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Tricritical Casimir forces and order parameter profiles in wetting films of 3He-4He mixtures
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Tricritical Casimir forces in 3He-4He wetting films are studied, within mean field theory, in terms of a suitable
lattice gas model for binary liquid mixtures with short-ranged surface fields. The proposed model takes into
account the continuous rotational symmetry O(2) of the superfluid degrees of freedom associated with 4He and it
allows, inter alia, for the occurrence of a vapor phase. As a result, the model facilitates the formation of wetting
films, which provides a strengthened theoretical framework to describe available experimental data for tricritical
Casimir forces acting in 3He-4He wetting films.
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I. INTRODUCTION

Concerning fluid wetting films near a critical point [1],
experimental studies have provided convincing evidence for
a long-ranged effective interaction emerging between the
planar solid surface and the parallel fluid interface forming
the film [2–8]. Such fluid-mediated and fluctuation induced
interactions were discussed first by Fisher and de Gennes [9] on
the basis of finite-size scaling [10,11] for critical binary liquid
mixtures. They are known as critical Casimir forces (CCFs)
in analogy with the well-known Casimir forces in quantum
electrodynamics [12,13]. In wetting films of a classical binary
liquid mixture, within its bulk phase diagram the CCF arises
near the critical end point of the liquid mixture, at which the
line of critical points of the liquid-liquid demixing transitions
encounters the liquid-vapor coexistence surface [1,14]. They
originate from the restriction and modification of the critical
fluctuations of the composition of the mixture imposed on
one side by the solid substrate and on the other side by the
emerging liquid-vapor interface. The CCF acts by moving
the liquid-vapor interface, and, together with the omnipresent
background dispersion forces and gravity, it determines the
equilibrium thickness � of the wetting films [5–8]. The depen-
dence of � on temperature T provides an indirect measurement
of CCF [1,14]. This approach also allows one to probe the
universal properties of the CCF encoded in its scaling function
[1]. By varying the undersaturation of the vapor phase one can
tune the film thickness and thus determine the scaling behavior
of the CCF as function of T and � [1,15,16]. The shape of such
a universal scaling function depends on the bulk universality
class of the confined fluid and on the surface universality
classes of the two confining boundaries [17]. The latter are
related to the boundary conditions (BCs) [13,17,18] imposed
by the surfaces on the order parameter (OP) associated with
the underlying second-order phase transition [18]. In general,
the scaling function of CCFs is negative (attractive CCFs) for
symmetric BCs and positive (repulsive CCFs) for nonsymmet-
ric ones. Classical binary liquid mixtures near their demixing
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transition belong to the three-dimensional Ising universality
class. The surfaces confining them belong to the so-called nor-
mal transition [17], which is characterized by a strong effective
surface field acting on the deviation of the concentration from
its critical value serving as the OP. The surface field describes
the preference of the surface for one of the two species forming
the binary liquid mixture. Since the two surfaces typically
exhibit opposite preferences, wetting films of classical binary
liquid mixtures are often characterized by opposing surface
fields [(+,−) BCs], which results in repulsive CCFs [5–8].

In wetting films of 4He [2], the CCF originates from the
confined critical fluctuations associated with the continuous
superfluid phase transition along the so-called λ line. Similarly
as for the classical binary liquid mixtures, here the CCF
emerges near that critical end point where the λ line encounters
the line of first-order liquid-vapor phase transitions of 4He.

Capacitance measurements of the equilibrium thickness of
4He wetting films have provided strong evidence for an attrac-
tive CCF [2,4] in quantitative agreement with the theoretical
predictions [1,16] for the corresponding bulk XY universality
class with symmetric Dirichlet-Dirichlet BCs (O,O), which
correspond to the vanishing of the superfluid OP with O(2)
symmetry both at the surface of the substrate and at the
liquid-vapor interface. The scaling function of this CCF has,
to a certain extent, been determined analytically [1,16,19–22]
and by using Monte Carlo simulations [23–28]. Their results
are in excellent agreement with the experimental data.

Similar measurements [3] for wetting films of 3He-4He
mixtures performed near the tricritical end point, at which
the line of tricritical points encounters the sheet of first-order
liquid-vapor phase transitions (see the phase diagram of
3He-4He mixtures in Fig. 1), revealed a repulsive tricritical
Casimir force (TCF). In turn this points towards nonsymmetric
BCs for the superfluid OP, which is surprising because in
this system there are no surface fields which couple to the
superfluid OP. However, there is a subtle physical mechanism
which can create (+,O) and thus nonsymmetric BCs. As
argued in Ref. [3], the 3He isotope is lighter than 4He and
thus experiences a larger zero-point motion. Hence it occupies
a larger volume than 4He. As a result, 3He atoms are effectively
expelled from the rigid solid substrate and tend to gather
at the soft liquid-vapor interface. This leads to an effective
attraction of 4He atoms to the solid substrate so that a 4He-rich
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FIG. 1. Schematic bulk phase diagram of 3He-4He mixtures
(black curves and surfaces) and two specific surfaces (blue and brown)
in the (T ,Z,P ) space, where P is the pressure and Z = exp(μ3/T )
is the fugacity of 3He, with μ3 as the chemical potential of 3He atoms
[1]. A1 shows the surface of first-order solid-liquid phase transitions,
whereas A2 is the surface of first-order vapor-liquid phase transitions.
The phase transitions between the normal fluid and the superfluid
phase are either of second or of first order, which are shown by the
surfaces A3 and A4, respectively. The surfaces A3 and A1 intersect
along a line ce+-tce+ of critical end points. The surfaces A3 and A4

are separated by a line tce+-tce of tricritical points TC. This line meets
A1 and A2 at the tricritical end points tce+ and tce, respectively. The
surfaces A3 and A2 intersect along a line ce-tce of critical end points.
The surface A2 terminates at a line of critical points, starting from c in
the plane Z = 0. The phase diagram in the plane Z = 0 corresponds
to that of pure 4He. The dashed lines indicate that the corresponding
surface continues. On the blue surface the total density is constant,
which corresponds to the situation studied in Refs. [20,21]. The brown
surface A2,b lies in the vapor phase slightly below the liquid-vapor
coexistence surface A2. Although the thermodynamic fields along
the thermodynamic paths taken in the experiment in Ref. [3] have
been tuned to their values at the liquid-vapor coexistence surface,
due to gravity the actual measurements have been carried out
for thermodynamic states which lie on a surface resembling the
brown one. At the thermodynamic states on the brown surface, in
addition to the stable vapor phase, there are metastable liquid phases.
These metastable liquid phases undergo transitions similar to the
liquid-liquid phase transitions tied to A2. Therefore, for each point
tce, ce, and c, there is a metastable counterpart tcm, cem, and cm,
respectively, on the brown surface.

layer forms near the substrate-liquid interface, which due to
the increased 4He concentration may become superfluid at
temperatures already above the line of onset of superfluidity
in the bulk [29]. Thus the two interfaces impose a nontrivial
concentration profile across the film, which in turn couples to
the superfluid OP. Explicit calculations [20,21] within the vec-
torized Blume-Emery-Griffiths (VBEG) model of helium mix-
tures [30–32] have demonstrated that the concentration profile
indeed induces indirectly nonsymmetric BCs for the superfluid
OP. A semiquantitative agreement with the experimental data
given in Ref. [3] has been found for the TCF, computed by
assuming a symmetry-breaking (+) BC at the substrate-liquid

FIG. 2. Liquid-liquid bulk phase transitions at coexistence with
the vapor phase for 3He-4He mixtures and the thermodynamic paths
taken in the experiments reported in Ref. [3]. The black curves denote
the first-order phase transitions between the normal fluid phase and
the superfluid phase, which terminate at the tricritical end point
tce. The red curve shows the second-order λ transitions between
the normal fluid phase and the superfluid phase. The dashed dotted
lines indicate three distinct thermodynamic paths corresponding to
three fixed values of the concentration C3 = X3/(X3 + X4) [see, cf.,
Eq. (17)] of the 3He atoms as done experimentally. X3 and X4

are the bulk number densities of 3He and 4He, respectively. Upon
decreasing the temperature, the bulk liquid undergoes a first-order
phase separation at some demixing temperature Td(C3). Upon further
decrease of the temperature the thermodynamic paths follow that
branch of the coexistence curve, which they hit (see the the brown
and green arrows).

interface and a Dirichlet (O) BC at the liquid-vapor interface.
However, the VBEG model employed in Refs. [20,21] does not
incorporate the vapor phase and hence cannot exhibit wetting
films. In these studies the confinement of the liquid between
the substrate and the liquid-vapor interface has been modeled
by a slab geometry with the boundaries introduced by fiat,
mimicking the actual self-consistent formation of wetting films
and thus differing from the actual experimental setup. This
difference is borne out in Fig. 1. Therein the surface of constant
total density D(P,T ,Z) = const is shown in blue. The analyses
in Refs. [20,21] have been carried out within such a surface,
whereas the experiment in Ref. [3] has been carried out along
the surface of liquid-vapor coexistence. Note that, although the
thermodynamic states, for which the measurements have been
performed, correspond to the liquid-vapor coexistence surface
(surface A2 in Fig. 1), due to gravity the actual thermodynamic
paths lie on a surface, which is located slightly in the vapor
phase (brown surface in Fig. 1). Figures 2 and 3 show these
thermodynamic paths.

