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Two mechanisms forming a comblike step pattern induced by a moving linear adatom source
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We carry out phase field simulations to study properties of the comblike step patterns induced by an adatom
source. When an adatom source advances right in front of a step, step wandering is caused by the asymmetry of the
surface diffusion field and small protrusions are formed. If the velocity of the source Vp is smaller than a critical
value V c

p , the protrusions follow the adatom source with coarsening of the step pattern, and a regular comblike
pattern with finger-like protrusions is formed. With a sufficiently small Vp, the gap of the supersaturation is large
at the adatom source. Since the period of protrusions, �, decreases with increasing Vp, the coarsening of step
pattern is irrelevant for the protrusions to catch up with the adatom source. Near V c

p , the gap of the supersaturation
at the adatom source is small. Taking account of the increase in � with increasing Vp, the coarsening of the step
pattern is essential for the protrusions to follow the adatom source.

DOI: 10.1103/PhysRevE.95.032803

I. INTRODUCTION

An asymmetry of the surface diffusion field causes insta-
bilities of straight steps on crystal surfaces. When adatoms
are incorporated to a step from the lower terrace more easily
than from the upper terrace by the Ehrlich–Schwoebel (ES)
effect [1–3], the advancing step is unstable and step wandering
occurs [4–8]. The motion of the step is described by the
Kuramoto–Sivashinsky (KS) equation [9,10], and the unstable
step shows a chaotic behavior. When evaporation of atoms is
absent, an array of regular grooves, which is perpendicular to
the step, is formed on a vicinal face by in-phase step wandering
[11,12]. The drift of adatoms induced by the direct electric
current also causes a similar pattern [13–19].

Hibino et al. observed a comblike step pattern with finger-
like protrusions on a Si(111) vicinal face during Ga deposition
[20]. The pattern is quite different from step patterns in
previous studies [5,6,9–19]. The cause of the instability is
the reconstruction of surface structure. When the temperature
is about 580 ◦C, the surface structure on the Si(111) face is a
7 × 7 structure. By the deposition of Ga, the surface structure is
first changed to a

√
3 × √

3 structure. When more Ga atoms are
deposited on the surface, the surface structure is transformed
to a 6.3 × 6.3 structure near the steps, and extra Si atoms are
released from the phase boundaries of the two structures. The
phase boundary in the lower side of a step mainly supplies Si
atoms to the step. Since the phase boundary advances right in
front of the step and is straighter than the step, it is regarded
as an advancing straight adatom source moving right in front
of the step.

Previously, we studied the step pattern induced by a moving
linear adatom source in front of a step [21–24]. Since the
amount of adatoms released from the source is less than
that of the atomic layer, the straight step cannot follow the
adatom source. When step wandering occurs, incorporation of
adatoms mainly occurs near the tips of protrusions, and the
protrusions catch up with the adatom source. In Monte Carlo
simulations of a lattice model [21,22], the single step shows a
comblike pattern consisting of finger-like protrusions when the

step moves in the direction of the smallest step stiffness. The
number of protrusions seemingly decreases in competition for
growth, resulting in coarsening of the pattern. When the tips
of the survived protrusions catch up with the adatom source,
the coarsening stops and the protrusions advance steadily
with the adatom source. The period of protrusions, �, is
proportional to V

−1/2
p , where Vp is the velocity of the adatom

source. The relation between Vp and � qualitatively agrees
with experiment [20].

To control the noise strength and the step anisotropy of the
system, we also carried out phase field simulations [23,24].
When Vp is larger than a critical value V c

p , the step grows slower
than Vp and unstable patterns [25] are formed in our simulation
[23]. If the step anisotropy is small, the step shows a seaweed
pattern: splitting of the protrusion occurs repeatedly and the
main branch and side branches are not distinguished well. With
the large step anisotropy, the step shows a dendritic pattern:
the side branches are formed on the main branch. On the other
hand, when Vp is smaller than V c

p , the step follows the adatom
source and a stable comblike pattern is formed. V c

p decreases
with decreasing the step anisotropy. Without the anisotropy,
the step pattern always looks irregular even with a small Vp

