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The microstructural organization of a granular system is the most important determinant of its macroscopic
behavior. Here we identify the fundamental factors that determine the statistics of such microstructures, using
numerical experiments to gain a general understanding. The experiments consist of preparing and compacting
isotropically two-dimensional granular assemblies of polydisperse frictional disks and analyzing the emergent
statistical properties of quadrons—the basic structural elements of granular solids. The focus on quadrons
is because the statistics of their volumes have been found to display intriguing universal-like features [T.
Matsushima and R. Blumenfeld, Phys. Rev. Lett. 112, 098003 (2014)]. The dependence of the structures and of
the packing fraction on the intergranular friction and the initial state is analyzed, and a number of significant
results are found. (i) An analytical formula is derived for the mean quadron volume in terms of three macroscopic
quantities: the mean coordination number, the packing fraction, and the rattlers fraction. (ii) We derive a unique,
initial-state-independent relation between the mean coordination number and the rattler-free packing fraction.
The relation is supported numerically for a range of different systems. (iii) We collapse the quadron volume
distributions from all systems onto one curve, and we verify that they all have an exponential tail. (iv) The nature
of the quadron volume distribution is investigated by decomposition into conditional distributions of volumes
given the cell order, and we find that each of these also collapses onto a single curve. (v) We find that the
mean quadron volume decreases with increasing intergranular friction coefficients, an effect that is prominent in
high-order cells. We argue that this phenomenon is due to an increased probability of stable irregularly shaped
cells, and we test this using a herewith developed free cell analytical model. We conclude that, in principle, the
microstructural characteristics are governed mainly by the packing procedure, while the effects of intergranular
friction and initial states are details that can be scaled away. However, mechanical stability constraints suppress
slightly the occurrence of small quadron volumes in cells of order >6, and the magnitude of this effect does
depend on friction. We quantify in detail this dependence and the deviation it causes from an exact collapse for
these cells. (vi) We argue that our results support strongly the view that ensemble granular statistical mechanics
does not satisfy the uniform measure assumption of conventional statistical mechanics. Results (i)—(iv) have been

reported in the aforementioned reference, and they are reviewed and elaborated on here.
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I. INTRODUCTION

This paper discusses the structural characteristics of random
packings of planar [two-dimensional (2D)] granular solids.
The science of random granular packing has a very long
history, and statistical methods were introduced into this field
in the 1960s [1,2]. In recent years, however, a new way
to describe random structures locally has emerged, which
proved useful for a range of fundamental issues [3-5]. The
method consists of constructing space-tessellating volume
elements, called quadrons, the structure of each of which is
described by a local tensor. Unlike traditional tessellations,
e.g., Voronoi-based, the quadron description preserves the
connectivity information, since their construction is based
on the force-carrying intergranular contacts. This description
has proved useful for deriving the constitutive equation of
the 2D isostaticity stress theory [3,6,7], for the formulation
of granular statistical mechanics (GSM) [4,5,8-10], and as a
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structural fingerprint of granular packs [11-13]. The structural
characteristics of mechanically equilibrated granular matter
are significant because they affect directly a wide range of
applications in soil mechanics [14,15], hydrology [16], and
chemical engineering [17], to name a few. Significantly, these
characteristics are not completely random and bear the hall-
mark of the self-organizing process that brought the medium
to mechanical equilibrium. The self-organization leaves a
fingerprint that manifests in the emergence of intriguing
universality-like behavior, as shown in 2D assemblies [18].
Thus, investigating the structural characteristics of granular
matter is essential and is the focus of this paper.

It has been shown by Frenkel ef al. [11] that the structure
of the quadron volume probability density function (PDF),
P(V,), in 2D granular packs is best understood in terms of its
conditional PDFs, P(V, | e), where e is the number of grains
surrounding the cell associated with the quadron, also called
cell order (see Fig. 1). Based on geometrical considerations,
and supported by numerical results, Frenkel ef al. argued that
the PDFs P(V, | e) should be independent of intergranular
friction and of the packing process (i.e., the history). The
existence of history-independent features is significant in these
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FIG. 1. Illustration of a quadrilateral quadron (shaded), whose
diagonals are R? and 7. The intercontact vectors 7 circulate
anticlockwise around grains.

systems, which are plagued by memory effects, and a detailed
analysis of the conditional PDFs from first principles holds the
promise of advancing the field.

Here, we first review and provide more details on our
recent results [18]. We investigate in detail the geometrical
characterization of the quadrons and the dependencies of
the PDFs P(V,) and P(V, | e) on the packing fraction, ¢,
and the mean coordination (or contact) number per grain,
Z. This is done by numerical experiments on assemblies of
polydisperse disks, isotropically packed by the same process
to different values of ¢ and z. We then go on to derive several
noteworthy results, particularly concerning the undermining
effects of mechanical stability on the perfect collapse of
the conditional quadron volume distributions for some cell
types in low friction systems. Specifically, we examine the
decomposition proposed by Frenkel et al. [11], focusing on the
significance of cell shapes, and we show that the universality
suggested by them must be augmented with a mechanics-based
consideration. This we support by constructing a simple
free cell model, whose predictions agree with the numerical
experiments. Finally, we argue that the observed collapses
may be direct evidence of the failure of the assumption of
“uniform measure” in GSM—a failure that has been observed
previously in other systems [19-23]. In the concluding section,
we discuss all the results and the insight they provide into the
understanding of structures of general random granular packs
in mechanical equilibrium.