In order to pave the way for providing a more realistic
description of the experimental setup reported in Ref. [3],
recently we have extended the VBEG model such that the
vapor phase is incorporated into the phase diagram [33]. We
have found that allowing for the corresponding vacancies in
the lattice model leads to a rich phase behavior in the bulk
with complex phase diagrams of various topologies. We were
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FIG. 3. Projection of the brown surface A2,b in Fig. 1 (which
lies in the vapor phase) onto the (P,T ) plane. The solid and dashed
brown lines are the projections of the corresponding ones for A2,b. The
dashed-dotted lines are the projections of the thermodynamic paths
shown in Fig. 2 and which lie on the brown surface. Upon lowering
T the brown dashed-dotted line first crosses the full line Tλ(C3) in
Fig. 2, continues through the superfluid phase and then encounters
the two-phase region. This sketch is based on our numerical results
(see Sec. III B) in the vicinity of tcm.

able to determine that range of interaction parameters for
which the bulk phase diagram resembles the one observed
experimentally for 3He-4He mixtures, i.e., for which first-order
demixing ends via a tricritical point at the λ line of second-
order superfluid transitions [33]. In the present study, we use
this model in order to describe wetting of a solid substrate
by 3He-4He mixtures. We analyze the behavior of the wetting
films along the thermodynamic paths corresponding to the
ones in the experiment [3]. This will allow us to compare the
variation of the wetting film thickness with the experimental
data shown in Fig. 14 of Ref. [3] (see Sec. III), which is not
possible within the approach used in Refs. [20,21]. Finally, we
aim at extracting the TCF contribution to the effective force
between the solid substrate and the emerging liquid-vapor
interface. We shall compare its scaling function with that
extracted from the experimental data in Ref. [3] and the
one calculated using the simple slab geometry employed in
Refs. [20,21]. We study our model in spatial dimension d = 3
within mean field theory, which, up to logarithmic corrections,
captures the universal behavior of the TCF near the tricritical
point of 4He -4He mixtures. However, this approximation is
insufficient near the critical points of the second-order λ

transition, because for the tricritical phenomena the upper
critical dimension is d∗ = 3, whereas for the critical ones it is
d∗ = 4. The critical phenomena near the λ transition of 4He
have been studied using renormalization group theory [34].

Our paper is organized as follows. In Sec. II we introduce
the model, and in Sec. II A we carry out a mean field
approximation to it. In Sec. II B we discuss a procedure for
finding that range of values of interaction constants of the
model for which it exhibits a phase diagram similar to that of
actual 3He-4He mixtures. We continue in Sec. III with studying
the wetting films for short-ranged surface fields. Next, we
calculate TCFs and their scaling functions and compare our
results with those for the slab geometry by applying a suitable
slab approximation to the present case. In Sec. IV we conclude
with a summary. Appendix A contains important technical
details.

II. THE MODEL

In order to model 3He-4He mixtures in the presence
of a solid, two-dimensional surface, we consider a three-
dimensional (d = 3) simple cubic lattice formed by L layers
of two-dimensional N×N lattices with lattice spacing a. In
the following all lengths are measured in units of a, which
is equivalent to consider these lengths to be dimensionless
together with setting a = 1. In each layer, all N := N2 lattice
sites are identical. The different lattice sites are label by {i | i =
1, . . . ,LN }. Alternatively, one can use the index l, labeling
the layer number, and the index vl , referring to lattice sites
within the lth layer. The lattice sites {i | i = 1, . . . ,LN } =
{(l,vl) | l = 0, . . . ,L − 1; vl = 1, . . . ,N } are occupied by ei-
ther 3He or 4He atoms, or they are unoccupied. We consider
nearest-neighbor interactions with the Hamiltonian

H = −J44N44 − J33N33 − J34N34

− [μ4 + f4(l)]N4 − [μ3 + f3(l)]N3 − JsÑ44, (1)

where Nmn, with m,n ∈ {3,4}, denotes the number of pairs
of nearest neighbors of species mHe and nHe on the lattice
sites. Nm denotes the number of mHe atoms and −JsÑ44 is the
sum of the interaction energies between the superfluid degrees
of freedom �i and �j associated with the nearest-neighbor
pairs 〈i,j 〉 of 4He with Js as the corresponding interaction
strength [see, cf., Eq. (4)]. The effective interactions between
pairs of helium isotopes are represented by J33, J44, and J34.
The three effective pair potentials between the two types of
isotopes are not identical due to their distinct statistics and
the slight differences in their electronic states. The surface
fields, which represent the effective interaction between the
surface and the 4He and 3He atoms, are denoted as f4(l) and
f3(l), respectively. In general these surface fields depend on
the distance l from the surface, which is located at l = 0,
and vanish for large l. The chemical potential of species mHe
is denoted as μm. [The Hamiltonian in Eq. (1) with Js = 0
describes a classical binary liquid mixture of species m and n.]

In order to proceed, we associate an occupation variable si

with each lattice site {i}, which can take the three values +1,
−1, or 0, where +1 denotes that the lattice site is occupied by
4He, −1 denotes that the lattice site is occupied by 3He, and
0 denotes that the lattice site is unoccupied.

Nm and Nmn can be expressed in terms of {si} as follows:

N4 = 1

2

∑
i

si(si + 1) ≡
∑

i

pi ,

N3 = 1

2

∑
i

si(si − 1),

N44 = 1

4

∑
〈i,j〉

[si(si + 1)sj (sj + 1)] ≡
∑
〈i,j〉

pipj ,

N33 = 1

4

∑
〈i,j〉

[si(si − 1)sj (sj − 1)],

N34 = 1

4

∑
〈i,j〉

[si(si + 1)sj (sj − 1) + si(si − 1)sj (sj + 1)],

(2)

032802-3



N. FARAHMAND BAFI, A. MACIOŁEK, AND S. DIETRICH PHYSICAL REVIEW E 95, 032802 (2017)

where
∑

〈i,j〉 denotes the sum over nearest neighbors. Using
the above definitions one obtains

H = −K
∑
〈i,j〉

sisj − J
∑
〈i,j〉

qiqj − C
∑
〈i,j〉

(siqj + qisj )

− μ−
∑

i

si − μ+
∑

i

qi −
∑

i

f−(l)si −
∑

i

f+(l)qi

− Js

∑
〈i,j〉

pipj cos(�i − �j ), (3)

where ∑
〈i,j〉

pipj cos(�i − �j )

= Ñ44 =
∑
〈i,j〉

pipj

(
cos �i

sin �i

)
·
(

cos �j

sin �j

)
(4)

and

qi = s2
i ,

pi = 1
2 si(si + 1),

K = 1
4 (J44 + J33 − 2J34),

J = 1
4 (J44 + J33 + 2J34),

C = 1
4 (J44 − J33),

μ− = 1
2 (μ4 − μ3),

μ+ = 1
2 (μ4 + μ3),

f+(l) = 1
2 [f4(l) + f3(l)],

f−(l) = 1
2 [f4(l) − f3(l)]. (5)

�i ∈ [0,2π ] represents the superfluid degree of freedom at the
lattice site i, provided it is occupied by 4He.

A. Mean field approximation

In this section we carry out a mean field approximation
for the present model (for details of the calculations see
Appendix A). The symmetry of the problem implies that all
statistical quantities exhibit the same mean values for all lattice
sites within a layer, in particular the same mean field generated
by their neighborhood. Therefore all quantities depend only on
the distance l of a layer from the surface. (Note that l is an
integer which not only represents the position of the layer but
also marks the corresponding layer.) We define the following
dimensionless OPs:

Xl := 〈s(l,vl )〉,
Dl := 〈q(l,vl )〉, (6)

M2
l := 〈p(l,vl ) sin �(l,vl )〉2 + 〈p(l,vl ) cos �(l,vl )〉2,

which are coupled by the following self-consistent equations:

Xl = −Wl + RlI0(βJsM̃l)

1 + Wl + RlI0(βJsM̃l)
, (7)

Dl = Wl + RlI0(βJsM̃l)

1 + Wl + RlI0(βJsM̃l)
, (8)

and

Ml = RlI1(βJsM̃l)

1 + Wl + RlI0(βJsM̃l)
, (9)

where β = 1/T with T as temperature times kB, I0(βJsM̃l)
and I1(βJsM̃l) are modified Bessel functions, and

M̃l = (1 − δl,0)Ml−1 + 4Ml + Ml+1. (10)

The dimensionless functions Wl and Rl depend on the
following set of parameters:

(Xl,Dl ; μ−,μ+,f+(l),f−(l),T ). They are given by

Wl(Xl,Dl ; μ−,μ+,f+(l),f−(l),T )

= exp(β{(J − C)[Dl−1(1 − δl,0) + 4Dl + Dl+1]

+ (C − K)[Xl−1(1 − δl,0) + 4Xl + Xl+1]

+ μ+ + f+(l) − μ− − f−(l)}) (11)

and

Rl(Xl,Dl ; μ−,μ+,f+(l),f−(l),T )

= exp(β{(J + C)[Dl−1(1 − δl,0) + 4Dl + Dl+1]

+ (C + K)[Xl−1(1 − δl,0) + 4Xl + Xl+1]

+ μ+ + f+(l) + μ− + f−(l)}). (12)

Accordingly, the equilibrium free energy per number of
lattice sites in a single layer is given by

φ/N =
L−1∑
l=0

(
K

2
Xl[4Xl + Xl+1 + Xl−1(1 − δl,0)]

+ J

2
Dl[4Dl + Dl+1 + Dl−1(1 − δl,0)]

+ C

2
Xl[4Dl + Dl+1 + Dl−1(1 − δl,0)]

+ C

2
Dl[4Xl + Xl+1 + Xl−1(1 − δl,0)]

+ Js

2
Ml[4Ml + Ml+1 + Ml−1(1 − δl,0)]

+ (1/β) ln(1 − Dl)