in our simulation, so that the step anisotropy is necessary to
form a regular comblike pattern. If Vp is much smaller than
V c

p , � obtained in the simulations is about the same as that in
Monte Carlo simulations of the lattice model [21]. Since the
step has a finite width in the phase field model, fine structures
smaller than the step width cannot be formed. In the phase field
model with Vp close to V c

p , the diffusion limited aggregation
(DLA)-like structure observed in the lattice model [21] is not
formed, and the comblike pattern, in which � increases with
increasing Vp, is formed. Considering the difference in the
dependence of � on Vp, we conjectured that the mechanism
forming the comblike pattern near V c

p is different from that of
small Vp [23]. However, we did not have enough evidence to
confirm the conjecture. In particular, our claim that coarsening
is not really necessary at low velocity needs to be confirmed.
Also, an analysis of the diffusion field in both low and high
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velocities is required to prove that the slow adatom source
stabilizes the pattern, which is related to the unstable analytic
solution given by Brener et al. [26] for the dendritic growth in
a channel. To validate the mechanisms of the formation of the
comblike pattern that we conjectured, we should investigate
the properties of the pattern in the two velocity regions.

In this paper, we carry out phase field simulations and
compare the properties of the comblike pattern with two
different Vp which show the same �. We find a lot of evidence
that validates our conjecture. In Sec. II, we introduce our
model. In Sec. III, we show results of simulations and explain
the mechanism that determine the period of protrusions. We
analyze the properties of comblike patterns in the two Vp in
detail. In Sec. IV, we summarize the results.

II. PHASE FIELD MODEL

Using a phase field model, we consider the time evolution
of a step with a linear adatom source moving steadily toward
the y direction. The x axis is taken to be parallel to the
linear adatom source. The adatom source in front of the step
advances releasing adatoms of a constant density u0. The
surface diffusion of adatoms occurs behind the adatom source.
A phase field variable φ(x,y), which represents the surface
height, is introduced. φ changes from −1 to 1, where φ ≈ 1
in the upper side terrace and φ ≈ −1 in the lower side terrace.
The step is expressed as a thin interface at φ = 0. The time
evolution of the phase field variable φ is determined by the
free energy F , which is given by

F =
∫

dxdy

[
1

2
{W (θ )}2|∇φ|2 + F (φ,u)

]
, (1)

where W (θ ) is a parameter determining the interface width.
When W (θ ) is sufficiently small, the region with large |∇φ| is
thin and the phase field model expresses the step well. In our
simulation, we assume that W (θ ) has the fourfold symmetry
given by

W (θ ) = W0(1 + ε4 cos 4θ ), (2)

where W0 and ε4 are positive constants. θ is the angle normal
to the step and defined as θ = tan−1(∂yφ/∂xφ), where ∂xφ =
∂φ/∂x and ∂yφ = ∂φ/∂y. F (φ,u) is expressed as

F (φ,u) = f (φ) − λug(φ). (3)

The parameter u is the dimensionless supersaturation defined
by u = �(c(x,y) − c0

eq), where � is the atomic area, c(x,y) is
the adatom density, and c0

eq is the equilibrium adatom density
for a straight step. The parameter λ is a positive constant
coupling the phase field and the density field. f (φ) is a
double-well potential, and g(φ) increases monotonically with
increasing φ. In our simulation, f (φ) and g(φ) are given by

f (φ) = −φ2

2
+ φ4

4
, (4)

g(φ) = φ−2φ3

3
+ φ5

5
. (5)

F (φ,u) has two minima at φ = ±1. The regions with the
negative φ and positive φ correspond to the lower and upper
side terraces, respectively. In our simulations, initially φ

decreases from 1 to −1 monotonically with increasing y

coordinate. When u > 0, the region with positive φ expands
with time to decrease F . Thin region with large |∇φ| moves
toward the y direction, which expresses an advancing step.

