16 is a
plot of stress increment �σ2 versus �σ1 following an elastic
probe applied to an equilibrium configuration. The slope of
this plot coincides with C12/C11 for small stress increments,
and gradually approaches K0 for larger ones. (K0 coincides
with ratio �σ2/�σ1 along the oedometric compression curve
since it is constant in good approximation for initial states
DLo.)
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FIG. 16. �σ2 versus �σ1 in sample DLo at σ1 = 10 kPa, on
resuming compression after equilibration under σ1 = 10 kPa. Dots
show DEM data, solid line has slope K0, dashed line has slope
C12/C11.

B. Role of friction in oedometric compression

1. Incremental response

Results of Figs. 14 and 16 make it obvious that oedometric
compression curves are not ruled by the quasielastic behavior
evidenced for small stress or strain increments about a
prestressed, well-equilibrated configuration. Departures from
this elastic regime (as investigated previously in the isotropic
case [30]) are due to frictional forces and, possibly, to contact
network instabilities. As visualized in Fig. 17, the elastic
response coincides, on resuming the oedometric compression
from an intermediate (equilibrated) configuration, with that
of a fixed contact network in which no contact creation
occurs (although some of the existing contacts may open),
and frictional sliding is forbidden (setting μ to an infinite
value). We also investigated the response of fixed contact

FIG. 17. Oedometric loading curves from equilibrium state under
σ1 = 31.6 kPa in a DLo sample. “Ncc, μ = ∞” labels simulations
carried out without creation of any new contact, and infinite friction
(no sliding). The linear elastic response of the initial contact network
is shown as dashed straight line.

FIG. 18. Average level of friction mobilization 〈 ||FT ||
μFN 〉 in contacts

sharing common normal orientation n, versus |n1|, in state DLo under
σ1 = 1 MPa. The same average quantity is also shown separately for
contacts carrying normal forces larger or smaller than the average
normal force.

networks (forbidding contact creation), and observed them
not to differ from the full response on the scale of Fig. 17. The
gradual departure from the elastic response is thus mainly due
to frictional sliding.

2. Friction mobilization

Contact sliding is thus the major cause of the nonelastic
nature of the mechanical response in oedometric compression.
How the sliding (or full friction mobilization) status of a
contact correlates to its orientation is shown in Figs. 18 and 19.
Figure 18, a plot of average friction mobilization versus |n1|
in contacts sharing normal unit vector n, shows a significantly
greater proximity to the sliding limit, on average, near n1 = 0,
i.e., for nearly transversely oriented normals, close to the
plane of directions 2 and 3. It also shows, as noted in
isotropic systems [35], that friction mobilization tends to be

FIG. 19. Proportion of contacts for which friction mobilization
||FT ||
μFN is equal to 1 or exceeds threshold 0.95 in contacts sharing
common normal orientation n, versus |n1|, in state DLo under σ1 =
91 kPa (these data correspond to one intermediate state in the course
of strain-rate-controlled compression).
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larger in contacts carrying small forces. Just like in isotropic
compression [35], we could also observe larger levels of
friction mobilization in systems with smaller coordination
numbers. Figure 19, recording measurements carried out
during controlled-strain-rate oedometric compression, shows
moreover that the proportion of exactly sliding contacts, or
even almost sliding ones (with ||FT ||

μFN close to 1), reaches its
maximum for directions close to the transverse plane.

This angular variation of friction mobilization might seem
surprising, as, from the macroscopic strain field, one does not
expect any tangential displacement in the contacts oriented
in the transverse plane. The assumption of uniform strain
might, however, provide some insight. Let us write the relative
displacement at the contact between grains i and j , δuij , as

δu̇ij = ε̇ · rij = (Ri + Rj )ε̇ · nij ,

using dotted variables to denote derivatives with respect to
time. Given the uniaxial strain tensor ε = ε1e1 ⊗ e1, the
normal and tangential components of δu̇ij read as

δu̇N
ij = (Ri + Rj )ε̇1

(
n

(1)
ij

)2
,

δu̇T
ij = (Ri + Rj )ε̇1n

(1)
ij

(
e1 − n

(1)
ij nij

)
. (20)

Thus, the corresponding elastic force component derivatives
are such that their normal component vanishes faster than their
tangential one as n

(1)
ij approaches zero. Contacts with nearly

transverse normal directions tend to carry tangential forces
varying faster than the normal ones, and hence are likely to
reach the Coulomb sliding condition more easily.