)
. (13)

Within the grand-canonical ensemble the pressure is P =
−φ/V , where here the volume is V = LNa, with a = 1.
The functional form of the expressions for the chemical
potentials are obtained by solving Eqs. (7) and (8) for them (see
Appendix A):

μ+ = T

2
ln

(
D2

l − X2
l

) − T ln 2 − T ln(1 − Dl)

− T

2
ln[I0(βJsM̃l)] − J [Dl−1(1 − δl,0) + 4Dl + Dl+1]

− C[Xl−1(1 − δl,0) + 4Xl + Xl+1] − f+(l) (14)

and

μ− = T

2
ln

Dl + Xl

Dl − Xl

− T

2
ln[I0(βJsM̃l)]

− C[Dl−1(1 − δl,0) + 4Dl + Dl+1]

− K[Xl−1(1 − δl,0) + 4Xl + Xl+1] − f−(l). (15)
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Finally, one can express the magnetization Ml in terms of Xl

and Dl by using Eqs. (7)–(9):

Xl + Dl

2
= MlI0(βJsM̃l)

I1(βJsM̃l)
. (16)

According to the definition of the OPs in Eq. (6) and by
using Eqs. (2) and (A7) one can express the number densities
of species 4He and 3He in the lth layer as

X4,l = 〈N4,l〉
N = 〈pl〉 = 1

2
〈sl(sl + 1)〉 = Dl + Xl

2
,

X3,l = 〈N3,l〉
N = 1

2
〈sl(sl − 1)〉 = Dl − Xl

2
, (17)

so that Dl = X4,l + X3,l = 〈s2
l 〉 and Xl = X4,l − X3,l = 〈sl〉,

where sl ≡ s(l,vl ) is the occupation variable of a single lattice
site within the lth layer; its thermal average is independent
of vl (see Appendix A). Accordingly, the concentration of the
two species in the lth layer is given by C4,l ≡ X4,l

X4,l+X3,l
= Dl+Xl

2Dl

and C3,l ≡ X3,l

X4,l+X3,l
= Dl−Xl

2Dl
.

In order to study wetting films at given values of
(T ,μ+,μ−), one has to solve the set of equations given by
Eqs. (14)–(16) for the set of OPs {(Xl,Dl,Ml) | l = 0, . . . ,

L − 1}. Since Eqs. (7)–(9) cannot be solved analytically, we
did so numerically by using the GSL library [35]. Since for
the last layer l = L − 1 Eqs. (14) to (16) request OP values
at l = L, one has to assign values to (XL,DL,ML). If the
system size L is sufficiently large one expects that far away
from the surface the OP profiles attain their bulk values. This
implies (XL,DL,ML) = (Xbulk,Dbulk,Mbulk). The system size
L can be considered to be large enough if the OP profiles
(Xl,Dl,Ml) remain de facto unchanged upon increasing L

(which mimics a semi-infinite system). The minimization
procedure, which leads to Eqs. (14)–(16), does not involve the
second derivative of φ with respect to the trial density matrix ρl

(see Appendix A). Therefore, depending on the initial profile
{(Xl,Dl,Ml) | l = 0, . . . ,L − 1}, with which one starts the
iteration algorithm, the solution of Eqs. (14)–(16) might corre-
spond to a local minimum, a local maximum, or a saddle point.

B. Bulk phase diagram

Since the realization of the experimental paths in Ref. [3]
requires the knowledge of the bulk phase diagram, first one
has to find the set of coupling constants, for which the
model exhibits a phase diagram similar to that of actual
3He-4He mixtures. Taking the OPs to be independent of
l and omitting the surface fields, i.e., f+(l) = f−(l) = 0,
Eqs. (7)–(9), and Eqs. (14)–(16), together with the expression
for the equilibrium free energy given by Eq. (13), render the
bulk phase diagram of the system as studied in Ref. [33]. It has
been demonstrated in Ref. [33] (see also Refs. [36] and [37])
that various coupling constants lead to diverse topologies of the
phase diagram for the bulk liquid-liquid demixing transitions.
The topologies discussed in Ref. [33] range from the phase
diagram of a classical binary mixture [Figs. 4(a) and 5] to a
phase diagram which to a large extent resembles the actual one
of 3He-4He mixtures [Fig. 4(b)]. In Sec. III A we consider a
classical binary liquid mixture with the bulk phase diagram as
in Fig. 4(a). However, when studying wetting films of 3He-4He

FIG. 4. Liquid-liquid demixing phase transitions in the bulk
at coexistence with the vapor phase (the vapor phase is not
shown here) in the (X3, T ) plane, with X3 = 〈N3〉/(LN ) = D − X

for (a) (C/K,J/K,Js/K) = (1,5.714,0), (b) (C/K,J/K,Js/K) =
(1,5.714,3.674), and (c) (C/K,J/K,Js/K) = (1,9.107,3.701). The
inset of panel (b) shows the same phase diagram in the (T ,C3) plane,
where C3 = X3/D denotes the concentration of 3He. The phase
diagrams in (a) and (b) have been discussed in detail in Ref. [33].
(Note that in Ref. [33] the coupling constants are rescaled by a factor
of 6 and the total number of lattice sites are denoted as N , whereas
here the total number of lattice sites is given by LN .) In (b) and (c) the
black curves denote the binodals of the first-order phase transitions
between the normal fluid (N) and the superfluid (S). The lines of
first-order phase transitions in (a) terminate at the critical end point
ce with Tce/K = 6.286, whereas in (b) and (c) the lines of first-order
phase transitions terminate at a tricritical end point tce. In (b) and
(c) the red curve denotes the λ line of second-order phase transitions
between the normal fluid and the superfluid. The temperature of the
tricritical end point in panels (b) and (c) are Ttce/K = 8.782 and
Ttce/K = 8.47974, respectively. In (b) the thin vertical line indicates
X3 = Xtce

3 , whereas in the inset of this figure the thin vertical line
indicates C3 = C tce

3 . The short dotted strokes indicate the character
(S, N, rich in species 4, or rich in species 3) of the corresponding
binodal. (See also Appendix B.)
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FIG. 5. Fluid parts of the phase diagram of a classical binary
liquid mixture in the (T ,P,μ4 − μ3) space (schematic diagram). B1

is the surface of first-order liquid-vapor phase transitions, whereas
B2 is the surface of first-order liquid-liquid demixing transitions,
between phases rich in either species 3 or 4. The surface B1 terminates
at a line L1 of critical points. L2 denotes the line of critical points
of the liquid-liquid demixing transitions, which ends at the surface
B1 at the critical end point ce. The surfaces B1 and B2 intersect
along a line L3 of triple points. The dashed curves indicate that the
corresponding surfaces continue. The demixing two-phase region in
terms of temperature and the number density X3 of species 3 for the
liquid phases coexisting along L3 are shown in Fig. 4(a); the vapor
phase is not shown there.

mixtures in Sec. III B, instead of the phase diagram in Fig. 4(b)
we consider the one in Fig. 4(c). The reason for this choice is
discussed in Appendix B.

III. LAYERING AND WETTING FOR SHORT-RANGED
SURFACE FIELDS

In this section we study the layering and wetting behavior
[38] of the present model with short-ranged surface fields
f+(l) = f̃+δl,0 and f−(l) = f̃−δl,0. The field f+(l) describes
the enhancement of the fluid density near the wall, whereas
f−(l) expresses the preference of the wall for 4He over 3He.

Within the present model μ+ is the field conjugate to the
number density order parameter Dl . By changing μ+ from
its value μco

+ (P,T ) at liquid-vapor coexistence and at a given
temperature T and pressure P , one can drive the bulk system
either towards the liquid phase (
μ+ = μ+ − μco

+ > 0) or
towards the vapor phase (
μ+ < 0). In order to realize the ex-
perimental conditions we choose 
μ+ < 0 such that the bulk
system remains thermodynamically in the vapor phase. With
this constraint we determine the solution of Eqs. (14)–(16) for
set of the OPs {(Xl,Dl,Ml) | l = 0, . . . ,L − 1}. We find that
the occurrence of wetting films as well as their thicknesses
depend on the strength of the surface fields f̃+ and f̃−. Since
along the experimental paths taken in Ref. [3] the system is
in the complete wetting regime, we choose such values of
the surface fields for which complete wetting does occur. We
refrain from exploring the full variety of scenarios for wetting
transitions which can occur within the present model.

Based on the number density profile Dl one can define the
film thickness as [38]

y(μ−,μ+,f̃+,f̃−,T ) = �

Dm − Db
, (18)

where Db is the bulk density of the vapor phase,

� =
L−1∑
l=0

(Dl − Db) (19)

is the excess adsorption, and Dm is the density of the metastable
liquid phase at the thermodynamic state corresponding
to the stable vapor phase. Alternatively, one can define y

as the position of the inflection point of the density profile Dl at
the emerging liquid-vapor interface. In Figs. 8, 9, and 15–17 y

is calculated via Eq. (18), whereas in Fig. 11 as an example we
have calculated y via the inflection point of the density profile.
The profile Xl = X4,l − X3,l indicates, whether the various
layers are occupied mostly by species of type 4 (positive or
large values of Xl) or by species of type 3 (negative or small
values of Xl). A nonzero magnetization profile signals that
the wetting film is superfluid. In the following subsections we
present our results for Js = 0 (Sec. III A), which corresponds
to a classical binary mixture, and Js �= 0 (Sec. III B), which
corresponds to a 3He-4He mixture. The former case shows
how within the present model the strength of the surface fields
influences the formation and the thickness of the wetting
films, whereas the latter case focuses on describing the
present, experimentally relevant situation.