Since the surface height is not conserved during growth,
the time evolution of φ is given by [27,28]

τ (θ )
∂φ

∂t
= −δF

δφ

= ∇ · [W (θ )2∇φ] − ∂F (φ,u)

∂φ

+ ∂

∂x

[
|∇φ|2W (θ )

∂W (θ )

∂φx

]

+ ∂

∂y

[
|∇φ|2W (θ )

∂W (θ )

∂φy

]
, (6)

where τ (θ ) represents the relaxation time. We solve Eq. (6)
with the diffusion equation for u given by

∂u

∂t
= D∇2u−1

2

∂φ

∂t
− ∇ · q, (7)

where D is the diffusion coefficient and the first term
on the right hand side represents the surface diffusion of
adatoms. The second term represents mass conservation during
crystallization by the change in φ. The last term represents
the change in the adatom density due to thermal noise. Since
evaporation and impingement of adatoms are neglected, we
use a conserved current noise satisfying

〈qi(r,t)qj (r ′,t ′)〉 = 2DFuδi,j δ(r − r ′)δ(t − t ′), (8)

where qi(r,t) represents the i component of the current q(r,t).
To reproduce the thermal equilibrium fluctuation, the noise
strength Fu should satisfy Fu = �2c0

eq [29]. However, we
intentionally change Fu in our simulation to study the de-
pendence of the step pattern on the nonthermal noise strength.

The kinetic coefficient K(θ ) and the capillary length
d̃(θ ), which is related to the step stiffness β̃(θ ) as d̃0(θ ) =
�2c0

eqβ̃(θ )/kBT , are two important parameters in the step flow
model. There is a model in which kinetic effects such as the
ES effect [1–3] are taken into account [30], but we neglect this
effect and consider a simple case. In terms of the parameters
of the phase field model, K(θ ) and d̃(θ ) are expressed as [28]

K(θ ) = λW (θ )

a1τ (θ )

[
1 − a2λ

W (θ )2

Dτ (θ )

]−1

, (9)

d̃0(θ ) = a1

λ

[
W (θ ) + d2W (θ )

dθ2

]
= d0(1 − 15ε4 cos 4θ ),

(10)

where d0 = a1W0/λ with a1 = 5
√

2/8 and a2 = 0.6267. W0

and d0 are set to be W0 = 3 and d0 = 5 × 10−2 in our
simulations. We consider the step motion in the limit of fast
kinetics [K(θ ) → ∞], so that τ (θ ) is given by

τ (θ ) = a2λ

D
W (θ )2 = a2λW 2

0

D
(1 − ε4 cos 4θ )2. (11)

We use a square grid to solve Eqs. (6) and (7) by an
explicit method. The system size is Lx × Ly with the grid
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spacing �x = �y = 1. Initially, φ jumps from 1 to −1 at
y = y0: the initial step position is y = y0. The dimensionless
supersaturation u is set to be 0 far in y < y0 and 0.5 far in
y > y0. The periodic boundary condition is used in the x

direction. During the simulation, φ and u are kept constant
at y = 0 as φ(x,0) = 1 and u(x,0) = 0. Th initial position of
the adatom source is yp = ys + 3, which is in the immediate
vicinity of the step. In our simulations, the time increment is
�t = 0.2. When the time increment exceeds 1/Vp, we move
the straight source by �y = 1. During the simulation, φ and u

vary only within 0 < y < yp and are kept constant for y > yp

as φ = −1 and u = 0.5. We can regard the advance of the
adatom source as a release of new adatoms with u0 = 0.5 and
φ = −1: a new row of a grid with u = 0.5 is added in the
system when the adatom source is moved and the system size
is kept fixed with a zero flux boundary condition for all other
time steps.

III. NUMERICAL SIMULATION

In our previous studies [23,24], a comblike pattern was
formed when Vp is smaller than a critical value V c

p . Since the
number of adatoms released from the adatom source is half
of the full atomic layer, a straight step cannot keep up with
the adatom source. Initially, the distance between the step
and the adatom source increases with increasing time. The
gradient of supersaturation is formed between the step and
the adatom source. The asymmetry of the surface diffusion
field causes step wandering, and small protrusions are formed
by the Mullins–Sekerka instability. When a protrusion grows
higher [31] than others by the fluctuation of u, it outgrows
lower ones, and those nearby protrusions die out.