II. THE RELATION BETWEEN QUADRONS
AND STATISTICAL MECHANICS

There are direct relations between quadrons, their volumes,
and GSM. To be self-contained, we present a brief review
of this relation as a basis for some of the analysis to
follow. GSM of assemblies in static equilibrium is based
on entropy, S, defined as the logarithm of the number of
microstates into which a collection of N grains can be
organized. These microstates are of two types: structure-based
and stress-based [5,9,24,25]. A structural microstate consists
of a specific configuration of the collection of grains. A stress
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microstate corresponds to a specific distribution of forces (or
stress) that develops inside a given structural configuration
under a specific set of boundary forces. It has been shown
recently [8] that the structure and stress subensembles are
interdependent. The formulation of GSM has evolved since
its conception in 1989 [26], and it is generally accepted
now that a significant contribution to the structural entropy
comes from the connectivity, and therefore that the structural
degrees of freedom are determined by the contact positions.
It was then argued [4,5] that the most straightforward way to
parametrize these is by their differences, which correspond to
the intercontact vectors, 7, circulating every grain, as shown
in Fig. 1.

The intergranular forces can be determined in terms of
the external forces on the boundary, f,, (m = 1,2,...,M),
whether the structure is statically determinate (isostatic) or
not [27]. For assemblies of N grains, the number of boundary
forces is a finite fraction of the number of boundary grains
in d dimensions, N“~Y/¢_ Thus, the boundary forces are
the degrees of freedom spanning the stress microstates. The
partition function, Z, describing the combined ensemble is

ey Tap l L
z= / R Ge [[dn [[dh.
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where © is a product of § functions and step functions that
specify the constraints on the ensemble, e.g., that the mean
number of contacts per grain, Z, is fixed, that the system is in
mechanical equilibrium, and that all systems were generated
by the same process. The function C quantifies the connectivity
(replacing the originally proposed and misbehaving volume
function [28]) and is expressed in terms of Ny = NZ/2
independent 7 vectors, T is the contactivity—an analog of
the temperature, defined as 9({C))/95], fm is one of the
boundary forces on the system, Xqg is a component of the
angoricity tensor—a measure of the fluctuations in the stress
configurations, defined as 0((F,p))/0S] [24,25,29], and F is
the force moment tensor, defined as

Fap =9 FERE. )

8.8

The sum here is over all pairs of grains in contact, g and g,
and F¢ is the force that grain g’ applies to grain g at their
contact point, located at R2¢". The function G({F}) specifies
the probability of a particular configuration of the vectors {F} to
occur independent of the Boltzmann-like factor. It depends on
the dynamics of generation of the ensemble, and it generalizes
the original assumption of “uniform measure,” within which G
is constant [26], in view of recent evidence that this assumption
fails in a number of systems [22,23].

Since our concern here is only with structural features of
granular packs, we will work in the limit of high angoricity,
when the second term in the exponential of (1) can be
neglected. To be “high,” the angoricity tensor components
should be larger than the largest boundary force on any one
particle times the system size. The results obtained below are
found to be independent of the boundary forces, and they are
therefore general regardless of the regime we use. The structure

partition function alone is then Z, = [ e‘%G({?}) I—[,]:];l dr,.
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A key concept in GSM is the quadron. The quadrons
are volume elements, determined by the intercontact vectors,
74, that tessellate the volume of the system, where the
index ¢ stands for the quadron with which this vector is
associated (see below). An example is shown in Fig. 1. These
elements were defined and described both in two dimensions
[3,4] and in three dimensions [5]. Their construction in two
dimensions is described briefly below. The number of quadrons
is equal to (in two dimensions) or outnumbers (in three
dimensions) the number degrees of freedom [3,4]. This led
to proposing the quadrons as the quasiparticles of the system,
rather than the grains, whose position variables are too few to
span the phase space formed by the positions of the contact
points [3,4,10,11]. Moreover, each quadron is associated with
exactly one 79 vector (see Fig. 1), linking these volume
elements directly to the GSM. It is this connection that makes
studying quadrons and their structural properties important.

In two dimensions, quadrons are constructed as follows:
(i) Define the centroids of grains g and of cells c as the mean
position vectors of the contact points around them, respectively
(Fig. 1). (ii) Connect the contact points around every grain to
make polygons. (iii) Make the polygon edges into vectors,
74, circulating the grain in the clockwise direction. (iv) Extend
conjugate vectors, R4 , from the grain centroids to the centroids
of the cells surrounding them (Fig. 1). A quadron is the
quadrilateral whose diagonals are 74 and R9. (v) Quantify the
structure of every quadron by the following structure tensor:

Cl=(c T ® RY, 65(_01 é) 3)

which quantifies the structure of the disordered system locally
at every point. The quadron volume is

V, = 177 x R7| = 1Tr(C). 4)

The number of quadrons is Nz, which is exactly the number
of degrees of freedom, as mentioned. A similar construction
gives the equivalent volume elements in three dimensions, also
called quadrons [5,9].