A. Layering and wetting for Js = 0

In this subsection we consider a classical binary liquid
mixture of species 3 and 4, described by the Hamiltonian given
in Eq. (3) with the coupling constants (C/K,J/K,Js/K) =
(1,5.714,0). The bulk phase diagram of this system in the
(T ,X3) plane is shown in Fig. 4(a). All figures in this
subsection (i.e., Figs. 6–10) share the coupling constants
(C/K,J/K,Js/K) = (1,5.714,0). In Figs. 6(a) and 7–10 the
system size is L = 40, whereas in Fig. 6(b) it is L = 80. We
study how the strengths of the surface fields influence the
formation of the wetting films for thermodynamic states with
T > Tce and 
μ+ = μ+ − μco

+ < 0, i.e., corresponding to the
vapor being the bulk phase and the wetting phase being the
mixed supercritical liquid phase.

We start our discussion by taking f̃− = 0 and varying f̃+.
We find that weak surface fields f̃+ cannot stabilize high-
density layers near the surface, so that the model does not
exhibit wetting by the mixed-liquid phase. Instead, for weak
f̃+ the wall prefers the vapor phase so that upon approaching
the liquid-vapor coexistence from the liquid side (i.e., 
μ+ →
0+) a vapor film forms close to the wall corresponding to drying
of the interface between the wall and the mixed liquid.

Covering the case of weak surface fields, Fig. 6(a) shows
the number density profiles for (f̃+,f̃−)/K = (0.857,0) at

μ+/K = (μ+ − μco

+ )/K = −8.57×10−4, i.e., on the vapor
side for several temperatures above Tce and at fixed X3 = Xce

3 .
Figure 6(b) shows the number density profiles for the same
bulk system with the same surface fields but for 
μ+/K =
(μ+ − μco

+ )/K = +8.57×10−4 so that the stable bulk phase is
liquid. Since the wall prefers the vapor phase, upon increasing
T a drying film forms at the surface of the solid substrate.

For larger values of f̃+ (see Fig. 7), i.e., for (f̃+,f̃−)/K =
(5.143,0), at lower temperatures T we find monotonically
decaying density profiles without shoulder formation, whereas
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FIG. 6. Number density profiles for weak surface fields (f̃+,f̃−)/
K = (0.857,0) and for several values of temperature T (same color
code in all panels) above Tce/K = 6.286 and at X3 = Xce

3 = 0.431
in the liquid phase, with (a) 
μ+/K = −8.57×10−4 and (b)

μ+/K = +8.57×10−4. In (a) the bulk phase is the vapor
phase, whereas in (b) it is the coexisting liquid phase with
slight offsets. Panel (c) shows the liquid-vapor coexistence line
(red curve) in the (P,T ) plane, emerging under the constraint
X3 = Xce

3 in the liquid phase. The colored dots in panel (c)
indicate the thermodynamic states with the same temperature
values as in panels (a) and (b), which, unlike in these two panels,
lie at liquid-vapor coexistence. The star denotes the liquid-vapor
critical point (Pc/K,Tc/K) = (1.422,7.230). The thermodynamic
paths in panels (a) and (b) follow the red curve in panel (c)
but with the corresponding offset values 
μ+. In panel (a) the
corresponding thermodynamic states are: (T/K,D = X4 + X3,X =
X4 − X3,M) = {(6.286,0.181,−0.121,0),(6.793,0.229,−0.137,0),
(7.388,0.304,−0.155,0),(7.756,0.391,−0.174,0)}. The vapor bulk
phase in (a) is preferred by the wall. Accordingly, there are no
liquidlike wetting films. In panel (a) near Tc critical adsorption (see
Fig. 8 in Ref. [39]) of the preferred vapor phase occurs, which is
indicated by the increased depth and range of the minimum in Dl . In
panel (b), due to 
μ+ > 0 the stable bulk phase is the liquid. Since
the vapor phase is preferred by the wall drying films form there
upon increasing the temperature. The corresponding thermodynamic
states are (T/K,D,X,M) = {(6.286,0.913,0.050,0), (6.793,0.878,

0.015,0),(7.388,0.815, −0.048,0), (7.756,0.722, −0.141,0)}. The
value of μ− can be obtained from Eq. (15) using the values of
(T ,D,X,M) for the corresponding thermodynamic states as provided
above. Note that the nonmonotonic behavior of the red curve in (c)
is caused by the constraint X3 = Xce

3 . For (c), in order to identify the
vapor and liquid phases, in addition to T and P also the value of the
chemical potential μ− is required, which is not shown.

at higher temperatures the density profiles tend to exhibit
plateaus characteristic of wetting [see Fig. 7(a)]. Note that
in Figs. 7(a) and 7(b) the number density in the first layer as
part of the wetting film decreases upon increasing T . This is
in accordance with the fact that the density of the bulk liquid
phase as the wetting phase decreases upon heating, whereas
the bulk vapor density increases. The profiles Xl = X4,l − X3,l

shown in red and blue in Fig. 7(b) have local minima at l = 5
and l = 9, respectively. These minima occur approximately
at the position of the emerging liquid-vapor interface [see the
corresponding curves in panel (a)] and indicate that species of
type 3 preferentially accumulate at the liquid-vapor interface.

FIG. 7. Order parameter profiles Dl and Xl at X3 = Xce
3 = 0.431

and for 
μ+/K = −8.57 × 10−4 for several temperatures and for
two sets of surfaces fields. In panels (a) and (b) the surface fields
are (f̃+,f̃−)/K = (5.143,0), whereas panels (c) and (d) correspond
to (f̃+,f̃−)/K = (5.143,0.857). The bulk phase is the vapor phase
and the wall prefers the liquid phase, giving rise to wetting films.
The positive value of f̃− not only results in the increase of the
number density X4,l of species 4 and hence also of Xl in the
first layer [see panel (d)], but also increases the total number
density Dl in the first layer [see panel (c)]. The stable thermody-
namic states of the vapor phase in the bulk are (T/K,D,X,M) =
{(6.286,0.180,−0.121,0), (7.388,0.304,−0.155,0), (7.649,0.355,

−0.165,0),(7.756,0.391,−0.174,0)}. All three bulk states lie in the
vapor phase close to liquid-vapor coexistence on the left side of the red
line shown Fig. 6(c). The value of μ− can be obtained from Eq. (15)
using the values of (T ,D,X,M) for the corresponding thermodynamic
states as provided above.

Figures 7(c) and 7(d) show the OP profiles for (f̃+,f̃−)/K =
(5.143,0.857) and 
μ+/K = −8.57 × 10−4 at several values
of the temperature. One can see that for positive values of f̃−
both Dl and Xl are enhanced in the first layer. This corresponds
to the preferential adsorption of species of type 4 at the wall.

In order to see how the wetting films grow upon approaching
the liquid-vapor coexistence surface, we fix T and vary

μ+. Figure 8 shows the film thickness y/a versus 
μ+
for (f̃+,f̃−)/K = (8.571,0) and for several temperatures; y

is calculated according to Eq. (18). For low temperatures,
upon approaching the liquid-vapor coexistence surface the
film thickness increases smoothly and reaches a plateau. This
corresponds to incomplete wetting. The height of this plateau
increases gradually upon increasing T towards 7.097 <

Tw/K < 7.123, which corresponds to a critical wetting tran-
sition between incomplete and complete wetting [38]. The
corresponding line of wetting transitions lies on the surface
of the liquid-vapor transitions (B1 in Fig. 5) between the
critical end point ce and and the line of critical points of
the liquid-vapor transitions (L1 in Fig. 5). Note that Fig. 8
provides a semilogarithmic plot so that the linear growth of the
film thickness on this scale confirms the theoretically expected
logarithmic growth of the film thickness y ∼ log(|
μ+|/K)
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FIG. 8. Film thickness y/a versus |
μ+|/K for (f̃+,f̃−)/K =
(8.571,0) at X3 = Xce

3 and for several temperatures. Upon ap-
proaching the liquid-vapor coexistence surface at low temperatures,
the film thickness increases smoothly and reaches a plateau. The
height of this plateau increases gradually by increasing T , indicating
7.097 < Tw/K < 7.123. The jumps are due to first-order layering
transitions induced by the lattice model. Above the roughening
transition they are an artifact of mean field theory [38]. For T > Tw

one has y(
μ+ → 0−) ∼ κln 1
|
μ+|/K with a slight increase of κ(T )

as a function of T .

for short-ranged surface fields [38]. At higher temperatures
T the film thickness does not increase smoothly anymore
but exhibits jumps due to layering transition. Figure 9 shows
the location of these layering transitions in the (μ+,T ) plane

FIG. 9. Layering transitions in the (μ+,T ) plane for
(f̃+,f̃−)/K = (8.571,0). Each line of first-order layering transition
ends at a critical point. The color code does not carry a specific
meaning. The lines are colored differently so that it is easier to
distinguish them.

FIG. 10. Equilibrium film thickness y/a as a function of tem-
perature for 
μ+/K = −8.57×10−8 and X3 = Xce

3 . Since 
μ+ is
nonzero, y(T ) does not diverge but attains a maximum upon passing
by Tw . This maximum diverges for 
μ+ → 0. The jumps are bunched
together around T/K 
 7.125 and spread-out otherwise.

for (f̃+,f̃−)/K = (8.571,0). If a thermodynamic path passes
through any of these lines, the film thickness undergoes a small
jump of the size l 
 1. Each line of the layering transitions ends
at a critical point. Along thermodynamic paths, which pass by
these critical points the jumps of the film thickness become
rounded as for the green and red curves in Fig. 8. The color
code in Fig. 9 does not carry a particular meaning; the lines are
colored differently so that it is easier to distinguish them. The
closer the system is to the liquid-vapor coexistence surface,
i.e., the smaller |
μ+| is, the closer are the lines of layering
transitions. Figure 10 shows how the increasing density of the
layering transition lines affects the film thickness while varying
the temperature at fixed values of 
μ+/K = −8.57×10−8

and X3 = Xce
3 = 0.431.

