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Effect of interstitial fluid on the fraction of flow microstates that precede clogging
in granular hoppers
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We report on the nature of flow events for the gravity-driven discharge of glass beads through a hole that
is small enough that the hopper is susceptible to clogging. In particular, we measure the average and standard
deviation of the distribution of discharged masses as a function of both hole and grain sizes. We do so in air,
which is usual, but also with the system entirely submerged under water. This damps the grain dynamics and
could be expected to dramatically affect the distribution of the flow events, which are described in prior work
as avalanche-like. Though the flow is slower and the events last longer, we find that the average discharge mass
is only slightly reduced for submerged grains. Furthermore, we find that the shape of the distribution remains
exponential, implying that clogging is still a Poisson process even for immersed grains. Per Thomas and Durian
[Phys. Rev. Lett. 114, 178001 (2015)], this allows for an interpretation of the average discharge mass in terms of
the fraction of flow microstates that precede, i.e., that effectively cause, a stable clog to form. Since this fraction is
barely altered by water, we conclude that the crucial microscopic variables are the grain positions; grain momenta
play only a secondary role in destabilizing weak incipient arches. These insights should aid ongoing efforts to
understand the susceptibility of granular hoppers to clogging.
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I. INTRODUCTION

The flow of grains in an hourglass or hopper is an iconic
granular phenomenon, strikingly different from the gravity-
driven flow of fluid from a small hole in the bottom of a
bucket [1]. At the top free surface, the grains are not level
but form a conical depression. Below the hole, the stream of
grains fans out and does not break up into droplets because
there is no surface tension. And the growing mass of grains
collected underneath is not level but forms a conical pile down
which the added grains avalanche. Another striking difference
is that the discharge rate of grains is constant, as long-described
by the empirical Beverloo equation [1,2], and sometimes it can
even increase with time [3,4]; by contrast, the fluid discharge
rate always decreases with time as the bucket empties and the
gravitational pressure head goes down. But an even bigger
difference is that grains can clog [5–7]. Though the flow may
appear smooth, it can suddenly and unexpectedly halt due to
the formation of a mechanically stable arch or dome of grains
spanning the hole. How to predict the susceptibility of a given
granular system to clogging [8], and how to anticipate that a
clog is about to form [9], are active research topics.

Clogging is a generic feature of granular hopper flow, as
reviewed in Refs. [10,11], which happens less frequently for
larger holes and is unavoidable for holes smaller than about
four to five grains across. Details depend on grain shape (see,
e.g., [12–15]), and similar phenomena arise in other contexts,
ranging from transport in electronic [16] and particulate
[17,18] systems with spatially distributed pinning sites to
grains in channels and pipes [19,20], grains driven by fluid flow
[21,22], and even grains with brains: pedestrians [23], traffic
[24], and livestock [25]. For noncohesive compact grains,
in air or vacuum, there is general agreement that clogging
statistics are Poissonian [6,7,13,26,27]. Namely, there is an
exponential distribution of flow times, and hence also an
exponential distribution for the amount of material discharged
between successive clogs. Thus there is a well-defined average

“avalanche” size, as measured either from the average flow
duration 〈τ 〉 or from the average mass 〈m〉 discharged before
a clog occurs. These are related by 〈m〉 = ρAv〈τ 〉, where ρ is
the mass density of the packing, v is the exit speed of grains
at the hole, A = π (D/2)2 is the hole area, and D is the hole
diameter.

A crucial open question is whether or not a sharp clogging
transition exists: Is there a critical hole diameter Dc above
which the system will never clog, or instead does clogging
become so improbable for larger holes as to be essentially
unobservable on human time scales? This is difficult to answer
definitively by experiment or simulation because 〈m〉 grows
very rapidly with hole size, e.g., by five orders of magnitude as
the hole diameter increases by a factor of 3. In particular, data
can be equally well described by both exponential [6,28,29]
and diverging power-law [7,13,28,29] forms:

〈m〉 = mg exp[c (D/d)3 + b], (1)