If Vp is larger than V c
p , the growing protrusions cannot

catch up with the adatom source. Splitting of the tips of
protrusions occurs, and the step pattern becomes irregular
[23,24]. If Vp is smaller than V c

p , the protrusions catch up
with the adatom source and a comblike pattern with regular
finger-like protrusions is formed, as shown in Fig. 1. When
Vp = 1.7 × 10−2 [Fig. 1(b)], the number of high protrusions is
five, which is larger than that with Vp = 4 × 10−3 [Fig. 1(a)].
However, two of them is lower than the others. The lower
protrusions are weeded out and three protrusions survive. With
Vp = 1.7 × 10−2, the tips of protrusions seem to be rounder
and the distance between the tips and the adatom source is
longer than those with Vp = 4 × 10−3 [23].

Figure 2 shows the relation between the period of protru-
sions, �, and the source velocity Vp. The wavelength of the
most unstable mode, λmax, is given by λmax = 2π

√
3Dd0/Vp

from a linear stability analysis [20]. In the initial stage, the
step is expected to wander with λmax, which is expressed by a
dash-dotted line in Fig. 2. With increasing time, the amplitude
of step fluctuations increases and short protrusions are formed.
We carry out the Fourier series expansion of the step form and
calculate the most dominant wave number. From the wave
number, we estimate the period of protrusions in an early
stage, λini, which turns out to be slightly larger than λmax.
When the tips of protrusions catch up with the adatom source,
the coarsening is terminated and the comblike structure with
period � appears. For small Vp, � is proportional to V

−1/2
p as

λini. However, � increases with Vp for Vp larger than 10−2.

(a)

y

x

(b)

y

x

FIG. 1. Snapshots of the comblike pattern at (a) t = 3.8 × 105

and (b) t = 9 × 104. Parameters are ε4 = 5 × 10−2, W0 = 3, Fu =
10−5, (a) Vp = 4 × 10−3, and (b) Vp = 1.7 × 10−2. The region with
φ > 0 is blue (dark) and the line parallel to the x axis near the tips
represents the position of adatom source.

Since the protrusions are periodic in the comblike structure,
the supersaturation around a single finger-like protrusion in
the comblike pattern with the period � should be the same
as the supersaturation around a finger-like protrusion growing
in a channel with the channel width �channel. Brener et al.
[26] studied the steady growth of a needle-shaped crystal in
a channel, in which the driving force is set to be constant at
infinity. There are two branches of steady solutions: the fast
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FIG. 2. Relation between the period of protrusions (� or λ) and
the source velocity Vp. The data are averaged over 10 or more runs.
Relation between the channel width � and the tip velocity Vp in
dendritic growth in a channel is also shown. Dotted lines show V −1/2

p

fitting to the data.
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growing and slow growing solutions. In the branch of the slow
growing solution, the steady velocity of the needle-shaped
crystal, Vneedle, increases with decreasing �channel as �channel ∼
V

−1/2
needle, which is the same as the relation between � and Vp in

the small Vp case. In the branch of the fast growing solution,
Vneedle increases with increasing �channel. In our simulation, �

increases with increasing Vp near the critical velocity V c
p . The

relation between � and Vp (solid circles in Fig. 2) approaches
that between �channel and Vneedle (open circles in Fig. 2). The
relation between � and Vp in our system is analogous to the
relation between �channel and Vneedle in Ref. [26]. However,
the stability of the solution is different. Pelcé [32] carried out
a linear stability analysis and showed that the needle-shaped
crystal in the slow growing branch in Ref. [26] is unstable, but
in our simulation the comblike pattern is always stable.