B. Layering and wetting for Js �= 0

In order to describe wetting films of 3He-4He mix-
tures, we focus on systems exhibiting phase diagrams with
nonzero values of Js as in Fig. 4(c), and we choose the
surface fields (f̃+,f̃−)/K = (10.714,16.071). All figures in
this subsection (i.e., Figs. 11–17) share the coupling constants
(C/K,J/K,Js/K) = (1,9.10714,3.70107), the surface fields
(f̃+,f̃−)/K = (10.714,16.071), and the system size L = 60.
The growth of wetting films upon approaching the liquid-
vapor coexistence surface is illustrated in Fig. 11. For all
temperatures considered, upon approaching liquid-vapor co-
existence the wetting films become thicker: y(
μ+ → 0−) ∼
κln 1

|
μ+|/K with a significant temperature dependence of the
amplitude κ . This is different from the situation in Fig. 8 with
Js = 0, where only for sufficiently high temperatures (i.e., T >

Tw) complete wetting occurs. This means that in Fig. 11Tw is
below the considered temperature interval. Interestingly, in
Fig. 11 at the reduced temperature (T − Ttce)/Ttce ≈ −0.016
the film thickness exhibits the most rapid increase upon
approaching the liquid-vapor coexistence surface (see the
red curve), whereas for higher and lower temperatures the
growth of the film thickness is reduced, i.e., the amplitude
κ(T ) introduced above has a maximum at (T − Ttce)/Ttce ≈
−0.016. This is different from what one observes in Fig. 8,
where the thickness of the wetting film is, via κ(T ), a
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FIG. 11. Equilibrium film thickness y/a versus |
μ+|/K for
(f̃+,f̃−)/K = (10.714,16.071) and for four temperatures. Unlike the
situation in Fig. 8 with Js = 0, the thickness of the wetting films as a
function of |
μ+| is a nonmonotonic function of T . The most rapid
increase occurs at (T − Ttce)/Ttce ≈ −0.016, whereas for lower and
higher temperatures the growth of the wetting film as a function of

μ+ is slower. Upon approaching the liquid-vapor coexistence sur-
face, the 4He-rich layers within the wetting films become superfluid.
At each temperature, the continuous surface transition to superfluidity
occurs for values of the offset |
μ+| smaller than the one indicated
by the corresponding tick on the abscissa with the same color. For
(T − Ttce)/Ttce = −0.016 and (T − Ttce)/Ttce = −0.042, the number
density of 3He on the superfluid branch of the binodal [Fig. 4(c)] is
X3 = 0.201 and X3 = 0.188, respectively, whereas for T � Ttce the
number density of 3He is fixed at X3 = Xtce

3 = 0.20845.

monotonically increasing function of T . Note that in Fig. 11 for
the curves with T � Ttce the number density of 3He is fixed
at X3 = Xtce

3 = 0.20845. However, for T < Ttce the system
phase separates and the number density of 3He changes.
Accordingly, in Fig. 11 for (T − Ttce)/Ttce = −0.016 and
(T − Ttce)/Ttce = −0.042, the number density of 3He on the
superfluid branch of the binodal [Fig. 4(c)] is X3 = 0.201
and X3 = 0.188, respectively. The OP profiles for three
temperatures at 
μ+/K = −1.07×10−4 are shown in Fig. 12.
Due to the large value of f̃−, the number density X4,l of 4He
is enhanced near the wall, and hence Xl = X4,l − X3,l is large
there. If the bulk liquid is in the normal fluid phase but close
to either the λ line for T > Ttce, or to the normal branch of
the binodal [Fig. 4(c)] for T < Ttce, this enhancement induces
symmetry breaking of the superfluid OP near the wall. At
the liquid-vapor coexistence surface, this so-called surface
transition occurs at temperatures Ts(X3), which depend on
the bulk number density X3 of 3He atoms or, equivalently,
on the bulk concentration C3 of 3He as Ts(C3) (see Fig. 13).
With the bulk being in the vapor phase, the continuous surface
transition occurs within the wetting film for offsets 
μ+ from
the liquid-vapor coexistence surface smaller than a certain
temperature dependent value, which is marked in Fig. 11 by the
tick along the abscissa colored accordingly. Upon crossing the
continuous surface transition one observes a nonzero profile
Ml in the wetting film [see Figs. 12(a) and 12(b)]. For T < Ttce,
for which the bulk liquid phase separates into a superfluid
and a normal fluid phase, the OP profiles within the wetting
films exhibit two plateaus, one corresponding to the superfluid
phase [note the left plateau of Ml in Fig. 12(c)] and the

FIG. 12. Order parameter profiles Dl , Xl , and Ml for (f̃+,f̃−)/
K = (10.714,16.071) at 
μ+/K = −1.07×10−4 for the bulk
states (a) T = Ttce, X3 = Xtce

3 , (b) 
T/K = (T − Ttce)/K = 0.18,
X3 = Xtce

3 , and (c) 
T/K = (T − Ttce)/K = −0.964, X3 = 0.1461
(which is on the superfluid branch of the binodal [Fig. 4(c)]. For these
bulk states, in panels (a)–(c) the stable vapor phase (i.e., l → ∞)
exhibits the order parameters (D = X4 + X3,X = X4 − X3) =
{(0.0523,−0.0206),(0.0559,−0.0204),(0.0422,−0.0255)}, respec-
tively (M = 0 for the vapor phase). The bulk parameters of the system
are those for Fig. 4(c). The keys for the OP profiles are the same for
all panels. The value of μ− can be obtained from Eq. (15) using the
values of (T ,D,X,M) for the corresponding thermodynamic states as
provided above.

other one (on the right side) corresponding to the normal fluid
phase. The minimum of the profile Xl occurs at the emerging
liquid-vapor interface at around (a) l = 31, (b) l = 9, and
(c) l = 17. This demonstrates the effective attraction of 3He
towards the emerging liquid-vapor interface, which suppresses
the superfluid OP at the liquid-vapor interface. On the other
hand the preference of the wall for 4He enhances the superfluid
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FIG. 13. The bulk liquid-liquid phase transitions at coexistence
with the vapor phase as in Fig. 4(c) plotted in the (T ,C3) plane, with
C3 = (D − X)/(2D) as the concentration of 3He (the vapor phase
is not shown here). The blue line Ts(C3) represents the continuous
surface transition. Upon crossing this transition line a thin film near
the wall becomes superfluid although the bulk remains a normal fluid.
This line merges with the λ line [red line denoted as Tλ(C3)] at the
special point s*. The inset shows the vertical thermodynamic paths
(at liquid-vapor coexistence) taken experimentally. The numerical
paths in our calculations are located in the vapor phase parallel
to the ones in the inset. T

(s)
d (C3) [T (n)

d (C3)] denotes the superfluid
[normal fluid] binodal of the two-phase region. The arrows indicate
how the vertical thermodynamic paths continue after encountering
the demixing curve. The path shown by the black dotted line can
follow both binodals.

OP there as if there would be a surface field acting on the
superfluid OP, which is, however, not the case.

The experimental data [3], reproduced in Fig. 14, have
been obtained at liquid-vapor coexistence along the paths
of fixed concentration C3 of 3He as shown in the inset of
Fig. 13 by the vertical dotted lines. [Note that in Fig. 14
X corresponds to the concentration of 3He, which here is
denoted by C3 = (D − X)/(2D) = X3/(X3 + X4). We have
ignored the subscript l because we are referring to the bulk
values.] The thermodynamic paths of fixed 3He concentration
followed in our calculations are parallel to the experimental
ones but are located in the vapor phase close to the liquid-vapor
coexistence surface (like the brown surface in Fig. 1).

The film thickness y/a versus temperature T along a path
with an offset 
μ+/K = −1.07×10−4 parallel to the vertical
black dashed line in Fig. 13 is shown in Fig. 15. Within the
considered temperature range the system is above the wetting
temperature Tw (not shown in the figure). We find that at
fixed C3 the variation of the film thickness with temperature is
nonmonotonic. Upon increasing the temperature, for T > Ts,
the film thickness increases. A much steeper increase of the
film thickness, associated with a break in slope, occurs between
Ts and Ttce, where the TCFs emerge. (Note that due to the offset
from liquid-vapor coexistence the sharp drop of y/a occurs
slightly below Ttce; see Fig. 13.)