〈m〉 = mg/[α(Dc − D)/d]γ , (2)

where mg is the average grain mass, d is the average grain
diameter, and {c,b,α,γ } as well as the putative critical hole size
Dc are fitting parameters. This is also true for two-dimensional
hoppers, where the average mass grows as either a critical
power law or as an exponential in (D/d)2 [6,28]. While the
competing fits may be equally good, we prefer an exponential
form for several reasons. As negative points against the power
law, fitting results for the exponent γ are oddly large and
published results vary widely. There is no established theory
for the expected value of γ , or for the putative critical hole size
Dc. In principle, stable arches can be constructed of arbitrarily
large size. Furthermore, in spite of explicit searches, no critical
signature such as a kink in either the average discharge rate [13]
or in grain velocity fluctuations [30] has been found that could
be used to locate Dc as the hole size is decreased toward the
putative transition from above. Lastly, the exponential form
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FIG. 1. When time advances by one sampling time, τo, there is a new configuration of grains near the hole and a new chance to clog. In this
illustration, N distinct flow states are sampled prior to the formation of a stable clog. The fraction of microstates that similarly cause clogging
is F = 1/〈N〉, where 〈N〉 equals the average flow duration divided by τo.

and its dependence on dimensionality both follow naturally
from a simple model based on consideration of clogging as a
Poisson process in which microstates are randomly sampled
[29].

The first step in the model of Ref. [29], and the inspiration
for the present paper, is the realization that the fraction
F of all accessible microstates that precede a clog can be
found from measurement of 〈m〉. Since clogging is a Poisson
process, the act of flow can be interpreted as bringing new
configurations into the region of the hole, so that with time
different configurations are sampled at random until one arises
that causes a clog to form. We call � the sampling length, which
is how far the grains near the hole must flow in order to produce
a new configuration. It is of order one grain diameter, and the
corresponding sampling time is τo = v�. This is illustrated in
Fig. 1. The average discharge mass may then be rewritten as
〈m〉 = ρAv〈τ 〉 = ρA�〈τ 〉/τo. In this expression, we recognize
〈τ 〉/τo as the number of distinct configurations sampled in the
average flow event, and hence F = τo/〈τ 〉 as the fraction of
flow configurations that precede a clog. Thus the fraction of
flow microstates that cause a clog is

F = ρA�/〈m〉, (3)

and it can be deduced from measurement of 〈m〉, somewhat
miraculously, without the need to measure the actual grain
positions, momenta, or contact forces.

In this paper, we now ask about the nature of the microstates
that causes clogging. For s spatial dimensions, what is it about
the positions, momenta, and/or contact forces of the O(D/d)s

grains in the hole region that leads to a clog? In principle, this
could be addressed by simulation, where these microscopic
quantities are all perfectly known. As a different approach,
we measure and compare clogging behavior versus hole size
for experimental systems that are identical but for one major
difference: In one the grains are in air and have collisional
and inertial dynamics, and in the other the grains are totally
submerged in water and have overdamped viscous dynamics as
well as reduced friction. Once a clog forms, the stability criteria
for the grains in the arch or dome are the same; however, the
dynamics of arch formation must be very different. As shown
below, we find that the clogging statistics are not strongly
affected. Therefore, we conclude that grain positions are key
to predicting clogging probabilities.

II. MATERIALS AND METHODS

The experimental granular system consists of three sizes
of technical quality glass beads (Potters Industries A-series)

with material density ρg = 2.54 ± 0.01 g/cm3. The grain
diameter distributions are measured using a Retch Technology
Camsizer. Results are displayed in Fig. 2 along with the mean,
d, and standard deviation, σd . As shown, the grains have a
5–10 % polydispersity, and they will be referred to by their
nominal diameter values of d = 0.5, 1.0, and 2.0 mm. A total
of 20–30 % of the d = 1.0 mm beads have multiple sharp
edges, by visual inspection. The other beads can be described
as round. This does not seem to affect the clogging results
found below, and neither does the larger relative polydispersity
for the d = 1.0 mm grains. Nevertheless, the clogging analysis
is highly sensitive to the size of the particles relative to the hole,
in light of Eqs. (1) and (2). In both dry and submerged cases,
the grain volume fraction is measured to be φ = 0.58 ± 0.04,
which is close to expectation [31]. Therefore, the mass density
of the packing is ρ = φρg = 1.47 ± 0.10 g/cm3. The draining
angle of repose is about 24◦ when the grains are dry, and about
21◦ when they are fully immersed in water [3].