C. Discussion

To summarize our observations, we have checked that
quasielasticity, characterizing the response of a contact net-
work in which friction mobilization might be neglected,
only applies to well-equilibrated configurations (in which
full friction mobilization is lost). Anelasticity is further
related to lack of reversibility in unloading in Sec. VI.
On the compression curve, strains are associated to some
frictional sliding, distributed among all directions of normal
vector n but occurring more frequently for those close to
the transverse plane. Frictional sliding reduces the apparent
stiffness of the material. Unlike material deformation under
deviatoric load [66], the anelastic response under oedometric
compression does not appear to involve large scale internal
rearrangements and failure of contact networks.

Yet, K0, the stress ratio, is often related to global failure
conditions. First, the ratio of principal stresses σ1/σ2 cannot
exceed an upper bound 1/Ra related to the internal friction
angle ϕ as

1

Ra

= 1 + sin ϕ

1 − sin ϕ
, (21)

thereby setting a lower bound Ra to the possible value of
K0 (Ra and Rp = 1/Ra are referred to as the active and
passive principal stress ratios, in the context of sustaining
wall engineering). ϕ (or, equivalently, Ra) is most usually, in
simulations as well as in experiments, measured in triaxial
compression, which consists in compressing in direction 1
while maintaining stresses σ2 = σ3 constant, which involves

lateral expansion. In spherical grain assemblies with intergran-
ular friction coefficient μ = 0.3, ratio 1/Ra , which depends
on the initial state, does not exceed 2.5 [67]. Thus, K0 should
exceed 0.4 = 1/Ra , which from Fig. 14 is always larger than
C12/C11: the compression could not be elastic.

A second way in which K0 is often linked to internal friction
is through the Jaky relation

K0 = 1 − sin ϕ, (22)

which many experimental [37,55,56] and numerical [38]
works attempted to check, with varying success. We did not
systematically test relation 22, which is somewhat problematic
as K0 is not constant in general (and would require a
nonambiguous definition of ϕ as well). However, let us note
that in state DLo for which K0 remains, in good approximation,
constant as σ1 increases, (22) would yield ϕ � 30◦, which is
notably larger than the values recorded for the internal friction
angle in spherical bead assemblies [67].

VI. UNLOADING AND COMPRESSION CYCLES

One major issue in oedometric compression is reversibility.
It is often assumed that the compression is a plastic, irreversible
process. Unloading, on the other hand, i.e., reversing the sign
of ε̇1 or decreasing σ1 after it has increased to some maximum
value σ

p

1 , is often regarded as elastic. Strain (or density) varies
less. As the initial value of σ1 is retrieved, the system has not
recovered its initial density, an irreversible density increase
is observed. Then, upon reloading, the same “elastic” stress-
strain path is retraced as in the previous unloading branch until
σ

p

1 , the preconsolidation stress, is attained. Any further stress
increase beyond σ

p

1 results in an additional plastic response,
with a faster increase of ε1. Such is the classical behavior of
sands and other soils in oedometric compression, as described
in treatises [3] and textbooks [2].

A. Density and coordination

To ease comparisons with the literature, in this section we
describe density changes in terms of the void ratio e, defined
as

e = −1 + 1

�
. (23)

Figure 20 displays the variations of void ratio e in the
oedometric compression cycle, in which the compression
described in Sec. IV is followed by a decompression, with
the procedure described in Sec. II B, down to the lowest
stress level σ1 = 10 kPa. The void ratio change [Fig. 20(a)]
is almost reversible, especially in dense systems, an obser-
vation which strikingly differs from the classically reported
behavior of sands (see, e.g., [68]). In fact, similar irreversible
density increases under oedometric loads as in laboratory
experiments on sands were to our knowledge never retrieved
in DEM simulations in which grains interact merely by
elasticity and Coulomb friction in their contacts. Cohesive
DEM models, on the other hand, do exhibit large irreversible
density increases under isotropic [53,69] or oedometric [70]
loads, and behave similarly to laboratory powders, clays, or
sands, with the preconsolidation stress ruling the onset of
further plastic compaction. Cohesionless systems, as dealt
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with in simulations, appear to lack some modeling ingredient
to exhibit similar plasticity in compression as sands, most
likely some form of plasticity or damage at the contact
scale. This interpretation is confirmed by the experimental
observations reported in Ref. [36]: assemblies of smooth
beads, in oedometric compression, deform much less than
assemblies of angular, irregular shaped particles, unless the
beads break under very high stress. Contacts through small
asperities tend to exhibit breakage or damage under lower
stresses.