As discussed before, due to the surface transition close to
Ttce the superfluid OP becomes nonzero near the wall. This
profile vanishes at the emerging liquid-vapor interface, where
the 3He atoms accumulate. This behavior corresponds to the

FIG. 14. Thickness of 3He-4He wetting films extracted from
capacity measurements (Fig. 4 in Ref. [3]). The values of X refer
to various concentrations of 3He. The concentration of 3He at the
tricritical point is Xt = 0.672. Panels (a) and (b) correspond to X �
Xt and X � Xt, respectively. Thin arrows show the points, where
the bulk liquid phase separates. The large headed arrow indicates
the tricritical point. In (b) the arrows with double lines indicate the
onset temperature of superfluidity. For the thermodynamic path on the
superfluid side [panel (b)], the growth of the film thickness exhibits
a characteristic shoulder between the tricritical temperature and the
superfluid transition temperature on the λ line. The growth of the
film thickness as a function of temperature is due to repulsive TCFs
between the solid wall and the liquid-vapor interface, arising near the
tricritical point. For small X the wetting film resembles a film of pure
4He, which corresponds to (O,O) BCs for the CCFs arising near the
temperature of the λ transitions, which are attractive [2] [see the dip
in panel (c)]. This figure is, with permission, reprinted.

nonsymmetric, effective (+,O) BCs for the superfluid order
parameter Ml in the wetting film. Therefore, the resulting
TCF acting on the liquid-vapor interface is repulsive and
leads to an increase of the film thickness. The maximum film
thickness occurs at Tpeak/K ≈ 8.3346, which lies below Ttce,
in agreement with the experimental results (see Fig. 14) (Tpeak

is defined as the midpoint of the temperature range enclosing
the maximum film thickness). Ts denotes the temperature of
the surface transition. Figure 16 shows how the offset value

μ+ affects the equilibrium film thickness y. As expected,
upon increasing the offset value, the film thickness decreases.
Moreover Tpeak shifts towards lower temperatures.

Following the other thermodynamic paths indicated in
Fig. 13 renders a distinct scenario. Figure 17 shows the film
thickness y/a versus temperature T for two values of C3 > Ctce

3
(green curve and violet curve) at 
μ+/K = −1.07×10−4.
[As a reference, we plot also the results for C3 = Ctce

3 (black
curve).] The maximum of each of these two curves occurs
at a temperature close to the corresponding bulk demixing
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FIG. 15. Numerical results for the film thickness y/a correspond-
ing to the thermodynamic path at fixed C3 = C tce

3 and 
μ+/K =
−1.07×10−4 (i.e., slightly shifted thermodynamic path shown by
the vertical black dashed line in Fig. 13). The arrows indicate the
tricritical end point Ttce and the onset temperature Ts 
 Ts(C3) for
superfluidity at the surface transition. [The deviation of Ts from Ts(C3)
(see Fig. 13) is due to the offset from liquid-vapor coexistence.] Below
the tricritical temperature the thermodynamic path follows T

(s)
d (C3)

indicated in Fig. 13 (infinitesimally on the superfluid side). For further
discussions see the main text. The bulk parameters of the system are
those belonging to Figs. 4(c) and 13. Tpeak/K = 8.3346 is the position
of the peak.

temperature denoted as T
(n)

d (C3). [This slight deviation from
Td(C3) is due to the offset 
μ+ from the liquid-vapor
coexistence surface.] The green curve corresponding to

C3 = C3 − Ctce

3 = 0.0087 joins the black one at T/K 

T

(n)
d (C3)/K = 8.3925; for lower temperatures both curves

merge. Since for the green curve T
(n)

d (C3) > Tpeak = 8.3346,
the maximum of this curve is the same as the maximum
of the black curve. However, for 
C3 = 0.0257 the violet
curve joins the black curve at the corresponding demixing
temperature T/K 
 T

(n)
d (C3)/K = 8.2392, which is below the

temperature Tpeak of the peak. Therefore, the maximum of the
violet curve differs from the maximum of the black curve.

FIG. 16. Film thickness y/a versus temperature T at C3 = C tce
3

for four values of 
μ+/K . By increasing the offset value |
μ+|
the tricritical Casimir effect and complete wetting become less
pronounced.

FIG. 17. Film thickness y/a as function of temperature T for
three values ofC3 � C tce

3 , i.e., 
C3 = C3 − C tce
3 � 0, and at 
μ+/K =

−1.07×10−4. The sudden drop in the green and in the violet curve
occurs at Td close to the demixing temperature T

(n)
d (C3) (see Fig. 13

with the same color code). Below T
(n)

d (C3) the violet and the green
curve merge with the black curve and follow the binodal denoted by
T

(n)
d (C3) in Fig. 13. The black curve is similar to the one in Fig. 15

except that below Ttce it follows the normal branch of the binodal
[see Fig. 4(c)]. The jumps are due to first-order layering transitions.
This figure corresponds to Fig. 14(a). Note that X and Xt in Fig. 14
here correspond to C3 and C tce

3 , respectively. Due to the offset from
liquid-vapor coexistence the values of Td and Ts differ slightly from
T

(n)
d (C3) and Ts(C3) as shown in Fig. 13. The bulk parameters of the

system are the same as in Figs. 4(c) and 13. Tpeak/K = 8.3346 is the
position of the peak.

Figure 17 corresponds to Fig. 14(a). Note that Xt in Fig. 14
corresponds to Ctce

3 in the present notation.
Figure 18 shows the film thickness as function of tem-

perature for two values of C3 < Ctce
3 (red curve and blue

curve; compare the inset in Fig. 13 with the same color code)
and for C tce

3 (black curve) at 
μ+/K = −1.07×10−4. The
blue curve and the red curve merge with the black one at
Td close to the demixing temperature denoted as T

(s)
d (C3) in

Fig. 13 (there is a slight deviation due to the offset from the
liquid-vapor coexistence). Whereas for C3 � C tce

3 the sudden
drop of the film thickness occurs near T

(n)
d (C3) [note that for

T
(s,n)

d (Ctce
3 ) = Ttce], for C3 < Ctce

3 it takes place close to the bulk
λ transition temperature Tλ(C3) � Ttce. (Again, there is a slight
deviation due to the offset from the liquid-vapor coexistence
surface.) This sudden drop is associated with a break in slope
in the curves y(T ) and leads to the formation of characteristic
shoulders. This agrees with the experimental observations [see
Fig. 14(b)]. Note that because Tλ(C3) is a decreasing function
of C3, for lower concentrations of 3He, the break in slope
occurs at higher temperatures. For the red curve in Fig. 18,
this shoulder is due to the emerging of the CCFs close to the λ

line. For even lower values of C3 the films encounter only the
CCFs due to the λ transition, and the TCFs due to the tricritical
point do not influence them (see the blue curve). In Fig. 18
all curves attain their lowest value at the surface transition
temperature Ts(C3) > Tλ(C3).

For a vertical path at C3 < Cs*
3 (see Fig. 13), the film thick-

ness does not exhibit an increase near the λ transition. In fact,
forC3 < Cs*

3 the BCs for the superfluid OP at the interface of the
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FIG. 18. Film thickness y/a as function of temperature T for
three values of C3 � C tce

3 with 
C3 = C3 − C tce
3 � 0 and at 
μ+/K =

−1.07×10−4. The black curve is the same as the one in Fig. 15. The
sudden drop in the blue and in the red curve occurs at Tλ close to the
temperature of the λ transition Tλ(C3) (see Fig. 13). The red and the
blue curve merge with the black curve at Td and follow the binodal
denoted by T

(s)
d (C3) in Fig. 13. This figure corresponds to panel (b)

in Fig. 14. Note that X and Xt in Fig. 14 here correspond to C3 and
C tce

3 , respectively. Due to the offset from liquid-vapor coexistence the
value of Td, Ts, and Tλ differ slightly from T

(s)
d (C3), Ts(C3), and Tλ(C3)

as introduced in Fig. 13. The bulk parameters of the system are the
same as in Figs. 4(c) and 13. Tpeak/K = 8.3346 is the position of the
peak.

wetting film are the symmetric (O,O) BCs (i.e., M = 0 at the
wall and at the emerging liquid-vapor interface). Therefore,
in this regime one expects the occurrence of an attractive
CCF; however, above the bulk critical point this cannot be
captured within the present mean field approximation because
for Dirichlet-Dirichlet BCs the resulting CCF is solely due
to fluctuations beyond mean field theory [15,16]. Although
both black curves in Figs. 17 and 18 correspond to C3 = Ctce

3 ,
they differ slightly due to the infinitesimal difference of the
thermodynamic paths for T < Ttce. In Fig. 17, for T < Ttce

the thermodynamic paths follow the demixing line T
(n)

d (C3)
infinitesimally on the normal fluid side, whereas in Fig. 18 for
T < Ttce the thermodynamic paths run along the superfluid
binodal T

(s)
d (C3).

C. Tricritical Casimir forces

A fluid film exerts an effective force on its confining walls.
For two parallel, planar walls a distance L apart this fluid
mediated force fs is given by [40]

fs = −
(

∂F ex

∂L

)
T ,μ

= −
[
∂(F − Vfb)

∂L

]
T ,μ

, (20)

where F ex is the excess free energy, fb is the grand canonical
bulk free energy density of a one-component fluid at temper-
ature T and chemical potential μ. F is the free energy of the
film of volume V = AL where A is the macroscopically large
surface area of one wall. Since F − Vfb is proportional to
A, fs/A is the pressure in excess over its bulk value. Upon
approaching the bulk critical point of the confined fluid, fs

acquires a universal long-ranged contribution fC , known as
the critical Casimir force [18,41,42].

Extending this concept to binary liquid mixtures, here we
focus on that contribution to fs which arises near a tricritical
point of 3He-4He mixtures. We call this contribution tricritical
Casimir force FTCF (TCF) and express it in units of kBTtc,
where Ttc is the temperature of a tricritical point on the line
TC in Fig. 1.

