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Collisional model of energy dissipation in three-dimensional granular impact
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We study the dynamic process occurring when a granular assembly is displaced by a solid impactor. The
momentum transfer from the impactor to the target is shown to occur through sporadic, normal collisions of
high force carrying grains at the intruder surface. We therefore describe the stopping force of the impact through
a collisional-based model. To verify the model in impact experiments, we determine the forces acting on an
intruder decelerating through a dense granular medium by using high-speed imaging of its trajectory. By varying
the intruder shape and granular target, intruder-grain interactions are inferred from the consequent path. As a
result, we connect the drag to the effect of intruder shape and grain density based on a proposed collisional model.
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I. INTRODUCTION

The seemingly simple occurrence of a solid object impact-
ing a bed of sand remarkably exposes the truly complex dual
nature of granular media. In addition to the upward splash of
displaced grains, the response of the granular target is to cause
the intruding object to abruptly stop as its momentum is carried
away through the material. There has been significant effort to
understand the way by which momentum is transferred to gran-
ular media, beginning over a century ago [1]. Studies of pen-
etration into dry granular media have expanded significantly
to focus on crater formation [2–8] and proposed governing
force laws [9–14]. Additionally, a complete comprehension
of granular impact has a natural connection to navigation
on grainy surfaces [15,16], geomorphology, and astrophysical
craters [17–20]. However, even with such stimulating work,
the grain-scale details of force transmission during granular
impact have not been fully resolved [21].

An empirical force law has been established to broadly
describe this process. It represents the stopping force due to
granular media as the sum of depth-dependent static force f (z)
and velocity-dependent inertial drag h(z)ż2, such that the force
acting on the intruder is given by

F = mz̈ = mg − f (z) − h(z)ż2, (1)

where mg is the gravitational force (m is the intruder mass
and g = 9.8m/s2), ż is the intruder velocity, and h(z) gives
the inertial drag coefficient [9]. These terms highlight the
dual nature of granular media. The intruder motion is used
to determine the form of the stopping force law, where the
dynamics are governed by inertial drag over much of the
deceleration. Nonetheless there lacks a connection of the ex-
perimental relation to its physical origin, which would resolve
remaining controversy to explain the inertial drag [20,21].

Clark et al. [22] notably explored granular impact via two-
dimensional (2D) experiments by using photoelastic grains as
the target, whereby the granular response could be visualized.
They showed that the momentum is lost from an intruding disk
through rapidly fluctuating collisions at the disk surface with
clusters of high-force-carrying grains. The clusters form chain-
like pathways that carry away momentum. The observations
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are connected to the inertial drag of the stopping force by way
of a collisional model [23,24]; a novel microscopic explanation
of 2D granular impact.

Here we extend the collisional model to three-dimensional
granular impact occurrences, such as the aforementioned case
of a solid object impacting sand, to show this as a universal
explanation of the deceleration. We determine the forces acting
on an intruder penetrating a dry, dense granular medium by
using high-speed imaging of its trajectory. We relate the force
to the proposition that momentum transfer occurs through
rapid, sporadic collisions that act perpendicular to the impactor
surface; friction is not important for this process. Accordingly
we present a model based on collisions of the intruder with
granular chains during impact, and we show that this model
effectively explains the stopping force of granular media on an
intruder. We vary grain density and the shape of the intruding
object to infer intruder-grain interactions. As a result, we con-
nect the inertial drag h(z)ż2 to the effect of the intruder shape
and target density based on the proposed collisional model.

II. EXPERIMENT DETAILS

Figure 1(a) illustrates the details of the experimental setup.
In all experiments, a dry noncohesive granular medium,
smooth Ottawa sand with naturally rounded grains (density
ρg = 2.1 g/cm3 and grain diameter Dg ∼ 0.3 mm) or cous-
cous (ρg = 1.2 g/cm3 and Dg ∼ 2 mm), is used as the impact
target. The target is held within a large rectangular container
(38 cm width by 49 cm length by 20 cm depth); this size is
large enough to minimize boundary effects on the intruder’s
trajectory [6,25]. The packing fraction, fraction of container
space that is filled by grains, is held approximately constant,
as acquired by pouring grains into the container and tapping
it. Before each run, we prepare the granular bed by leveling
the impact surface using a straight edge.