In the following, we investigate numerically the PDFs
P(V,)and P(V, | e)[11,13] and relate them to the distribution
of cell structures. This is motivated by recent observations of
an apparent universality of these PDFs [18].

III. NUMERICAL EXPERIMENTS

Our numerical experiments were carried out using the
discrete element method (DEM) [30,31]. The method consists
of using an incremental time marching scheme, wherein the
motions of two-dimensional disks (grains) are each computed
using Newton’s second law. We postulate a repelling harmonic
interaction potential, characterized by normal and tangential
spring constants, k,, and k;, activated upon contact and overlap
between disks. We setk; / k, = 1/4 inthis study, a value chosen
for its common use in the literature [31-33].

Our aim is to study polydisperse systems, and we have
chosen the distribution of the radii of the disks to be log-
normal due to its wide use in civil engineering and soil
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sciences [34],

P(D) = )

202

1 (In D — In Dy)?
exp )
V2mo D

where we choose Dy = 1 the unit length, and o = 0.2 for
comparison with [35]. These values give D = 1.02 and
Diode = 0.961 for the mean grain size and mode, respectively.

The packing protocol of our systems is as follows. First,
we construct three random packs in a double periodic domain,
engineered to be on the verge of jamming. The packs consist of
about 21400 % 1000 disks and are made at packing fractions
¢ = 0.76, 0.82, and 0.84. The small variation in the numbers
of particles is due to the different densities of the three initial
configurations. These configurations are then used as initial
states for the packing procedure: loose initial state (LIS),
intermediated initial states (IIS), and dense initial state (DIS),
respectively.

Once an initial state is set, we assign all the particles the
same friction coefficient, i, and apply to the system a slow
isotropic stress o, by changing the periodic length on both
sides. To approximate the behavior of rigid particles, we limit
the applied stress to a level that corresponds to an average
overlap of disks of at most § = o,/ k, = 107>. No gravitational
force is applied, and the compression continues until the
fluctuations of both grain positions (per mean grain diameter)
and intergranular forces (per mean average contact force) are
below very small thresholds—10~° and 107, respectively.
This procedure is carried out for each initial state at five
different values of the intergranular friction coefficients: u =
0.01, 0.1, 0.2, 0.5, and 10, giving altogether 15 assemblies.

Using this procedure, we have computed the packing
fractions, the mean coordination numbers, and we studied the
structures in these systems. For the determination of zZ, we
disregard “rattlers,” i.e., grains with one or no force-carrying
contact. The results are shown in Fig. 2. The upper and
lower bounds of the coordination number, Zp.x =4 and
Zmin = 3, correspond to the isostatic states for disks with
friction coefficients of u = 0 and oo, respectively. The three
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FIG. 2. Coordination number vs packing fraction for 15 systems,

generated from three different initial states, LIS, IIS, and DIS. Note
the convergence for © — 0.
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FIG. 3. Example of an assembly with u = 10, generated from a
LIS. Some of the cells contain rattlers, defined as disks that have at
most one contact.

systems with u = 0.01 converge into states with (Z,¢) =
(3.941,0.840), (3.944,0.842), and (3.943,0.843), respectively,
which are very close to the ideal frictionless jammed state.
However, with increasing friction coefficient, the difference
between the values of Z and ¢ in the final states of systems
started from different initial states increases (see Fig. 2).

Turning to the analysis of cell structures in these systems,
consider the three examples shown in Figs. 3-5, constructed
from LIS, with £ = 10 (3) and 0.01 (4), and from DIS with
u = 10(5). While traces of the initial condition can be detected
in both of the first two systems, for higher friction one clearly
ends up with typically larger cells and a correspondingly lower
Z. Note that the packing fractions in Figs. 3 and 5 are very
similar (see also Fig. 2), but the cells in Fig. 3 are noticeably
bigger typically. Also note the considerable number of rattlers
in the large cells, an issue that will be discussed in detail
below. To quantify the structural differences, we next study
the quadron volume distribution.

IV. STRUCTURAL CHARACTERISTICS

A. Quadron volume statistics

The grain size distribution is the same for all packs, making
it convenient to normalize the quadron volumes by the mean
grain volume V,, v = V,/V,. The overall PDFs of quadron
volumes are plotted in Fig. 6 for all friction coefficients and
for LIS and DIS. The corresponding means are plotted against
the mean coordination numbers, for all initial states, in Fig. 7.

X

FIG. 4. Example of an assembly with p = 0.01, generated
from LIS.
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FIG. 5. Example of an assembly with p =10, generated
from DIS.