In the present numerical study, small irreversible strain
changes are nevertheless observed. The lack of reversibility
is also, as amply demonstrated in Sec. V, evidenced by the
departure from elastic response in compression. Table II com-
pares the total axial strain, in compression and decompression,
with an elastic strain, evaluated as

εel
1 =

∫ σ max
1

σ min
1

dσ1

C11(σ1)
. (24)

The values of C11 have to be interpolated for all values of σ1

along the loading curve to evaluate the elastic strain according
to (24). It is of the same order as the measured strain, but with
a relative difference of order one.

The compression cycle is most conspicuously irreversible
as regards the internal microstructure of the system. Thus,
the coordination number [Fig. 20(b)], if initially large (as in
DHo systems), decreases to values nearly as low as in poorly
coordinated initial states, either dense (DLo) or loose (LLo).

FIG. 20. Void ratio e (a) and coordination number z (b) versus σ1

in oedometric compression cycle.

FIG. 21. Void ratio e (a) and coordination number z (b) versus σ1

in oedometric compression cycle on one DHo sample.

This behavior is quite similar to the one reported in isotropic
compression [35].

This decrease of coordination number after unloading also
occurs for smaller compression cycles (smaller maximum
axial stress). Figure 21 thus shows, both on the void ratio
and on the coordination number, the effect of unloading from
σ1 values of 31.62 kPa, 316.2 kPa, and 3.162 MPa on the
primary compression curve, in addition to the maximum stress

TABLE II. Total strains computed from elastic moduli (εel
1 ) and

measured in simulations along loading (εld
1 ) and unloading (εuld

1 )
paths.

εel
1 εld

1 εuld
1

Lo 1.72% 3.54% 2.58%
DHo 1.27% 2.28% 2.38%
DLo 1.38% 2.22% 2.14%
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FIG. 22. K0 versus σ1 in oedometric compression cycle. (a) Oe-
dometrically assembled systems (“XYo”). (b) Isotropically assembled
ones (“XYi”).

31.6 MPa. All compression cycles produce a decrease in z

once σ1 returns to its initial low value, the larger the wider the
covered stress interval.

The first graph in Fig. 21, with a void ratio scale appropriate
for DHo states, shows small density changes after a stress loop.
Although in some cases the final density is smaller than the
initial one (see also Table II), the work done in the stress loop,
as evaluated by the (algebraic) area under the stress-strain
curve, is of course positive, signaling energy dissipation (this
is discussed in [35] in the case of isotropic compression).

B. K0 and anisotropies

In unloading, a plot of K0 versus σ1, as shown in Fig. 22,
first signals a gradual decrease in stress anisotropy, with
K0 increasing towards 1. In initially isotropic systems, as
well as for DHo (only marginally anisotropic), the transverse

FIG. 23. c̃2 (a) and f̃2 (b) versus σ1 in oedometric compression
cycle.

directions become major principal stress directions and K0

takes values larger than 1 (up to about 1.6 in the DHi case).
DLo states, however, after a moderate decrease of K0, keep
direction 1 as the principal stress direction (and so do LLo
ones). Loose states tend to lose their stress anisotropy for the
lower stress values in decompression, which might partly be
due to some instability as the load is decreased onto fragile
networks.

Since formula (17) still provides a good prediction of K0

values on the unloading branch of the cycle, the difference
in evolutions of K0 upon decompressing might be ascribed
to different variations of anisotropy parameters c̃2 and f̃2:
c̃2 changes, which request changes in the contact network,
are slower than changes of f̃2, which are obtained on simply
redistributing forces. Figure 23 shows that fast increases of
K0 in decompression correspond to quickly evolving force
anisotropy parameters f̃2 in systems DHi, DLi, LLi, and DHo.