We work with intruders of conical shapes to methodically
vary the interaction between the angle of the intruder’s surface
with the granular target during penetration, as depicted in
Fig. 1(b). The slope of the cone s is the ratio of the length
of the cone ltip to half of its width w and ranges in these
experiments from 0 (a cylinder) to 2.1 (a sharp cone). We also
explore the effect of the cone width w using s = 1 cones of
w = 2.2 cm to w = 3.8 cm. The mass is held constant at 101 g
for all intruders.
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FIG. 1. (a) Schematic of the top view of experiment setup. A
high-speed camera is used to view an intruder which is released from
a height above and impacts into the granular bed. A mirror is placed at
45 degrees to the impact to measure any tilting during penetration. (b)
Diagram of the impact of a conical intruder with a chain of particles
of the granular target (represented by an orange ellipse). (c) Image of
all intruders of w = 3.8 cm, varying s through the following values:
0, 0.2, 0.5, 1, 1.4, 1.7, 2.1.

An electromagnet serves as the release mechanism of the
intruder, which then falls under gravity and impacts at the
center of the surface of the granular bed. It is released from a
height of 6 cm to 2 m, as measured from the tip of the intruder,
to achieve an impact velocity żi extending from 1 to 6 m/s.

Upon contact, the intruding object comes to rest in less than
0.1 seconds. Accordingly, videos of impact runs are captured
at 30 000 frames per second. We use a Photron Fastcam
SA5 high speed camera that is placed at a side view to the
granular bed. We use these images to determine the position z

during the time t of its trajectory, where one pixel of resolution
corresponds to 0.04 cm. A thin rod is attached to each intruder
to track z during the penetration. We also place a mirror at 45
degrees to the impact point to measure tilting of the intruder. To
obtain velocity ż, we take the derivative of z(t) and reduce the
amplified noise of the data by performing a convolution with a
Gaussian filter of width of 2.5% of the length of z(t) for each
run [26]. The moment of impact is then identified by imaging in
conjunction with locating the maximum peak of the ż(t) curve.
We differentiate once more to find the intruder acceleration
z̈(t); the noise of z̈ is similarly filtered via convolution with a
Gaussian filter.

III. TRACKING TRAJECTORIES

A. Intruder dynamics

As an object impacts and penetrates the dense granular bed,
it experiences a strong drag force which causes an abrupt stop.
The dynamics of this process are shown in Fig. 2 as the mean
of five runs of an s = 1 intruder penetrating couscous; the gray
shaded regions of each curve indicate the standard deviation
of the five measurements. As given in Fig. 2(a), z rapidly
approaches and later saturates at a maximum penetration depth
zstop. Note that z is positive and increasing as the intruder
moves deeper in the granular target, with z = 0 and t = 0 at

FIG. 2. (a) z vs t , (b) ż vs t , and (c) z̈ vs t of a s = 1
intruder impacting couscous. The gray region surrounding each curve
indicates the standard deviation of five runs.

impact. We then differentiate z(t) to find ż(t) of Fig. 2(b); ż(t)
declines to zero within 0.05 seconds. From ż(t), we determine
the stopping time tstop as the time from initial contact with the
target to the point at which ż(t) first reaches 0. In Fig. 2(c) we
show z̈(t), which is found by differentiating ż(t); z̈(t) reflects
forces exerted on the intruder by the granular target. There is a
strong peak within milliseconds of impact, followed by a more
gradual deceleration to zero. The fluctuations in z̈(t) are clear
and due to the intermittent emission of energy. The details
of the observed fluctuations are influenced by our imaging
sample rate and noise filtering approach.

The z(t) and ż(t) trajectories are reproducible within small
variations. However, z̈(t) has more amplified noise in part due
to repeated differentiation and convolution which can distort
the curves. It is therefore difficult to resolve force fluctuations
from the granular medium, which have been observed in other
experiments as an indication of the building and breaking
up of force chains [13,22,27]. We compare z̈(t) determined
from high-speed imaging, differentiation, and filtering to that
of direct force measurements via an accelerometer (Analog
Devices ADXL377, sample rate = 500 Hz). The imaging
and accelerometer measurements are taken simultaneously
(see Fig. 3). The overall shape of the z̈(t) curve matches
when determined by both methods, capturing data at slow
timescales. However exact force fluctuations are difficult to
resolve due to noise filtering, which reduces fluctuations at
very fast timescales. The Gaussian filter smoothes the curve,
while it can also cause physical fluctuations of data to be

032906-2



COLLISIONAL MODEL OF ENERGY DISSIPATION IN . . . PHYSICAL REVIEW E 95, 032906 (2017)

FIG. 3. Comparison of z̈(t) of s = 2.1 intruder impacting cous-
cous as determined simultaneously by high speed imaging (black
line) and by direct force measurements via accelerometer (red line).
The shape of the curves matches for these approaches.

distorted [26]. Accordingly, an accelerometer with a higher
sample rate is needed to address how force fluctuations change
with intruder properties, and this will be the subject of future
work. For the results in the remainder of this paper, we only
use z(t) and ż(t) trajectories.