All the points fall nicely on one curve regardless of initial
state.

On close inspection, this very weak dependence, if any, on
the initial state can also be observed in Fig. 6. This implies that
the dependence of the relation between v and Z on the initial
state, seen in Fig. 2, can be made to disappear under the right
parametrization. A clue to such a parametrization is the fact
that the quadron volumes are computed ignoring the rattlers.
Following this idea, we can derive the relation between v and
Z as follows:

’ N,
oV X Ve NeVe 1 ©)
v YNy, NV, 7
1 1
b= ™
¢z (I —n)¢z

where 7, = N, /N is the rattlers fraction and ¢’ is the packing
fraction after removing all the rattlers. This elegant result
suggests that there is indeed a unique relationship between
Z and the packing fraction, but only if the latter is corrected for
the rattler fraction. This is verified by a direct plot of these two
quantities, Fig. 8. It is also important to note that this relation
is independent of the initial state, as Fig. 8 shows.
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FIG. 6. PDF of the quadron volumes, normalized by the mean
grain volume, v = V, /V,, for all the 10 systems generated from LIS
and DIS.
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FIG. 7. Mean quadron volume o vs mean coordination number Z
for all initial states.

Comparing Figs. 8 and 2, we see that the rattler-free
packing fractions are much smaller than the packing fractions
commonly reported in the literature, e.g., [36,37]. The removal
of rattlers also makes sense on mechanical grounds, since it
does not affect the force transmission in our systems (nor in
any system in the absence of body forces).

We conclude that the seeming sensitivity of Z(¢) to the
initial state (e.g., Fig. 2), commonly seen in the literature, stems
directly from the variation in 7,. Plotting 7, as a function of Z
in our systems (Fig. 9), we see that it is the small differences
between the curves that give rise to the observed differences
in the conventional plots.

It is important to comment here that this result is not really
universal. It is correct for the specific packing protocol used
here. While we believe that, for any given protocol, the plots of
Z(¢") would collapse onto one curve, there is no reason that this
curve should be universal. In other words, we expect different
protocols to display different Z(¢’) curves, probably depending
on the rate of rattlers generation. Nevertheless, these results do
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rattlers-free packing fraction, ¢=(1-n ) ¢

FIG. 8. Mean coordination number Z vs the rattlers-free packing

fraction ¢’.
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FIG. 9. The rattlers fraction 7, vs the mean coordination number Z.

provide a universal protocol-independent insight—the relation
between the z and the packing fraction is directly linked to the
mechanical stability of the structure and the way that forces are
transmitted. We will discuss this insight more in the concluding
section.

Turning to consider the PDFs of the quadron volumes more
closely, it is natural to expect the mean quadron volume
to increase with p, simply because the cells get bigger.
To get insight into the shapes of the PDFs, we scale the
quadron volumes by their means, u = V,/V, = v/v. This
simple scaling is sufficient to collapse all the PDFs almost
perfectly onto one curve for all the systems, independent of
friction and initial state (Fig. 10).

Moreover, the collapsed PDF has an exponential tail, which
is a signature of the Boltzmann-like factor of Eq. (1). Our best
fit to the collapsed curve has the form:

P(u) = f(u)e ™", ()

where f(u)is arational function. Usingu = v/v = Vq/Vq and
the equipartition principle obtained in [28], (Vop) = Cop Ny,
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FIG. 10. The PDF of the normalized quadron volume u = V,/V,
for all the 10 systems generated from LIS and DIS.
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with C,p a constant of order unity and 7 the contactivity [see
Eq. (1)], we have
L _On )
4 Ve
where the right-hand side is a constant that depends only on
the grain size distribution. The exact relation between o and
C,p remains to be found.

Thus, the quadron description makes it possible to collapse
the statistics of all the systems, given the correct normalization.
As such, it gives better insight into the general characteristics
of granular packs—characteristics that are independent of both
the inter-granular friction coefficient and the initial state. In the
next section, we explore the reasons for the apparent unified
nature of the quadron volume statistics.

B. Cell-order statistics

To understand better the structural characteristics, we use a
recently proposed decomposition of the quadron volumes into
conditional distributions [11],

P)=) eQ(e)P(v]e). (10)

e

Here Q(e) is the occurrence probability of cells of order e,
i.e., enclosed by e grains, and P(v|e) is the conditional PDF of
the normalized quadron volume, given that it belongs to a cell
of order e. Q(e) is essential to the understanding of random
granular packing [38], and it is this PDF that we wish to focus
on next. As expected from Euler’s topological relation (below),
and as can be observed from Figs. 3-5, a lower value of Z must
be accompanied by a higher mean value of ¢ and correspond
to a lower packing fraction ¢'.

In Fig. 11 we plot Q(e) for all the systems generated from
LIS and DIS. The plots make evident two points. One is that
the higher the intergranular friction, the larger is the fraction
of high-order cells. The other is that Q(e) is hardly dependent
on the initial state for any .