As discussed in the Introduction, concerning wetting by a
critical fluid, the critical fluctuations of the OP are confined
by the solid substrate surface on one side and by the emerging
liquid-vapor interface on the other side. Accordingly, the TCF
is the derivative of the corresponding excess free energy with
respect to the film thickness y at constant temperature and
chemical potentials. In contrast to the slab geometry with
two fixed walls as discussed above [see Eq. (20)], varying
the equilibrium wetting film thickness requires to change the
thermodynamic state of the fluid. Moreover, in the present mi-
croscopic approach the film thickness is not an input parameter
of a model; hence, the excess free energy is not an explicit
function of y. [Note that y is uniquely defined in terms of
the equilibrium density profile Dl(T ,μ+,μ−) via Eq. (18).] In
order to calculate the TCF, we consider a system at fixed T ,μ+,
and μ−, for which the film thickness is fixed to a specific value
� by an externally imposed constraint. For the total free energy
Fcstr of such a constraint system, one has for large L [1,16,43]

Fcstr(T ,μ+,μ−,�)/A

= fm� + fb(L − �) + σw,l + σl,v + fex(�), (21)

where σw,l and σl,v are the wall-liquid and vapor-liquid surface
tensions, respectively, fm is the free energy density of the
metastable liquid, and A := Na2 is the cross section area of a
layer. Since at liquid-vapor coexistence fb = fvapor = fliquid <

fm one has (fm − fb)� > 0. The �-dependent excess free
energy fex(�) is the sum of two contributions: the free energy
density (per area A) f0(�) due to the effective interaction of the
emerging liquid-vapor interface with the substrate wall and
the singular contribution fsing(�) due to the critical finite-size
effects within the wetting film of thickness �. For short-ranged
surface fields, the effective potential between the wall and the
emerging liquid-vapor interface is an exponentially decaying
function of the film thickness �. To leading order one has [44]

f0(�) ≈ α
T − Tw

Tw

exp(−p�), (22)

where Tw is the wetting transition temperature and α > 0 is
an amplitude such that in accordance with complete wetting
(i.e., for T > Tw) f0(�) > 0. The decay length 1/p is the
bulk correlation length of the liquid at Tw and at liquid-vapor
coexistence. With the knowledge of fex(�) and f0(�) one can
determine the TCF as the negative derivative of fex(�) − f0(�)
with respect to �. Since y(T ,μ+,μ−) is the equilibrium film
thickness, the total free energy Fcstr has a global minimum
at y, so that ∂Fcstr

∂�
|�=y = 0. Thus taking the derivative of both

sides of Eq. (21) with respect to � at � = y yields

0 = fm − fb + ∂f0

∂�

∣∣∣∣
�=y

+ ∂fsing

∂�

∣∣∣∣
�=y

. (23)
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With Eq. (22) this implies for the TCF per area fTCF

fTCF(y) = −∂fsing

∂�

∣∣∣∣
�=y

≈ fm − fb − αp
T − Tw

Tw

e−py. (24)

The parameters α, Tw, and p can be determined by studying
the growth of the equilibrium film thickness as a function of the
chemical potential sufficiently far above the critical demixing
region, where fTCF(y) is negligible. Using Eq. (24) and
calculating fm and fb within the present model, we have found
that for the surface fields (f̃+,f̃−)/K = (10.714,16.071) and
the coupling constants (C/K,J/K,Js/K) = (1,9.107,3.701),
one has Tw/K 
 3.704, whereas α 
 1.146, and p 
 1.997.
We have checked that the value of the bulk correlation length
1/p agrees with the one following from the decay of the OP
profiles.

In the slab geometry considered in Refs. [20,21], the
total number density of the 3He-4He mixtures is fixed and
the properties of the system near the bulk tricritical point
can be expressed in terms of the experimentally accessible
thermodynamic fields T − Ttc and μ− − μtc

−, where μtc
− is

the value of μ− at the tricritical point. (The thermodynamic
field conjugate to the superfluid OP is experimentally not
accessible and is omitted here.) As discussed in detail in
Refs. [20,21,45], the proper dimensionless scaling fields are
t ≡ (T − Ttc)/Ttc and g ≡ (μ− − μtc

−)/(kBTtc) + a′t , where a′
is the slope of the line tangential to the phase boundary curve
at Ttc within the blue surface in Fig. 1 (i.e., parallel to the
intersection of the blue surface and A4 at tc which is the full
blue horizontal line through tc). For such a choice of the scaling
fields, for t → 0 with g = 0 the tricritical point is approached
tangentially to the phase boundary. According to finite-size
scaling [11] the CCF for the slab of width L is governed by a
universal scaling function defined as ϑ̃+,O 
 L3fTCF/(kBTtc),
where the subscript {+,O} denotes the surface universality
classes of the confining surfaces (the symbol “
” indicates
asymptotic equality). The scaling function ϑ̃+,O depends on
the two scaling fields c1tL

1/ν and c2gL
/ν , where c1 and
c2 are nonuniversal metric factors and ν = 1 and 
 = 2
are tricritical exponents for the XY model in d = 3 [46].
In order to facilitate a comparison with experimental data,
the results for the TCF obtained in Refs. [20,21] have been
presented in terms of ϑ̃+,O as a function of only the single
scaling variable c1tL

1/ν , with c1 = ξ+
0 /a; ξ+

0 (in units of a)
is the amplitude of the superfluid OP correlation length
ξ = ξ+

0 t−ν above Ttc. In Refs. [20,21], for thermodynamic
paths of constant concentration, the influence of the variation
of the second scaling variable g upon changing temperature
has been neglected.

In the present case of TCF emerging in wetting films of
thickness y, the TCF per area is given by the universal scaling
function ϑ+,O as

fTCF/(kBTtce) 
 y−dϑ+,O(c1ytν), (25)

with t = (T − Ttce)/Ttce, where we have again neglected the
dependence of ϑ+,O on the scaling variable c2gy
/ν as well
as on the third scaling variable associated with μ+ − μtce

+
which is conjugate to the total number density of the 3He-4He
mixture. In order to retrieve, however, the full information
stored in the scaling function, in principle one has to plot

FIG. 19. Scaling functions of the TCF calculated from the data
in Fig. 17 within (a) the wetting film geometry and (b) the slab
approximation. Concerning the definition of the slab thickness L0

see the main text. The violet curve and the green curve merge with
the black curve at their corresponding demixing point indicated by Td

in Fig. 17, using the same color code. The corresponding curves
in the two panels agree qualitatively but differ in detail, e.g., in
height (see the horizontal lines). In panel (a) the thermodynamic
states are off the liquid-vapor coexistence surface, whereas in panel
(b) the thermodynamic states lie on the liquid-vapor coexistence
surface. The reduced temperature is t = (T − Ttce)/Ttce, where Ttce

is the temperature of the tricritical end point. Due to the smoothing
procedure and within the presently available numerical accuracy, the
small difference between the positions of the maxima in (a) and (b)
cannot be resolved reliably.

the scaling function as a function of a single scaling variable,
while keeping all the other scaling variables fixed. In practice
this is difficult to realize. Along the thermodynamic paths
taken experimentally in Ref. [3], none of the scaling variables
were fixed. Instead the scaling functions have been plotted
versus the single scaling variable td, where in Ref. [3] d

denotes the film thickness. We follow this experimentally
inspired approach and plot y3fTCF/(kBTtce) as a function of yt ,
ignoring the nonuniversal metric factor c1. Since the surfaces
fields we have chosen for our calculation of the TCF are
strong, we neglect the dependence of the scaling function
on the corresponding scaling variables, assuming that for
(f̃+,f̃−)/K = (10.714,16.071) the system is close to the fixed
point (+) BC.

Figures 19(a) and 20(a) show the scaling functions cal-
culated from the data in Figs. 17 and 18, respectively. In
order to eliminate the nonuniversal features arising from the
jumps in the wetting films due to the layering transitions,
these curves have been smoothed. Figure 21(a) shows the
scaling functions for various values of 
μ+ corresponding
to the various curves in Fig. 16. The vertical blue dotted line in
Figs. 19–21 represents the tricritical end point (t = 0). Away
from the tricritical temperature the scaling functions decay
to zero. This decay is faster for temperatures higher than the
tricritical temperature, i.e., for t > 0. For t > 0 the dashed
section of the blue curve in Fig. 20 shows that part, which
is multivalued. This indicates that in this range of the scaling
variable the scaling hypothesis is not applicable. The same
holds also for the red curve in this figure, where the sudden
drop exhibits a slightly positive slope.
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FIG. 20. Scaling functions of the TCF calculated from the data
in Fig. 18 within (a) the wetting film geometry and (b) the slab
approximation. Concerning the definition of the slab thickness L0

see the main text. The blue curve and the red curve merge with
the black curve at their corresponding demixing point, indicated by
Td in Fig. 18. The corresponding curves in the two panels agree
qualitatively but differ in detail, e.g., in height (see the horizontal
lines). The dashed blue curve shows the region, where the blue curve
is multivalued and scaling does not hold anymore. The same holds also
for the right parts of the red curves, because the drops of the curves
exhibit a slightly positive slope. In panel (a) the thermodynamic
states are off the liquid-vapor coexistence surface, whereas in panel
(b) the thermodynamic states lie on the liquid-vapor coexistence
surface. The reduced temperature is t = (T − Ttce)/Ttce, where Ttce

is the temperature of the tricritical end point. Due to the smoothing
procedure and within the presently available numerical accuracy, the
small difference between the positions of the maxima in (a) and (b)
cannot be resolved reliably.

In order to compare our wetting results for the TCF with
those obtained in the slab geometry as studied in Refs. [20,21],
we employ a suitable slab approximation for our wetting data.
To this end we consider a slab of width L0 equal to the
equilibrium position of the emerging liquid-vapor interface of
the wetting film L0(T ,μ+,μ−) = �y(T ,μ+,μ−)�, at a certain

FIG. 21. Scaling functions of the TCF calculated from the data
in Fig. 16 within (a) the wetting film geometry and (b) the slab
approximation. Concerning the definition of the slab thickness L0

see the main text. The maxima of the scaling functions in panel
(a) differ from each other, whereas the ones in panel (b) are almost
equal. The reduced temperature is t = (T − Ttce)/Ttce, where Ttce is
the temperature of the tricritical end point.

value of the offset 
μ+. Since within the present lattice model
the system size L0 must be an integer, the above assignment
for L0 involves the floor function � �. (�x� gives the largest
integer number smaller than x.)