B. Intruder shape effect

Figure 4 gives the effect of cone height, as defined by s, on
the intruder penetration dynamics. We start by observing z(t)

at constant release height (constant initial velocity żi). When
we vary s, we find similar trajectories of z(t) as the intruder
rapidly approaches zstop. However, different zstop values are
achieved; zstop increases with s. Specifically, sharper cones
achieve deeper penetration into the granular target, given the
same initial energy. This behavior extends to the change of ż(t)
curves with s, as shown in Fig. 4(b): ż declines less rapidly
with increasing t as we increase s, although ż reaches 0 at
approximately the same tstop.

We extend the behavior of zstop and tstop to describe
their dependence on initial kinetic energy Ki = 1/2mżi

2 and
connect to our study of the empirical drag force law [Eq.
(1)]. Previous authors have shown that Eq. (1) can be solved
by reframing to the kinetic energy K versus z form where
K = 1/2mż2 and mz̈ = dK/dz [4,28]. This formulation leads
to the following:

dK

dz
= mg − f (z) − 2h(z)

m
K. (2)

To obtain expressions for zstop and tstop from Eq. (2), forms
of f (z) and h(z) are typically assumed to be constant [5]. If
we take f (z) = f and h(z) = b, we first attain an equation for
zstop(Ki) as

zstop = m

2b
ln

[
1 + 2b

m(f − mg)
Ki

]
. (3)

FIG. 4. (a) z vs t , varying s, all impacting sand from the same release height. Penetration depth zstop increases with increasing s. (b) ż vs t .
The decline of ż(t) changes with increasing s, but all curves reach ż = 0 at approximately the same time. (c) zstop vs Ki . Higher s shifts curve to
higher values but does not change the trend. The fit of zstop ∝ a ln(dKi + 1) where a and d are constants, is shown with the data of the s = 0
and s = 2.1 intruders. (d) tstop vs Ki . Above 1 J, tstop is constant for all Ki and s. Solid line shows the fit of Eq. (4) to data tstop(Ki) of s = 0
intruder. Data sets correspond to s values given by the colorbar.
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Note that this expression is no longer relevant at Ki = 0
since zstop(Ki = 0) > 0 for any intruder. Figure 4(c) shows the
dependence of zstop on Ki . As similarly shown with previous
experiments of 2D impact [28], zstop logarithmically rises with
Ki . The fit of Eq. (3) is shown in Fig. 4(c) for an s = 0 intruder.
It successfully captures the trend of zstop(Ki).

We systematically vary s to determine how zstop versus Ki

changes with cone shape. The curve shifts to higher values
with increasing s. However, the simple fit [Eq. (3)] does not
apply well for s > 0, as displayed, for example, for the s = 2.1
intruder. We propose that this is an indication that the inertial
drag coefficient h(z) is not constant for sharper cones, implying
a connection between intruder shape and inertial drag.

Brzinski et al. [12] showed that the static, depth-dependent
friction force f (z) also has a strong dependence on intruder
shape, where f (z) ∝ z3/s2 for conical intruders. A prediction
of the penetration depth was made when the force law is
evaluated by using their expression for f (z) and found to
match zstop of cylindrical and spherical intruders. We do a
rough estimate to extend their results to the zstop data of
conical intruders of our experiments. When comparing zstop

with the penetration depth calculated by solving Eq. (2) with
the proposed f (z), we find that their result for f (z) is consistent
with how zstop depends on s, again implying the role of intruder
shape.

The dependence of tstop on Ki can also be determined from
Eq. (1) if we use constant h(z) and f (z) [27] such that

tstop =
tan−1

[( 2bKi

m(f −mg)

) 1
2
]

[
b
(

f

m2 − g

m

)] 1
2

. (4)

The plot of tstop versus Ki is given with the fit of Eq. (4)
in Fig. 4(d). We find that an approximately constant tstop is
consistent for high Ki . Above Ki ∼ 0.5 J, tstop reaches 0.04 ±
0.005 s for all s. Again, we find that the solution [Eq. (4)]
is a reasonable fit to the experimental data of s = 0, while
for s > 0, Eq. (4) only corresponds with the trend of data for
high Ki . However, for s = 0 intruders, these scalings are also
expected to depend on the granular target, as we discuss later
in this paper.