There is a direct relation between the mean cell order, é,
and the mean coordination number Z, and it can be derived

04+ DIS .
—o— p=0.01
T 03 —o—p=0.1
S p=0.2
> —v—p=0.5
= p=10
5 02F -
<
©
2
o,
= 0.1F 4
5}
o
2 12 14

cell order e

FIG. 11. The cell-order probability Q(e) for the 10 systems
generated from LIS and DIS.
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FIG. 12. The mean cell order ¢ vs the mean coordination
number Z.

from Euler’s topological relation for a planar graph,
Ny —Np+ Nc =1 (11

In this relation, Ny, Ng, and N¢ are, respectively, the numbers
of the graph’s vertices, edges, and cells. In this relation, we
disregard the one large cell making the outside of the system,
whose inclusion gives on the right-hand side a topological
characteristic 2, rather than 1. This topological characteristic
is negligible for N > 1. Regarding the grain centers as
vertices and the lines connecting centers of touching grains
as edges, we have Ny = N and Ny = NZ/2, which gives
N¢ = N(z —2)/2. Noting then that Ncé = 2Ng, we have

[11,18]
_ 27 ) ( 1 ) (12)
e P 7n)
The rightmost term is a negligible boundary correction.
Figure 12 shows that the numerical systems satisfy this relation
very well, showing that the sizes of the numerical pack are
sufficiently large to ignore finite-size effects.

Q(e) is sensitive to the value of z, which is a function of
u (see Fig. 11), while P(v | e) has been shown by Frenkel
et al. [11] (see also below) to be hardly dependent on L.
This suggests that there may be a parametrization of Q(e) that
collapses all the curves corresponding to the collapse of P(u?)
in Fig. 10.

We find that all the curves collapse if we plot eeQ(e) as a
function of ¢’ = (e — &)/&2, as shown in Fig. 13. This collapse
is better in these variables and this particular normalization
than the one presented in [18]. The fundamental reason for
this is not fully understood, but we note that e Q(e) is the PDF
of the variable y = e¢/é and therefore that eeQ(e)dy is the
probability of finding a quadron belonging to an e cell out of the
entire quadrons population. We also note that ¢’ = (e — &)/e
is the relative deviation of y from its mean value, y = 1. The
collapsed master curve appears to be fitted reasonably well by
a truncated Gaussian,

2/m exp( — €2/202). (13)

ee(Q(e) = o1 1 erfier /vao0)] X
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FIG. 13. The normalized cell probability ee Q(e). It is fitted well
by a Gaussian form, except for small, but consistent, deviations in the
large-e tail (highlighted by a dash-lined ellipse).

with e/, = 0.076, o, = 0.082, and erf(x) being the error
function, except for a small deviation at the large e-tail.
We have no explanation for either the Gaussian form or the
deviations from it at large e.

C. Conditional quadron volume distributions

To gain further insight into the universal properties of the
structure, let us consider in more detail the conditional PDFs
P(v | e). These PDFs were studied by Frenkel er al. [11],
who argued, on the basis of geometrical considerations, that
they should be independent of intergranular friction. Their
argument was based on the observation that, given a collection
of N arbitrary grains, the number of ways to arrange e grains
into a cell of order e depends only on the grain shapes and
not on the intergranular friction. While our results seem to
support this argument, a closer look shows a systematic -
dependence of P(v | e)fore > 6 (Figs. 14 and 15). We can also
see this effect in the behavior of the mean of the conditional

FIG. 15. The conditional PDFs of the quadron volumes for
e = 6,8 collapse, but not as sharply as those for e < 5 (Fig. 14).
This is a result of the under-representation of mechanically unstable
elongated large cells, which suppresses the occurrence of small
volume quadrons.

quadron volume as a function of e, 7(e) = que vP(v | e),
shown in Fig. 16. We include in the figure the calculated values
of quadron volumes of regular polygonal cells (RPCs) of order
e,

VRCe) 1 x
—_—= = —COt—,

14
V, T e (14

WRPC (o) =
which is clearly an upper bound for #(e). It is constructive to
consider the ratio of the observed mean quadron volume to
the regular polygon value, y(e) = V,(e)/ V" C(e), shown in
Fig. 17. We observe that y(e), which is always below unity,
has a minimum between e = 5 and 6 and that the minimum
decreases with p. This can be understood as follows. Carrying
out a cell shape analysis (to be reported elsewhere), where
cells were approximated to lowest order as ellipses, there is
a strong correlation between y (e) and the mean aspect ratio

T T T T T T T 14+ LIS regular pOlygon 7
LIS DIS '
8t E =3 . | —=— 1=0.01 L ]
ﬁ' e p=0.01 —=— =001 o AL ﬁ:m bRl = O O o]
d \ —e—p=0.1 ——p=0.1 T 10} 0.2 ) / e
6F ¢ L =4 = —07 - © s - .- ]
My " 8? ! 8'2 B 0.8 v k=05 o 1
- —v— = =0, o | - -
S T u=10 "
— 4 ;E;'!!h e=5 u=10 p=10 | JC:'% 0.6 ///,/;v'/
E—T 1; [’y i:" w | //! -
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FIG. 16. The variation of the mean conditional quadron volume,

FIG. 14. The conditional PDFs of the quadron volumes fore < 5

collapse nicely for all the p and initial conditions.