In our previous paper [23], we suggested that the adatom
source right in front of protrusions stabilizes the comblike
pattern in the case of small Vp. In the region, the scenario of
the formation of the comblike pattern is as follows: The straight
step is left behind the adatom source because the number of
adatoms released from the adatom source is not enough for
the step to follow the adatom source. The gradient of the
supersaturation u is formed in the diffusion field between the
adatom source and the step. It causes the Mullins–Sekerka
instability and small protrusions are formed. Since the adatoms
supplied by the adatom source solidify around the tips of the
protrusions, the protrusions grow fast and catch up with the ad-
atom source. During the fast growth, the fluctuation of the
height of the tips of protrusions causes the coarsening of the
pattern because high protrusions get more adatoms and move
faster than low protrusions. When surviving protrusions catch
up with the adatom source, the fluctuation of the tip height
is suppressed and the coarsening is terminated. In the case of
small Vp, the period of branches depends on the time interval
for the tips of protrusions to reach the adatom source, and is
influenced by the strength of the noise. In contrast, the period
is determined by the steady solution in dendritic growth in a
channel near V (c)

p , where the wider the period, the faster the
protrusions grow.

The difference in the mechanism forming the comblike
pattern affects properties of the comblike pattern. Hereafter,
we carry out phase field simulations under various conditions
and compare the properties in the two cases; Vp = 4 × 10−3

and Vp = 1.7 × 10−2, in which the average period of the
protrusions is about the same, � ≈ 200, as shown in Fig. 2.

A. Field of supersaturation

In our previous paper [24], we showed that the tip velocity
of the highest protrusion Vt converges to Vp after considerably
exceeding Vp with a sufficiently small Vp. The large excess
of Vt over Vp does not occur with the velocity near V c

p . The
time evolution of Vt is related to the field of supersaturation
u. Figure 3 shows the supersaturation u and the step profile
with the slow adatom source (Vp = 0.004). In the early stage
at t = 2.2 × 104 [Fig. 3(a)], the distance between the adatom
source and the step increases. The gradient of supersaturation
is formed between the step and the adatom source. The
isoconcentration lines are parallel to the x direction. The step
fluctuates with a small amplitude. At t = 3.3 × 104 [Fig. 3(b)],

x

(a)

y

x

(b)

y

x

(c)

y

x

(d)

y

FIG. 3. Field of supersaturation and the step profile with the slow
adatom source, Vp = 4 × 10−3. ε4 = 5 × 10−2, W0 = 3, and Fu =
10−5. Time is (a) t = 2.2 × 104, (b) t = 3.3 × 104, (c) t = 4.9 × 104,
and (d) t = 1.45 × 105. Dotted lines represent isoconcentration lines
separated by 0.05. The thick solid line represents the position of the
adatom source.

the amplitude of the fluctuation increases, and the Mullins–
Sekerka instability occurs. In a later stage at t = 4.9 × 104

[Fig. 3(c)], short protrusions are formed. Since the high
protrusion catches adatoms more than short protrusions, the
lower protrusions lose the survival game and the number
of protrusions decreases, resulting in coarsening of the step
pattern. The isoconcentration lines are noticeably deformed
near the tip of survived protrusion. In the late stage at t =
1.45 × 105 [Fig. 3(d)], the deformed isoconcentration lines
overlap with the adatom source, indicating a large jump of u at
the adatom source, and the gradient of supersaturation is small
in front of the tip.

The adatom density in the growth near V c
p is different from

that of the small Vp. Figure 4 shows u and the step profile
with the fast adatom source (Vp = 1.7 × 10−2). The number
of protrusions formed in an early stage is twice more (see
also Fig. 2) and the gradient of u is much larger than that in
Fig. 3(a). Otherwise, Figs. 3(a) and 3(b) are similar to Figs. 4(a)
and 4(b), respectively. In Fig. 4(c), the gradient of u in front
of the tip of the protrusion is larger than that in Fig. 3(c). The
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FIG. 4. Field of supersaturation u and the step profile with the fast
adatom source, Vp = 1.7 × 10−2. ε4 = 5 × 10−2, W0 = 3, and Fu =
10−5. Time is (a) t = 3 × 103, (b) t = 5 × 103, (c) t = 1.75 × 104,
and (d) t = 4 × 104. Dotted lines represent isoconcentration lines of
separated by 0.05. The thick solid line represents the position of the
adatom source.

shape of the highest protrusion is more rounded than that in
Fig. 3(d). The field of supersaturation is very different in the
last stage at t = 4.0 × 104 [Fig. 4(d)], and the jump of u at the
adatom source is much smaller than that in Fig. 3(d).