IV. COLLISIONAL MODEL

A. Description

We use the dependence of the impact trajectory on intruder
shape to demonstrate that normal collisions capture inertial
drag. If deceleration is achieved through collisions acting
perpendicular to the surface, a change in intruder shape would
predictably result in different inertial drag [h(z)ż2] values.
Accordingly, we attain an expression in terms of the shape
of the intruder to define h(z)ż2. Note that this approach is
similar to that of 2D impact experiments with photoelastic
grains [24]. It was similarly shown by varying intruder shape
that the static force f (z) of Eq. (1) acts primarily normal to
the intruder surface [12].

Figure 1(b) shows the schematic of a cone-shaped intruder
colliding with a cluster of the granular target, where the orange
ellipse represents the chain of particles impacted by the surface
and θ is the angle between intruder velocity v and chain of

particles at surface normal n. Force is then perpendicular to the
intruder surface. The force due to this intruder-grain collision
can be expressed as the ratio of change in momentum �p ∝
mgv cos θ to time �t = Dg/(v cos θ ) such that

f = �p

�t
∝ mgv

2 cos2 θ

Dg

, (5)

where Dg is the grain diameter and mg is the grain mass.
The number of discrete collisions possible across the surface
is given by dS/D2

g . The total force is then calculated by
integrating over the surface area:

F =
∫

f
dS

D2
g

∝
∫

mgV
2 cos2 θdS

D3
g

. (6)

The variables dS and cos θ give the shape effect to the
drag force. The width of the intruder is expressed through dS,
whereas cos θ can be written in terms of the slope of the cone
s as

cos θ = dx

dl
= dx√

dx2 + dz2
= 1√

1 + s2
, (7)

where s = dz/dx. Finally, this provides a description of the
inertial drag based on the collisional model for all possible
collisions over the intruder surface,

h(z)ż2 ∝ ρgż
2w2

(1 + s2)
, (8)

where ρg is the grain density and w is the width of the portion
of the cone that is penetrated in the granular media. We
thereby obtain a simple scaling relation for the inertial drag
force term that is quadratic with velocity and depends on
intruder shape and grain density.

We now demonstrate that the collisional model expression
gives the grain-scale origin of the inertial drag of 3D granular
impact h(z)ż2, which we determine experimentally. It could be
found via acceleration data, which we have shown can present
significant error. Additionally, using the force law to find h(z)
would require determining z, ż, and z̈ for many trajectories of
each intruder. We therefore apply Eq. (2) where the force law
model is reformulated into a differential equation in kinetic
energy [28]. We acquire h(z) from K versus z so that we
can compare the result to the proposed collisional model [Eq.
(8)]. Without any assumptions of the form of h(z) and f (z),
the differential equation is solved by means of the integrating
factor method using e

∫ 2h(z)
m

dz to achieve

K(z) = Kp(Ki + φ), (9)

where Kp = e− ∫ 2h(z)
m

dz, and φ = ∫
[mg − f (z)]e

∫ 2h(z)
m

dzdz.
We can take the difference of the differential equation of

two K(z) curves to isolate h(z). We thereby attain the relation

Kp = Kb − Ka

Kb,i − Ka,i

= e− ∫ 2h(z)
m

dz, (10)

where a and b indicate indices of different trajectories. We
then determine h(z) for each intruder by comparing all pairs
of K(z) trajectories.

Figure 5 shows how we determine h(z) for an s = 0
intruder penetrating sand. We start by expressing data as
K(z) at varying żi [shown in the inset of Fig. 5(a)] to use

032906-4



COLLISIONAL MODEL OF ENERGY DISSIPATION IN . . . PHYSICAL REVIEW E 95, 032906 (2017)

FIG. 5. (a) Inset shows K versus z of s = 0 intruder impacting
sand. Each curve represents a trajectory of a different impact velocity.
Main panel shows Kp versus z, as determined from all pairs of K(z)
trajectories of the inset plot. The gray region surrounding the curve
indicates the standard deviation from the mean of Kp . (b)

∫
h(z)dz

versus z. (c) h(z) versus z for a s = 0 intruder impacting sand,
showing oscillations about a constant value.

the kinetic-energy approach. There is a rapid decline of K(z)
during penetration. The average of differences of all pairs of
K(z) trajectories is then determined [see Fig. 5(a)]. We use Kp

to solve for h(z) as follows:∫
h(z)dz = −m

2
ln Kp. (11)