0, with cell order e. The quadron volume of the regular polygon cell
(dashed line) forms an upper bound.
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FIG. 17. The ratio of the mean quadron volume to the quadron
volume of a regular polygon, y (< 1), plotted as a function of cell
order e. Note that the FCM describes well the geometric effect leading
to the decrease in y for e < 5, but it cannot show the increase at larger
values since it does not include the effects of mechanical stability.

of the ellipses for any given e. Our interpretation is that the
increase of y(e) with u is due to the decrease of mechanical
stability of elongated cells as u decreases. The behavior for
any particular ;o depends then on two effects. As e increases,
more cell configurations can be realized, allowing for more
elongated cells, and this accounts for the initial decrease of
y(e) with e. However, the more elongated the cell, the less
stable it is, leading to fewer elongated cells as e increases. The
competition between the increase in the number of possible
configurations and limiting stability constraint gives rise to
the observed minimum. To test this understanding, we use
next an analytical free cell model (FCM).

V. THE FREE CELL MODEL

The free cell is a single closed cell of order e, whose
surrounding disks are chosen randomly from the same size
distribution as in the above DEM simulations. The model
consists of generating a large number of such cells and
analyzing the resulting quadron volume distribution. The cell
is constructed as follows. First, a random set of e disks is
generated from the given size distribution. Then a random set
of e angles is generated (0; to 6 in Fig. 18), satisfying

S0 =2m (15)
j=1
and
L [xj - COS W
Z( {) =Y () +r,-+1>( - {) =0,  (16)
= NS S e;
where x; and y; are the coordinates of the center of the jth disk,
Tex1 =71, and w; = le(:I 0r. When e = 3, the three angles,
0;, can be determined uniquely for the three given radii, r;,
but when e > 3, the angles are underdetermined. We then fix

(e — 3) angles randomly and obtain the rest by solving the
above equations, using the Newton-Raphson iteration scheme.

PHYSICAL REVIEW E 95, 032905 (2017)

FIG. 18. The construction of a sample cell configuration gener-
ated by the free cell model.

We check that the solution satisfies the condition that disk
j has contacts with disks (j — 1) and (j + 1). Finally, we
check that each disk has no additional contact or overlap with
any of the other disks, otherwise the solution is discarded
and a new cell is generated. Figure 19 shows examples of
free cells generated by this procedure. The FCM allows us
to generate quickly and efficiently a large ensemble of cells,
whose statistics can be compared with the DEM results for the
purpose of analyzing the effects of mechanical stability on the
cell shape distribution.

In Fig. 20, we compare the resulting conditional quadron
volume PDFs from the FCM and DEM simulations for © = 10
and e = 3-8. For e < 6, the PDFs are very close, but the mean
quadron volume is consistently lower in the FCM, with the
difference increasing as e increases. That the two PDFs do
not coincide perfectly for any value of e is a result of three
effects. One is our observation that the size distribution of
disks surrounding cells of order e in the DEM simulations
depends, albeit very weakly, on e. This interesting effect is
somewhat tangential to the thrust of this paper and is left to a
later investigation. Another effect is that, in the simulations, as

R &8
B & F
X GO

FIG. 19. Examples of free cell configurations for e = 6.
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FIG. 20. A comparison of the PDF of quadron volumes, generated
both with the free cells model and with the DEM numerical
experiments.

in real systems, the centroid of a disk contact need not coincide
with its geometric center, which constitutes one of the quadron
vertices in the FCM. This is because the FCM disks have only
two contacts each and the disk center is the only reasonable
choice to make.

A careful analysis of these two effects shows that their
combined contribution is negligible compared with the effect
of a mechanical stability constraint. The condition that the
cell be stable under compressive forces was not taken into
consideration by Frenkel et al. [11]. Our DEM simulations
show that this constraint biases the distribution toward a larger
proportion of cells with aspect ratios close to 1 compared
with the FCM. Indeed, the higher the intergranular friction
coefficient, the more elongated the cells can be and still be
stable. The effect of mechanical instability gets stronger with
decreasing friction coefficient and large cell orders. Since
elongated cells tend to have, on average, smaller quadron
volumes, the instability suppresses the small volume tail of the
distribution. This effect is captured well by the FCM. Figure 17
includes the ratio, y, of the mean quadron volume, generated
by the FCM, to the quadron volume of a regular polygon.
It mimics well the effect of the decrease in y for e < 5 and
e < 6forlow and high friction coefficients, respectively. It also
demonstrates that the increase in y for higher values of e in the
DEM is a direct result of the mechanical stability constraint,
which is not included in, and therefore not captured by, the
FCM.