C. Elastic moduli

Figure 24 shows the variation of elastic moduli C11 and
C12 in the compression cycle. As announced, moduli are
roughly proportional to σ

1/3
1 , with, possibly a somewhat

faster increase in compression associated with changes in
coordination number, and some effects of fabric and force
anisotropies, to be investigated in [40].
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FIG. 24. C11 (a) and C12 (b) versus σ1, in loading cycle. Black
dashed line has slope 1/3.

The evolution of elastic moduli during unloading phases
reveals their dependence on the coordination number and
anisotropy, rather than density. The evolution of C11 in system
DHo in loading and unloading parallels that of its coordination
number z (see Fig. 20). While C11 values on the compression
branch is significantly larger for DHo systems than for DLo or
LLo ones, this difference vanishes, just like the coordination
number difference, upon returning to the initial stress down
the decompression branch. The final value of C11, after the
loading cycle, is even lower for DHo than for LLo, despite the
higher density, a difference to be attributed to the different
anisotropies shown in Fig. 23. Compared to coordination
numbers or fabric anisotropies, elastic moduli are easier to
measure in the laboratory, and some of our observations could
thus be checked.

D. Further compression cycles

Under varying axial stress σ1, oedometrically compressed
granular materials thus undergo complex, irreversible evo-

FIG. 25. Solid fraction � (a) and coordination number z (b)
versus σ1 in oedometric compression cycles, with three unloading
and reloading steps after the first compression to maximum value of
axial stress.

lutions, and one should in principle investigate the effects
of arbitrary load histories, in which σ1 may be increased or
decreased, over any sequence of load intervals. We report here
on a (limited) investigation of the effects of repeating the same
compression cycle in systems DHo and DLo.

It is interesting to see whether the compression cycle is
retraced upon compressing again: one may wonder to what
extent the memory of the initial state survives repeated cycles,
and whether systems sharing the same initial density will
tend to approach a common limit state. Figure 25 shows
that the slight density difference between DLo and DHo does
not appear to gradually vanish under repeated compression
cycles. Meanwhile, the coordination number of the DHo state,
after its strong decrease in the first cycle, oscillates in the
following ones between values that remain somewhat larger
than the ones observed in the initially poorly coordinated
system DLo. Although the difference of coordination number
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FIG. 26. K0 versus axial stress σ1 in cycles of Fig. 25. (a) In a
DHo system and (b) in a DLo one.

between DHo and DLo is greatly reduced after the first cycle,
the stress anisotropy of the final states is then quite different,
as noted previously (see Fig. 22), with K0 > 1.4 for DHo
and K0 < 0.8 for DLo. This difference in the evolution of the
principal stress ratio, as shown in Fig. 26, does not tend to
disappear under repeated cycles: while K0 in DHo systems
oscillates between about 0.6 at large σ1 and nearly 1.5 under
low stress, it oscillates below 1 for DLo, with a systematic
increasing tendency. Thus, under repeated decompression and
recompression steps, systems DLo and DHo still behave
differently: while the DHo state seems to approach a limit
cycle, with the same values of �, z, and K0, the observation
of K0 values for DLo reveals a gradual evolution towards less
anisotropic, and possibly denser, states.

VII. CONCLUSIONS

We now summarize and comment our observations, sug-
gesting a few perspectives to this study.

We carried out systematic numerical simulations of qua-
sistatic oedometric compression of model granular mate-
rials, in which contact mechanics does not involve other
ingredients than (suitably simplified) Hertz-Mindlin elasticity
and Coulomb friction (with friction coefficient μ = 0.3).
The material is first assembled in initial states varying in
density, coordination number (which might be large or small,
depending on preparation, in dense systems, as in isotropic
grain assemblies [30–32]), and anisotropy. In the compression
cycle, axial stress σ1 varies by a factor larger than 3000,
corresponding, for glass beads, to the range 10 kPa � σ1 �
31.6 MPa. The observed behaviors prove somewhat more
complicated than superficial observations would seem to
indicate, with nontrivial initial state dependence and anelastic
response.