This is given in Fig. 5(b). The result in this case is
a

∫
h(z)dz curve that is an approximately linear function

of z. We use a cutoff of Kp < 0.05 since the static term
f (z) becomes dominant as the intruder comes to rest. The
derivative of this curve gives h(z) and requires noise reduction
by performing a convolution to the data [see Fig. 5(c) for

FIG. 6. (a)
∫

h(z)dz versus z for all intruders, ranging from s =
0 to s = 2.1. Colors correspond with s values of Fig. 4. Higher s

lowers the curve to smaller inertial drag values. The trend in data also
changes from approximately linear to increasingly curved. (b) The
data collapse to one curve when scaled as a function of s. (c) Collapse
with consideration of added contribution from tip for s > 1 intruders.

result]. There are oscillations in h(z) which may connect to
the force fluctuations and discretization of collisions; a precise
determination of these features would require direct force
measurement. To avoid noise amplification and possible data
distortion introduced by taking derivative and convolution of∫

h(z)dz, we utilize
∫

h(z)dz for the intruder shape and grain
density comparisons.

B. Shape effect

Starting with the intruder shape, we show that s and w

affect h(z) as described by the collisional model expression
[Eq. (8)]. In Fig. 6(a),

∫
h(z)dz versus z is plotted as s is

systematically changed from 0 up to 2.1. With increasing s,
curves shift to lower inertial drag values. Additionally, we
find that

∫
h(z)dz vs z plots become increasingly curved as

s increases. We propose that the increased curvature results
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FIG. 7. Inset shows
∫

h(z)dz versus z of s = 1 intruder, varying
width w: 2.2 cm (red), 3.0 cm (blue), and 3.8 cm (green). Lower w

decreases the curve but, in this case, the trend in data is not affected.
Main panel: When scaled as a function of w, the data collapse to a
single curve.

from the changing surface area at low z as a sharper cone is
penetrated deeper into the granular target. Since the effective
width of the cone increases from z = 0 up to z = ltip and h(z)
is proportional to w2,

∫
h(z)dz is expected to rise quadratically

in this range. As s increases, the intruder must penetrate deeper
to reach constant w. After z > ltip of each intruder,

∫
h(z)dz

should become a linear function of z.

All curves fall onto a common curve when the
∫

h(z)dz

axis is rescaled by a function of s, as shown in Fig. 6(b).
Accordingly, the expression 1 + s2, as determined from the
collisional-based expression for h(z) [Eq. (8)], leads to a
collapse of all data. This scaling provides evidence that the
collisional model does connect with our 3D experiments.

Clark et al. used photoelastic observations of two-
dimensional impact experiments to show the distinct contribu-
tions from the sides and pointed tips of triangular intruders to
the collisional drag coefficient h(z) (see Fig. 4 of Ref. [24]).
There was found to be a strong contribution of stress at the
tip of pointed shapes, which was considered separately. The
contribution from the tip was found to be significant for
s > 1 and stayed approximately constant; a fit was given by
0.2(1 − e−2s).

We expect that a distinct contribution from the cone tip
is relevant at high s in 3D experiments as well. Accordingly
we write a new expression for s > 1 cones: h(z) = hside(s) +
htip(s). For s � 1, h(z) is determined by Eq. (8). To find htip for
3D experiments, we first calculate the slope of each

∫
h(z)dz

curve of Fig. 6(b), using only data for which z > ltip of each
cone. The slope of s � 1 curves gives h(z), while the slope of
s > 1 curves includes the tip addition. The difference between
these values gives the approximate contribution of the tip for
s > 1, shown in the inset of Fig. 6(c). In Fig. 6(c), we show our
h(z) collapse with the added tip stress. We note that the quality
of the collapse is reasonable but not perfect. The curves are
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FIG. 8. (a) zstop versus Ki , varying target grain density ρg to sand (�) or couscous (•). In each case, zstop shows similar dependence on Ki ,
yet the intruder penetrates to higher zstop with decreasing ρg . (b) When scaled as a function of ρg , the data collapse to a single curve. (c) tstop

versus Ki , varying ρg . Stopping time tstop is constant for K0 > 0.5 J. The behavior for sand and couscous are similar; however, tstop increases
for decreased ρg . (d) The data collapse when scaled by ρ1/2

g . All data are determined by using an s = 0 intruder.
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the average of several experimental runs and show less of an
overlap in the collapse. However, the simplicity of the collapse
of all data is an achievement.