VI. THE COLLAPSE AND THE UNIFORM
MEASURE ASSUMPTION

A significant assumption, underlying much of the work
on GSM, is that of uniform measure, i.e., that any possible
microstate, either structural or stress configuration, can be
realized in the ensemble. In other words, that the occurrence
probability of a microstate depends only on the Boltzmann-like
factor in the partition function, in our case the exponential
term in Eq. (1), and that it depends neither on the generating
dynamics of the systems of the ensemble nor on their sampling

PHYSICAL REVIEW E 95, 032905 (2017)

procedure. In general, the partition function must also include a
“measure,” i.e., a probability density function, G, that specifies
the probability of such dynamics and/or sampling. Generally,
this function may depend on both the degrees of freedom
and on the details of the system generation dynamics and
sampling process. The term “uniform measure” refers to G
being constant. It was because of the difficulty to parametrize
the dynamics and sampling that the uniform measure was
assumed originally for granular matter [39] for simplicity.

This assumption became a subject of some scrutiny in recent
years [19,20,25,40—44]. It has been shown to hold in some
systems [25] and to fail in others [21,22]. Focusing on this
assumption for the structural subensemble, the collapses we
observed of several distributions of structural characteristics,
although not resolving this issue generally, provide good
insight into the processes that would give rise to a nonuniform
measure. Specifically, these collapses reveal an underlying
type of order that can only be the result of the self-organization
of the granular medium during the dynamic process we used
to generate them. The existence of such regularities means
that the structures of all the systems we studied are not
entirely random, namely, there is a large class of completely
random systems that are not represented in the ensemble and
which are side-lined by the generation processes. Clearly,
some of these configurations have a Boltzmann-like factor
of exactly the same value as the more frequent configurations
we observed. It follows that not all configurations with the
same Boltzmann factor are equally probable, and therefore that
the measure cannot be uniform when the generation process
leads to self-organized structures. Now, it seems plausible
that almost all mechanically equilibrated granular packings,
assembled under external forces, would self-organize in some
fashion. This argument implies that the assumption of uniform
measure must fail in all, or almost all, such ensembles. This
also means that, to derive realistic equations of state and
constitutive relations from GSM, which is the ultimate goal
of any statistical mechanics, one must have good models for
the measure function G.

VII. CONCLUSIONS AND DISCUSSIONS

To conclude, we have studied in detail the effects of
intergranular friction and initial conditions on the structural
characteristics of 2D granular assemblies. We have shown that
structure can be analyzed quantitatively, using the quadron
description [3,4]. In particular, we have established that a
number of distributions collapse onto single curves, pointing to
“universal”-like structural characteristics that are independent
not only of the initial state, but also of the friction coefficient.
These are significant results, the implications of which are
discussed at the end of this section.

The raw quadron volume distribution, which is key for the
Edwards formulation of volumetric granular statistical me-
chanics [4,5,13,26,39], changes systematically toward larger
values with increasing friction coefficient © and hence with
decreasing mean coordination number Z. However, when
normalized by the mean quadron volume, it collapses nicely
onto a single curve. Following the insight provided by Frenkel
et al. [11], we have traced this to a similar collapse of the
conditional PDFs P(V, /Vg | e) for every cell order e, except
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for small, but insightful, deviations for large e, which are
discussed below.

Suggestions that there is a relation between the mean
coordination number Z and the packing fraction date back
to 1929 [45], but later studies showed that such a relation
depends also on the initial conditions [34,36,46]. The idea that
an initial-state-independent relation could exist if rattlers are
disregarded was implied, but not stated as such, in [47]. The
collapse we observed [18] of the quadron volume conditional
distributions, which disregards rattlers, supports this view.
However, we found in [18] that the model proposed in
[47] leads to an incorrect 7 — ¢’ relation, and our analysis,
described in more detail here, agrees better with the numerical
simulations of frictional particles presented here. This is
consistent with our observation that the plot of V,, as a function
of 7 is also independent of the initial state. Since rattlers do not
support forces in our systems, these results carry a fundamental
significance—they suggest that the packing fraction, the mean
coordination number, the quadron volume distribution, and
generally the structure are linked directly to the manner in
which stresses are transmitted. While this gives insight into
the structure of the system, it should be remembered that it
is difficult to estimate the packing fraction of rattlers in real
experiments, and it is unclear at this stage how to use this
insight for engineering applications.

Considerations of mechanical stability also suggest that
the argument proposed by Frenkel et al. [11], leading to the
independence of the conditional quadron volume distributions
of intergranular friction, needs to be modified. Their argument
assumes that cell shapes are independent of mechanics and
therefore that arranging an e-sided cell depends only on the
grain shape distribution. This, in turn, eliminates friction
as a factor in the occurrence probability of cell structures.
However, as friction decreases, elongated cells are less stable
mechanically, reducing the number of available cell shapes.
Indeed, we can observe a small increase in the occurrence
probability of large quadron volumes in P(V,/ Vg | e) for
e > 6 as u increases (Fig. 15).