In the dry experiments, air conditions are controlled
by standard laboratory air handling with humidity ranging
between 20 and 50 rH and temperature between 20 and
25 ◦C. In submerged experiments, the fluid is filtered tap
water with standard textbook properties: density ρf = 1.00 ±
0.01 g/cm3 and viscosity η = 1.00 ± 0.01 mPa. With these
system parameters, the Reynolds numbers based on bead
size and single-grain terminal falling speed in water are
Re = ρf vtd/η = {40,150,500} for the three grain sizes. The
Stokes number is St = (1/9)ρgvtd/η, which here is about
Re/3. It refers specifically to grain inertia [31], the importance
of which is overestimated by using vt since the discharge speed
is smaller in water than in air [3,4] and also since the relative

FIG. 2. Normalized distribution of particle diameters for glass
beads, measured by a Retch Technology Camsizer and labeled by
average and standard deviation.
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FIG. 3. Schematic illustration of the clogging apparatus, shown
in vertical cross section. The hopper (gray) is cylindrical and hangs
from a digital balance (black). An orifice with adjustable diameter,
D, fits into a depression in the bottom plate. The walls and bottom
plate are made of polycarbonate, 6 and 13 mm thick, respectively. The
flowing grains are indicated with brownish shading. The dry case is
identical, except that the fluid (light blue) is absent. Note that the top
of the hopper is open, so that there is no backflow of air or water into
the hopper as the grains exit.

speed of neighboring grains in the coarse-grained flow field
is smaller still. Even so, Ref. [31] shows that sedimenting
grains need to have St > 30 in order for their inertia to jar
a loose packing into a dense packing. Therefore, we can
expect very different dynamics for submerged versus dry
grains.

The apparatus for clogging measurements is shown
schematically in Fig. 3, and it is similar to that in Ref. [4]. The
hopper consists of a flat-bottomed cylinder with inner diameter
Dh = 195 ± 0.5 mm and height h = 250 ± 1 mm. The top
is open, and is completely underwater for the submerged
experiments. The bottom has a depression that is fitted with an
adjustable iris that serves as the hole through which the grains
exit. The hole diameter is measured with a caliper, and is
circular to within �D = 0.1 mm. This is the largest source of
uncertainty, especially for small orifice diameters. Therefore,
we also perform additional runs where the iris is replaced
by an aluminum disk with a precision-machined hole, to rule
out systematic errors. The entire hopper hangs from a digital
balance (Ohaus Valor 7000) that records the change in mass
with 10 Hz frequency and 1.0 g repeatability. Alternatively, for
avalanches smaller than about 10 g, the grains are collected
in a cup that is weighed with a more accurate balance (Ohaus
Navigator, 0.1 g repeatability).

When a clog forms, the flow is restarted using one of
the three methods. In the submerged case, a stream of water
is directed underneath the hole in order to break the clog.
Alternatively, the clog is broken by poking it with a stick
either manually or via stepper motor. This is used in all the
dry cases, and in some of the submerged cases. For these two
methods, the water pump and the stepper motor are connected
to the same computer that is interfaced to the balance, so that
the system is fully automated as in Ref. [26]. A third method
is to manually tap to the side of the hopper. This is useful for
the d = 0.5 mm grains, where the orifice size can be less than
2 mm in diameter and hence difficult to poke. In all cases,

the procedure is to initiate flow, to measure the total mass of
grains that is discharged before a clog forms, and to repeat as
desired for a large number of discharge events. No difference
in behavior was noticed for the three unclogging methods or
the two hole types.

III. DISCHARGE MASS STATISTICS

The first question is whether or not clogging remains a
Poisson process when the grains are submerged. In particular,
the distribution of discharge masses is exponential in air and
vacuum, but it could very well be different under water. To
investigate this, as well as the fraction F of flow microstates
that cause a clog, we measure the discharge masses for a
large number of flow events, for all three grain sizes, and
for hole sizes ranging from slightly larger than one grain to
as large as was reasonably feasible. The upper limit on hole
size is such that the average discharge mass is O(1000 g),
which is ten times smaller than the capacity of the hopper.
This allows sampling of long-duration events without need
for refilling, which is infeasible for the submerged cases. In
dry cases, the upper limit is also set by the accuracy with
which we could change the hole size. Only a very slight
increase in hole diameter is needed to increase the average
flow duration from several hours to several days or weeks, i.e.,
from barely feasible to not possible. Altogether for dry and
submerged cases, and for the three grain sizes, we examined
46 different hole sizes and thousands of discharge events. The
goal of the experimental procedure was to measure at least
30 discharge events for each combination of D and d. The
average number of events is 104 for each measurement point.
Half of the measurements have more than 52 events, and the
largest measurement consists of 1172 events. There are only
three measurement points with fewer than 10 discharge events,
all for very long duration (nearly infeasible) runs at the largest
D/d ratio.