When extending the study to the effect of w, we similarly
observe that the collisional model applies. Figure 7 shows∫

h(z)dz as a function of z for s = 1 intruders of three widths:
w = 2.2 cm, w = 3.0 cm, and w = 3.8 cm. The intruder mass
is held constant. The proposed shape effect is again verified by
changing w. The intruder penetrates deeper into the granular
bed with lower w, and

∫
h(z)dz decreases with decreasing w

as displayed in the inset plot. The dependence of inertial drag
on w is then displayed by a collapse of data as

∫
h(z)dz ∝ w2.

These data rescale reasonably well to a single curve when
plotted as

∫
h(z)dz/w2, as shown in Fig. 7.

C. Granular target

We vary the granular target to study the effect of grain
density ρg . Figure 8(a) shows zstop vs Ki of a s = 0 intruder
impacting sand or couscous, where both targets are prepared
by pouring grains into the container and tapping to settle
the surface. As with previous experiments [Ref. [28] and
Fig. 4(c)], there is a gradual increase of zstop with increasing
Ki , showing a logarithmic dependence. This trend is consistent
with varying ρg . The intruder simply penetrates to higher zstop

measurements for lower ρg . The fit of zstop(Ki) [Eq. (3)]
predicts that zstop(Ki) ∝ 1/h(z); for the case of an s = 0
intruder, h(z) is approximately constant [defined as b in
Eq. (3)]. By applying Eq. (8), we quantify the expected
dependence of zstop on ρg as zstop ∝ (1/ρg) ln Ki . The effect
of ρg is expressed by scaling the curves as ρgzstop, as shown
in Fig. 8(b). Therefore, the successful collapse supports our
proposed collisional model for the inertial drag coefficient.

For each granular target, we also measure tstop versus Ki

using an s = 0 intruder [see Fig. 8(c)]. Above Ki > 0.5 J, we
similarly find a constant tstop with increasing Ki , with each
granular target, as was found with changing intruder shape.
However, tstop increases with decreasing ρg; this reflects a
slower deceleration for a low-density granular target. We again
expect tstop to obey the scaling of Eq. (4) with constant h(z).
The tstop data collapse by ρg as tstopρ

1/2
g , as shown in Fig. 8(d).

Accordingly, this scaling behavior with ρg also connects to
the solution of tstop. Therefore, we have effectively linked
the experimentally determined tstop and zstop scalings with our
proposed model of the drag force.

Via h(z) calculations, we further confirm that our collisional
model also captures the effect of ρg (see Fig. 9). The inertial
drag coefficient h(z) is determined for an s = 0 intruder
penetrating the sand or couscous target. For s = 0,

∫
h(z)dz

is nearly a linear function of z. In other words, h(z) does
not depend on z for cylindrical-shaped intruders. We find
that

∫
h(z)dz is larger for higher ρg , as expected from the

h(z) expression of the collisional model. Accordingly, there
is a higher stopping force due to sand, and this affects the
maximum penetration depth of the intruder. The two curves

FIG. 9. Inset shows
∫

h(z)dz versus z for s = 0 intruder, varying
ρg: sand (red line) or couscous (black line). Higher ρg (sand) increases
inertial drag h(z). Main panel shows scaled h(z),

∫
h(z)dz/ρg versus

z for the two granular targets, collapsing data.

collapse very well to a single curve, when scaled by grain
density effect ascribed via collisional model.

V. CONCLUSIONS

We provide an extensive study of the impact of solid
intruders with a dry granular target. The deceleration of an
intruder during granular impact is described, in part, by a
velocity-dependent inertial drag. Here the inertial drag force
from the granular target is shown to be due to normal, inter-
mittent collisions of force-carrying chains of particles with
the intruder. We confirm this collisional-based mechanism
through the dependence of the drag force on intruder shape.
A collisional model for 3D impact is presented to verify
our description. The remarkable collapse of the inertial drag
coefficient when accounting for intruder shape and grain
density demonstrates the validity of the model. These scaling
results can lead to a complete understanding of dynamic force
transmission in granular media.

We identified oscillations in the curves of inertial drag
coefficient versus penetration depth that likely connect to
fluctuations due to the intermittency of force chain collisions.
This was previously shown in 2D impact experiments through
photoelasticity. Direct force measurements with high sample
rate are needed for the connection in 3D granular impact
experiments and are the subject of future work. Additionally,
all work has focused on vertical impact. We extend the study
to oblique impact to observe the effect of a strong horizontal
resistance force on penetration.
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