This effect is seen most clearly when plotting the ratio of
the mean quadron volume to that of a regular polygon as a
function of e (Fig. 17). The initial drop reflects the departure
of the cell from a regular polygon due to the increased number
of possible geometrical configurations, while the subsequent
increase shows the effect of mechanical stability in limiting
such a departure. The more pronounced increase for lower
is evidence for our argument above.

To illustrate the effect of mechanical stability, we have
constructed a free cell model (FCM) that takes into account
only geometric considerations and disregards mechanical
stability. Indeed, this model shows the same initial decrease
of the above ratio with e and none of the subsequent increase
(Fig. 17). Thus, neglecting the mechanical stability effect, the
FCM provides a low bound for the mean quadron volume, as
illustrated in Fig. 21.

We have further found that the raw cell order PDF,
Q(e), changes systematically with w, but hardly at all with
the initial state. However, all the PDFs also collapse to a
single curve under the transformations Q(e) — eeQ(e) and
e — (e — &)/2%. We note that the collapse cannot be perfect
at the large e tail due to the aforementioned constraint of
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FIG. 21. Simple prediction of the mean quadron volume in terms
of the mean coordination number.

mechanical stability. This friction-specific behavior, which
is evidenced by Figs. 15 and 17, is hardly noticed at all in
Fig. 13, demonstrating that the effect of mechanical stability is
small compared to the geometrical effect discussed by Frenkel
etal [11].

Our results are significant for several reasons. First, they
are a step toward a systematic understanding of structural
organization of granular matter in response to a specific pack-
ing procedure. In particular, they suggest that the structural
characteristics of granular matter are best understood via the
statistics of cell configurations. Second, they make it possible
to progress on the statistical mechanics of granular matter,
where knowledge of the distribution of the intercontact vectors,
74, 1is key. Third, the results shed light on the common wisdom
in the soil mechanics and civil engineering communities that
the initial state and intergranular friction affect the final relation
between Z and ¢ [34,36,46]. Our findings show that this
relation is directly linked to the mechanical stability of the
packing backbone—for any specific pack generation process,
the initial state and friction affect the fraction of rattlers, which
do not participate in the stress transmission. Once the rattlers
are disregarded, there emerges a unique relation between z and
the corrected rattlers-free packing fraction ¢'.

Fourth, our analysis has a significant ramification for the
famous packing problem. Different packing procedures lead to
different structures. For example, procedures not constrained
by mechanical stability would give rise to different Q(e)’s
than those that are. Specifically, the former would tend to have
lower packing fractions due to a higher occurrence probability
of large cells, which are mechanically unstable. This reinforces
the need for a more accurate definition of the packing problem,
which we discuss elsewhere [38].

Taken together, these results show that the packing process
has a fundamental effect on the structural characteristics while
the initial conditions and the intergranular friction are details
that only modify this effect and can be scaled away. The col-
lapsed distributions show how to predict such modifications.
It should be emphasized that the collapses that we have found
do not imply universality in the traditional sense because the
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specific forms of the collapsed curves depend on the packing
procedure. For example, it has been demonstrated that, using
a different packing protocol, it is possible to generate packs
dominated by cells of order 3 [13], which cannot be scaled
to match the ones we obtained here. There is in principle
an infinite number of possible procedures to generate packs,
depending on an astronomically large number of parameters.
It would be impossible to map all the possible processes to a
manageable parameter space. Each such procedure gives rise
to its own characteristic Q(e), and it would be impossible to
collapse all of these Q(e) onto one curve.

Our results have an intriguing and potentially significant
implication for the much discussed issue of uniform measure
in granular statistical mechanics [19-22,25,40—44]. We argued
that the collapse of distributions of various structural charac-
teristics points to self-organization under external loading, and
therefore to an under-representation of many random structural
configurations in the ensemble. This means that, at least in our
systems, and possibly in all ensembles of systems brought to
mechanical equilibrium under external forces, the assumption
of uniform measure should fail. We believe that most, if
not all, such systems self-organize into their final structure,
and therefore that our results can be interpreted to suggest
a widespread failure of the uniform measure assumption. If

PHYSICAL REVIEW E 95, 032905 (2017)

this conjecture is supported in future studies, then work must
focus on deriving models of the measure function G if we
are to make progress on applying GSM to the derivation of
equations of state.

We argued that the structural features studied here should
be affected only slightly, if at all, by the stress microstates and
the angoricity [24,25,29], and our results appear to support
this argument. Unavoidably, the different systems and samples
we studied could not be generated under exactly the same
distribution of external forces, and each configuration of stress
microstate could, in principle, affect the partition function
(1). Yet, the collapses we observed appeared to be sample-
independent, suggesting insensitivity of the self-organized
structural characteristics to the angoricity.

To fully understand how structural characteristics depend
on the packing procedure, one needs a good model of both
the geometric effects and the limitations that mechanical
stability poses on the cell shape distribution. We are currently
developing such a model, and we will report the results in a
later publication. Intriguingly, the relevance of both structural
and stress effects is reminiscent of the interdependence demon-
strated recently for the statistical mechanical understanding of
granular matter [8], and it would be interesting to find out
whether the two issues are related.
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