Although the strain response (or the change in solid
fraction) under growing axial stress seems nearly reversible,
the internal state of the material does evolve irreversibly,
as apparent in the variations of coordination numbers and
anisotropy parameters. Compared to the behavior of sands
as described in the geomechanics literature, the stress-strain
irreversibility (usually described as a plastic response) is
much smaller, a difference we attribute to the absence of
plasticity or damage in the implemented contact model. Just
like in isotropic compression [35], coordination numbers, if
initially high, tend to decrease in a compression cycle, once
the initial stress value is retrieved, the more the larger the
maximum stress value in compression. The stress anisotropy,
as expressed by ratio K0, is in general not constant. It
varies little with σ1 in systems assembled under similar
one-dimensional compressions of granular gases, except in the
case of a high coordination number (possibly unrealistically
large), as obtained on suppressing friction in the assembling
stage. We expect gravity-deposited systems, in conditions
ensuring homogeneous density and microstructure, to behave
similarly. Stress ratio K0 = σ2/σ1 is correctly predicted, in all
configurations along the loading or unloading curves, by a for-
mula involving the leading order anisotropic terms in Legendre
polynomial expansions of normal vector-dependent contact
densities and average normal force value distributions over the
unit sphere. It should thus be possible to predict the mechanical
response and the internal material evolution if the evolution of
axial strain ε1 could be related to anisotropy parameters.

This latter task seems, however, arduous, given the complex
nonelastic strain response of the material. Elastic moduli,
although measurable upon applying small load increments
onto well-equilibrated configurations along the compression
path, do not correctly predict the slope of the oedometric com-
pression curve or the stress ratio K0. This conclusion might
seem paradoxical since the compression curve is supposed
to be quasistatic, i.e., consisting of a continuous sequence of
equilibrium states. We attribute this apparent contradiction
to the subtle role of the very small creep step preceding,
in numerical simulations as well as in the laboratory, the
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static measurement of elastic properties. In simulations this
creep stems from the small distance to equilibrium of transient
configurations along a strain-rate-controlled loading path. This
distance decreases as the strain rate, expressed in dimension-
less form by inertial number I , decreases. As well-equilibrated,
static states are obtained with good accuracy, such that the
stiffness matrix of the contact network is well behaved,
friction mobilization is lost, and for a small nonvanishing
stress increment, it is a good approximation to assume all
contacts to behave elastically. In the laboratory, although strain
rates are considerably smaller, and intermediate configurations
are likely closer to equilibrium, some creep also takes place,
possibly caused by other phenomena at contact scale, with
similar results that quasielastic relations between small stress
and strain increments might be subsequently measured. Creep
phenomena, as observed in real laboratory materials, in
general, would deserve more detailed investigations, although
the elucidation of their origin is likely to involve little known
micromechanical ingredients at the contact scale.

The elastic properties being easier to measure than fabric
variables and coordination numbers, we provide in the com-
panion paper [40] a more detailed study of the relations of
all five independent moduli in the transversely anisotropic
configurations obtained by oedometric compression to mi-
crostructural variables. A comparison of elastic moduli in
numerical and experimental works should help understanding
which type of numerical preparation scenario produces initial
states closer to experimental ones.

Although strains predicted by the elastic response are
of the same order of magnitude as observed strains, the
difference is important, and strongly affects the value of stress

ratio K0. The anelastic response is mainly due to friction
mobilization, which, although distributed over all contact
orientations, surprisingly affects the most the contacts with
normal direction close to the transverse plane. Contact network
instabilities, avoided thanks to new contact creations, do not
seem to play an important part. Detailed, strictly quasistatic
analyses [66,71–73] of elastic-frictional response of contact
networks to oedometric loads could be carried out to relate
microscopic frictional sliding to macroscopic behavior.

Another remarkable result of the present numerical study is
the persistent effect of the assembling process and the resulting
initial state characteristics: the difference, e.g., between high
coordination and low coordination dense systems is not lost
after several compression cycles. Our numerical results, as re-
gards the evolution of K0, differ somewhat from experimental
observations, which sometimes report a quicker convergence
to a common value of this stress ratio for different initial
states. This is likely due, like irreversibility, to the absence
of contact-level plasticity or damage in the numerical model.
Some features of assemblies of nonspherical, rough, or angular
grains as probed in oedometric compression of sands might
need to be modeled, with the same identification difficulties
as for creep, if the effects of growing stress intensity are to be
quantitatively described.
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