Figure 5 shows the dependence of the distance between the
highest tip and the adatom source, dtip-source, on Vp. dtip-source

hardly depends on Vp in the case of small Vp, but dtip-source

increases with increasing Vp near V c
p , which also represents

the difference in the field of supersaturation in the regions of
small and large Vp.

B. Dependence of � on noise strength Fu

Figure 6 shows the dependence of � on the noise strength
Fu in the two Vp cases [33]. Previously, we studied the
mechanism that determines � in the case of small Vp [23]. �

depends on the time interval required for the tips of protrusions
to catch up with the adatom source. It takes long time interval
to form small protrusions with small Fu, so that a longer time
is necessary for the exponentially growing protrusions to catch
up with the adatom source. Thus, � increases logarithmically

 0
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d  
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Source Velocity Vp

Dependence of d tip-source on Vp

FIG. 5. Dependence of distance between the highest tip and the
adatom source, dtip-source, on Vp. The parameters are Vp = 1.7 × 10−2,
ε4 = 5 × 10−2, W0 = 3, and Fu = 10−5. The system width is Lx =
800. The data are averaged over 10 runs.

with decreasing Fu in the case of small Vp [23]. On the other
hand, when Vp is near V c

p , the relation between � and Vp

approaches that between the channel width and the steady
growth velocity in dendritic growth in a channel. Since the
steady tip velocity in dendritic growth in a channel should be
independent of Fu, we expect that � is not sensitive to Fu. In
our simulations, the effect of Fu on � with large Vp is much
weaker than that with small Vp as our expectation.

C. Dependence of number of protrusions on system width

The difference in the mechanism determining � also
affects the dependence of the number of protrusions N on
the system width Lx . We carry out 10 individual runs and
count N when the adatom source reaches to Ly = 1000 or
2000 and the growth looks steady. Figure 7(a) shows N with
Vp = 4 × 10−3, which gives � ≈ 200 and λini ≈ 45 (Fig. 2).
When 100 � Lx � 220, N = 1 in all samples. Since λini is

 120
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ε4=5x10-2,Lx=8x102,d0=5x10-2,W0=3, 

<
Λ

>

Fu

(a) Vp=1.7 x 10-2

(b) Vp=5 x 10-3

2 |ln Fu|+ 185
8 |ln Fu|+ 81

FIG. 6. Effect of the noise strength Fu on the period � with
(a) Vp = 1.7 × 10−2 at t = 1.7 × 105 and (b) Vp = 5 × 10−3 at t =
1.2 × 105. The system width is Lx = 800. The tip position of the
highest protrusion is about (a) 2900 and (b) 680. The data are averaged
over (a) 10 runs and (b) 20 runs.
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FIG. 7. Dependence of number of protrusions on Lx with (a)
Vp = 4 × 10−3 and (b) Vp = 1.7 × 10−2. Fu = 10−5 and Ly = 1000
or 2000. Circled numbers represent the numbers of protrusions.

smaller than Lx , the Mullins–Sekerka instability occurs and the
small protrusions are formed. When the coarsening proceeds
up to the system size, further coarsening is prevented in the
narrow system, but the survived protrusion catches up with
the adatom source, which shows that the coarsening is not
necessary to catch up with the adatom source. When Lx

is larger than 240, two protrusions are formed in samples.
The number of samples with two protrusions increases with
increasing Lx . The expected value of N is one or two
when � < Lx < 2�. However, three protrusions appear when
Lx = 360, which is smaller than 2�. In Fig. 2, the period of
protrusions decreases with increasing Vp in the case of the
small Vp, which means that protrusions with a small � grow
faster than those with a large �. Thus, the acceleration of
protrusion by the coarsening of step pattern is not expected.
If the regular array of the protrusions with a short period is
accidentally formed, this array can catch up with the adatom
source without coarsening. The similar relation between two
protrusions and three protrusions is observed at Lx = 360 and
380. Thus, Fig. 7(a) agrees with our expectation: the smaller
the period is, the faster it grows as long as � is much larger
than W0.