To reveal the nature of all the discharge distributions, we
compute both the average 〈m〉 and the standard deviation σm of
the discharged masses, for a given set of conditions, and we plot
one versus the other in Fig. 4. The data points fall on the line
σm = 〈m〉, where 〈m〉 varies by almost six orders of magnitude
as the hole and grain sizes are changed. This is consistent
with an exponential distribution. In addition, we also collected
greater statistics for a couple of specific grain and hole size
combinations and directly confirmed that the distributions
are nearly exponential. In Fig. 5, we plot the cumulative
distribution for the one representative set with a large number
of discharges and the combined submerged and dry cases for
d = 1 mm grains. The combined sets are first normalized with
average m before combining. The distributions are linear in
semilog scale over a wide range, indicating that indeed we
have exponential behavior. Thus, we conclude that clogging is
also a Poisson process for submerged grains. This is the first
such demonstration, to our knowledge. Importantly, it permits
us to analyze 〈m〉 in terms of F , below.

The next question concerns how the average mass varies
with hole diameter. To investigate, results for 〈m〉 versus D

are plotted two different ways in Fig. 6. The top plot is a
log-linear version of the raw data. For the dry grains, it shows
a very rapid increase that can be well-fit by both the exponential
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FIG. 4. Standard deviation vs mean for the distribution of
discharge masses, for all measured combinations of hole and grain
sizes, under both dry and submerged conditions. The data fall on the
line y = x, which implies that the distributions are exponential and
that clogging is a Poisson process. This figure has two fewer data
points than seen in later figures, where 〈m〉 but not σm were measured
by collecting multiple events into a cup and weighing.

and diverging power-law forms, Eqs. (1) and (2), as expected.
Fitting parameters are collected in Table I. Also as expected,
doubling the grain size requires doubling the hole size to
achieve the same average discharge mass. For submerged
grains, our new result is that the average discharge mass is
slightly reduced, compared to the dry case at a given hole size.
Furthermore, the functional form appears to be unaltered, in
that good fits are also obtained using Eqs. (1) and (2). To
highlight the exponential form, the average mass data are
scaled by the grain mass mg and are shown as a log-linear
plot versus D3 in Fig. 6(b). This causes the data to fall onto
straight lines, which is the expectation for the Eq. (1) form that
grows exponentially in D3. Note, too, that these fits extrapolate
close to 〈m〉/mg = 1 as the hole size decreases toward zero:
For the smallest holes, only a few grains escape before a clog
forms.

FIG. 5. One minus the cumulative distribution function vs scaled
discharge event mass for d = 1 mm diam grains. Solid circles
represent the submerged dataset with the largest number of events
(1172); crosses and diamonds represent all datasets for submerged
and dry cases, respectively. The solid line labeled y = exp(−x) is the
expectation for an exponential distribution of discharge masses; its
good agreement with the data demonstrates that clogging is a Poisson
process.

FIG. 6. The average discharge mass vs hole diameter (a), and
scaled by grain mass and plotted vs the cube of hole diameter (b). In
both plots, the solid curves represent fits to Eq. (1), while the dashed
curves represent fits to a diverging power law Eq. (2) with exponent
taken to be γ = 5. The former is exponential in D3 and hence comes
out as a straight line in the bottom plot. Fitting parameters are given
in Table I.

As further remarks on fitting, first note that the diverging
power-law fits in Fig. 6 assume the exponent to be γ = 5. This
value is taken from Ref. [13], and is roughly in the middle
of the range of values reported by others. Similarly good fits
can be obtained by adjusting γ at a fixed critical hole size of
Dc = 5d for dry grains and 10% larger for submerged grains.

TABLE I. Parameters for the fits displayed in Fig. 6 to Eqs. (1)
and (2), obtained using the FORTRAN ODRPACK algorithm [32]. Error
estimates are given by the square root of the diagonal elements of the
covariance matrix. For Eq. (1), the exponent is fixed to γ = 5.

d (mm) Dry Submerged

0.5 0.13 ± 0.03 0.09 ± 0.03
c 1.0 0.13 ± 0.01 0.11 ± 0.03

2.0 0.16 ± 0.01 0.14 ± 0.01

0.5 10 ± 2 11 ± 3
b 1.0 8.8 ± 0.6 9 ± 2

2.0 7.2 ± 0.6 7.7 ± 0.6

0.5 2 ± 1 3 ± 2
Dc 1.0 4.8 ± 0.8 5.0 ± 0.9

2.0 9 ± 1 9 ± 0.6

0.5 0.03 ± 0.09 0.02 ± 0.10
α 1.0 0.05 ± 0.04 0.04 ± 0.05

2.0 0.07 ± 0.05 0.06 ± 0.04
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Either way, the uncertainties in fitting parameters are quite
large (and larger than for {c,b} in the exponential fits). Even
better-looking power-law fits can be obtained by adjusting
all three parameters, {Dc, γ, α}; however, the parameter
uncertainties are unacceptably large. Similarly, the exponent
may be adjusted in the form 〈m〉 ∝ exp[c(D/d)s]; however,
the fitted values are close to 3, which is expected based on
the model of Ref. [29], where s naturally equals the number
of spatial dimensions. Overall, the relative quality of the two
fitting forms is comparable, but the smaller uncertainties and
the clear physical meaning of the exponent point in favor
of the exponential form. In consequence, we reinforce the
belief that there is no sharp clogging transition, i.e., that all
granular hoppers are susceptible to clogging (though perhaps
with unobservable probability).