Figure 7(b) shows the dependence of N on Lx in the
case of Vp = 1.7 × 10−2. One protrusion, which survived in
competition with others, is outdistanced by the adatom source
in all samples when Lx � 140. In the case of large Vp, �

increases with increasing Vp in Fig. 2: a protrusions with large
� move faster than those with small �. Thus, the protrusions
outdistanced by the adatom source shows that the acceleration

(a)

y

x

y

x
(b)

FIG. 8. Snapshots of the comblike pattern at (a) t = 5 × 104 and
(b) t = 105. Parameters are ε4 = 5 × 10−2, W0 = 3, Fu = 10−5, Vp =
1.7 × 10−2. The region with φ > 0 is blue (dark) and the line parallel
to the x axis near the tips represents the position of adatom source.

induced by the coarsening of step pattern is necessary for the
protrusions to follow the adatom source.

Figure 8 shows snapshots of the comblike patterns in a
sample with the system width Lx = 240, and Fig. 9 shows the
time evolution of dtip-source. When t = 5 × 104, two protrusions
with the same height survived [Fig. 8(a)], and the distance
dtip-source increases with increasing time [Fig. 9]. Coarsening
occurred and one protrusion remains at t = 105 [Fig. 8(b)].
Since the protrusions interfere with each other via the surface
diffusion field, the increase in captured adatoms per one
protrusion by eliminating a competitor causes the acceleration
of survived protrusions and dtip-source decreases (Fig. 9). In
Fig. 7(b), protrusions not following the adatom source are also
formed in some samples when Lx > �. In all cases, if we
carry out simulations for very long time in a long system,
the coarsening of the pattern will occur in a later stage and
the survived protrusions catch up with the adatom source.
From Figs. 8 and 9, it is reasonable to consider that the step
outdistanced by the adatom source in Fig. 7 is only temporary.
By reducing the number of protrusions it will eventually catch
up with the adatom source.

IV. SUMMARY

In this paper, we carried out the phase field simulations
to study the properties of comblike step patterns in the
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FIG. 9. Time evolution of dtip-source. The parameters are Vp =
1.7 × 10−2, ε4 = 5 × 10−2, W0 = 3, and Fu = 10−5. The maximum
system size is Lx × Ly = 240 × 1800.
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two Vp cases with the same �. Owing to the difference in
the mechanism determining �, the properties of a comblike
pattern are different in the two cases although the period of the
protrusions is the same. In the case of small Vp, the velocity of
the highest protrusion Vt once becomes much faster than that
of the adatom source and decreases toward Vp. The surface
diffusion field is cut with the large gap of u at the adatom
source [Fig. 3(d)]. In Fig. 7(a), no protrusion is outdistanced
by the adatom source in the narrow systems, which represents
that the coarsening is not essential for the step to follow the
adatom source. The steady pattern is a result of fluctuations and
the exponential growth as inferred from Fig. 6 (see Ref. [23]).
� decreases with increasing Vp in Fig. 2, which indicates that
protrusions are intrinsically unstable to splitting since it makes
them grow faster. This feature is expected from the unstable
branch of the analytic solution in the channel growth [26]. In
the present situation with small Vp, however, the protrusions
are stabilized by the slowly moving adatom source since the
supersaturation near the tips is very low [Fig. 3(d)].

In the case of large Vp, the large overshoot of Vt seen in
the case of small Vp does not occur. The gap of u at the

adatom source is much smaller [Fig. 4(d)]. Near V c
p , the

relation between Vp and � approaches the relation between
the steady growth velocity and the channel width in dendritic
growth in a channel. In Fig. 7(b), protrusions cannot follow the
adatom source when the system width is smaller than � since
Vt (=Vp) is an increasing function of �. When the system
size is larger than �, some protrusions are outdistanced by the
adatom source. When the number of protrusions decreases by
the coarsening, however, the survived protrusions accelerate
and eventually catch up with the adatom source. These results
indicate that the coarsening of step pattern is necessary for
the protrusions to catch up with the adatom source in the
case of large Vp. The coarsening proceeds until the period �

becomes large enough for the protrusions to grow at the speed
Vp. Therefore, we expect that � is not sensitive to the noise
strength Fu as found in Fig. 6.
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