IV. ANALYSIS OF FLOW MICROSTATES

We now use Eq. (3) to analyze the average discharge mass
data in terms of the fraction F = ρA�/〈m〉 of flow microstates
that precede, i.e., that cause, the formation of a stable clog.
In this expression, all quantities on the right-hand side are
known from the measurements discussed above except for the
sampling length, �. This is the average downward displacement
of grains in the hole region that is needed to create a new
configuration and hence a new chance to clog. We take it to be
� = (0.75 ± 0.20)d, as measured by two methods in Ref. [29].
The resulting behavior for F versus (D/d)3 is shown by the
log-linear plot in Fig. 7. Note that this causes the data to
collapse onto two straight lines, one for dry grains and one
for submerged. These decay rapidly, since the susceptibility
to clogging decreases dramatically with increasing hole size.
Both cases may be fit to F = exp{−C[(D/d)3 − 1]}, which
has the correct form and is also correctly normalized to F = 1
at D = d. By adjusting only the decay rate constant, C, we
obtain very good fits as shown. The fitting uncertainty is about
3%, and the decay constant for the dry grains is about 20%
larger than for the submerged grains.

Since the decay of F is faster for the dry grains, they
are slightly less susceptible to clogging. This is counter to

FIG. 7. The fraction of flow configurations that cause a clog vs the
cube of hole diameter divided by grain diameter. Experimental results
are for three grain sizes, and under both dry and submerged condi-
tions. The solid lines represent fits to F = exp{−C[(D/d)3 − 1]},
and the dashed lines represent the range of fitting functions given by
the quoted value and uncertainty in the fitting parameter C.

our initial expectation, which was that lubrication forces
between approaching grains and reduced friction between
contacting grains (vis-à-vis the smaller repose angle) would
both render submerged grains less susceptible to clogging.
This points to grain inertia, which has a destabilizing effect
on arch formation and is much larger for the dry grains.
Intuitively, to form a stable clog, an incipient arch much
be strong enough to withstand collision from the grains
colliding with it from above. Of all possible arches, fewer
can be stably formed in air because they must be stronger.
Conversely, a greater variety of arches can be stably formed
under water since weaker ones are additionally allowed,
rendering submerged grains more susceptible to clogging.
This ties in with the conclusion of Ref. [31] that the Stokes
number controls the volume fraction of random loose packings,
such that looser more delicate packings may be formed when
grain inertia is absent. This also ties in with the intuition
of Ref. [8] that incipient arches must be strong enough to
dissipate the kinetic energy of the grains raining down from
above.

V. CONCLUSIONS

In summary, we have systematically measured clogging
statistics for grains being discharged from submerged hoppers,
and we compared them with identical but dry experiments. We
find that immersing the grains does not affect the Poissonian
character of clogging, and it leads to a slightly enhanced
susceptibility of clogging. Our data reinforce the notion
that a sharp clogging transition does not exist, i.e., that
all hoppers may eventually clog given sufficient time. Our
analysis demonstrates the utility of interpreting the average
discharge mass in terms of the fraction F of flow configurations
that cause clog formation [29]. In particular, we find that
F decays exponentially in (D/d)3, which is roughly the
number of grains in the hole region that must cooperate in
order to form a stable arch (dome, really) across the hole,
for both dry as well as submerged grains. The decay rate is
about 20% slower for the submerged grains, reflecting the
increase in the number of flow configurations that can form
a stable clog. Since this change is not great, we conclude
that grain positions play a far more important role than grain
momenta. Due to the sign of the effect, we also conclude that
it cannot be due to lubrication or friction forces. Rather, grain
inertia has some limited capacity to break incipient arches in
the dry case, and this is totally removed for the submerged
grains, making them slightly more susceptible to clogging.
Though this picture is physically intuitive and consistent with
Refs. [8,31], it is still somewhat speculative since it assumes
that the position microstates during flow are unaffected by
immersion in water. This could be tested by computer simu-
lation, or perhaps by experiments in a quasi-two-dimensional
geometry.
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