Within the slab approximation, the emerging liquid-vapor
interface is replaced by a wall (denoted by “2”) with the
short-ranged surface fields f̃+,2 and f̃−,2. These surface fields
are chosen such that the OP profiles calculated for the slab
at liquid-vapor coexistence (i.e., 
μ+ = 0) resembles the
ones within the wetting film geometry calculated for the
semi-infinite system with an offset 
μ+ < 0. In order to
obtain a perfect match, one would have to allow these surface
fields to vary along the thermodynamic paths taken. Insisting,
however, on fixed values of (f̃+,2,f̃−,2), we have found that
for (f̃+,2,f̃−,2)/K = (1.607,0.214) the profiles in the slab
geometry agree rather well with their counterparts in the
wetting film geometry. For (f̃+,2,f̃−,2)/K = (1.607,0.214)
the number density X4,l of 4He at the right boundary is
not high enough for the spontaneous symmetry breaking
of the superfluid OP to occur there. On the contrary, for
(f̃+,f̃−)/K = (10.714,16.071) at the left boundary Ml is
nonzero. Accordingly, the two sets of surface fields induce
(+,O) and thus nonsymmetric BCs on the superfluid OP
within the slab, giving rise to repulsive TCFs. For such a
slab, by using Eq. (20) we calculate the TCF for that bulk
thermodynamic state which is associated with the wetting film,
but taken at bulk liquid-vapor coexistence (i.e., 
μ+ = 0).
In this way we can mimic the actual experimental wetting
situation and stay consistent with the calculations for the slab
geometry as carried out in Refs. [20,21]. Within lattice models,
the smallest change in the system size amounts to one layer
[min(
L0) = 1]. Therefore, on the lattice the derivative in
Eq. (20) has to be approximated by the finite difference

fTCF = −
f ex(L0)


L0
= −[f ex(L0 + 1) − f ex(L0)], (26)

where f ex = F ex/A. In order to determine f ex(L0), we write
the total free energy φ of the slab within thickness L0 as

φ(L0,T ,μ+,μ−)/A = fbL0 + σ
(1)
s,l + σ

(2)
s,l + f ex(L0), (27)

where σ
(1)
s,l and σ

(2)
s,l are the surface tensions between the liquid

and surface (1) and surface (2), respectively. The surface
tensions are functions of T ,μ+, and μ− only and do not
depend on the system size L0. Using Eq. (27), Eq. (26) can be
expressed as

fTCF = [φ(L0) − φ(L0 + 1)]/A + fb. (28)

Figures 19(b), 20(b), and 21(b) show the scaling functions
ϑ̃+,O within the slab approximation, corresponding to the
cases in panel (a) of each figure. Also here curves have been
smoothed out in order to eliminate the discontinuities due to
the layering transitions. The approximation of the derivative in
Eq. (26) by a finite difference and a slight mismatch between
the OP profiles in the slab and in the wetting film produce
deviations in amplitude of the scaling functions comparable to
the ones in panel (a) of each figure. In addition, these deviations
might be caused by the difference between the thermodynamic
paths taken in the two panels. In Fig. 20(b) the dashed section
of the blue curve (with t > 0) shows that part, for which the

032802-14



TRICRITICAL CASIMIR FORCES AND ORDER . . . PHYSICAL REVIEW E 95, 032802 (2017)

scaling hypothesis breaks down. This occurs for very small
values of L0, in particular above the tricritical end point, where
the wetting film thickness is small,. This is in line with the
general rule that universal scaling functions only hold in the
scaling limit L0 � a.

IV. SUMMARY AND CONCLUSIONS

By using mean field theory, layering transitions, wetting
films, and tricritical Casimir forces (TCFs) in 3He-4He mix-
tures have been studied within the vectorized Blume-Emery-
Griffiths model on a semi-infinite, simple cubic lattice. In the
bulk, the model reduces to the one studied in Ref. [33]. For
vanishing coupling constant Js , which facilitates superfluid
transitions, the bulk phase diagram corresponds to that of
classical binary liquid mixtures [Figs. 4(a) and 5]. We have
identified those values of Js (see Fig. 23), for which the
bulk phase diagram resembles that of actual 3He-4He mixtures
[Figs. 4(b) and 4(c) and Fig. 1].

The present model includes short-ranged surface fields f+
and f− coupled to the sum and to the difference of the number
densities of 3He and 4He atoms, respectively, which allows
for the occurrence of wetting phenomena and can control the
preference of the surfaces for the species. The effect of the
surface fields on wetting films has been studied for Js = 0.
Depending on the values of f+ and f−, in the vapor phase
very close to liquid-vapor coexistence, the model exhibits
incomplete or complete wetting (Figs. 6–8). Due to the lattice
character of the present model, we observe also first-order
layering transitions (Figs. 9 and 10).

For suitable values of the surface fields and for the
coupling constants, which determine the bulk phase diagram
of the 3He-4He mixtures, we have been able to reproduce
qualitatively the experimental results (see Fig. 14) for the
thickness of 3He-4He wetting films near the tricritical end
point [3]. Although the measurements in Refs. [3] have been
performed in the regime of complete wetting, due to gravity the
thickness of the wetting films remained finite. In the present
study this is achieved by applying an offset to the experimental
thermodynamic paths (Fig. 2) and shifting them into the vapor
phase so that the resulting wetting films remain finite (Figs. 1
and 3). Within the present mean field approach the order
parameter profiles at a given thermodynamic state provide
all equilibrium properties of the wetting films (Fig. 12). The
closer the system to liquid-vapor coexistence is, the thicker the
wetting films are (Fig. 11). Depending on the thermodynamic
state, the wetting films can be superfluid. For the bulk phase
corresponding to the normal fluid, the onset of superfluidity
occurs by crossing a line of continuous surface transitions
(Fig. 13).

Taking thermodynamic paths (Fig. 13) equivalent to the
experimental ones taken in Ref. [3], we have been able
to reproduce qualitatively the experimental results for the
variation of the film thickness upon approaching the tricritical
end point. Since the tricritical end point lies between the
wetting temperature and the critical point of the liquid-vapor
phase transitions, there is a pronounced change in the thickness
of the wetting film due to repulsive TCFs (Figs. 15–18).
The repulsive nature of the TCF is due to the effectively

nonsymmetric boundary conditions for the superfluid OP. The
nonsymmetric boundary conditions arise due to the formation
of a 4He-rich layer near the solid-liquid interface, which can
become superfluid even at temperatures above the λ transition;
at the liquid-vapor interface such a superfluid layer does not
form because the 4He concentration is too low there. This leads
to (+,O) boundary conditions. Such boundary conditions hold
below the line Ts(C3) of surface transitions (blue curve in
Fig. 13) up to the special point s∗ (i.e., for C3 > Cs∗

3 ). Like
the experiment data, upon decreasing the temperature along the
thermodynamic paths at fixed C3 in the region Cs∗

3 < C3 < Ctce
3 ,

in addition to the repulsive TCFs close to tce the wetting
films, are also influenced by the repulsive critical Casimir
forces (CCFs) close to the λ line Tλ(C3) (red line in Fig. 13).
This gives rise to the formation of a shoulderlike curve in
Figs. 18 and 14(b) between the tricritical end point and the λ

transition temperature. ForC3 < Cs∗
3 the wetting film resembles

that of pure 4He, for which the superfluid order parameter
vanishes both at the solid substrate and at the liquid-vapor
interface. Such symmetric (O,O) boundary conditions lead to
an attractive CCF, which results in the decrease of the wetting
film thickness close to the λ transition temperature Tλ(C3) [see
the dip in Fig. 14(c)]. However, because the attractive CCF
due to (O,O) boundary conditions is generated by fluctuations
only [16] above the bulk critical point it cannot be captured
within the present mean field approach.

Using the various contributions to the total free energy,
one can calculate the TCFs and their scaling function by
extracting the excess free energy from the total free energy
[Figs. 19(a), 20(a), and 21(a)]. We have adapted the slab
approximation for the wetting films to the present system and
have calculated the corresponding slab scaling function of the
TCF [Figs. 19(b), 20(b), and 21(b)]. We have found that the
slab approximation, with fixed surface fields at the second
wall mimicking the emerging liquid-vapor interface, captures
rather well the qualitative behavior of the scaling functions
inferred from the wetting film thickness [see the comparison
between the panels (a) and (b) in Figs. 19–21].

We conclude by comparing the scaling function inferred
from the wetting film thickness and the one calculated within
the slab geometry as in Refs. [20,21] with the experimental
data [3], specifically at the tricritical concentrations C tce

3 of
3He. Figure 22 illustrates this comparison. L refers to the
wetting film thickness measured in the experimental data or
calculated within the present model. In Refs. [20,21] L refers to
the slab width. In the reduced temperature t = (T − Ttc)/Ttc,
Ttc refers to the temperature of the tricritical end point both
in the present calculation and in the experimental studies,
whereas it denotes the tricritical temperature in Refs. [20,21].
The theoretical scaling functions are rescaled such that their
values at t = 0 match the experimental one. Moreover, the
scaling variable x = tL for the theoretical results is multiplied
by a suitable factor such that the positions of the maxima of the
theoretical curves match the experimental one. This factor is
bth 
 23.1 for the wetting film, whereas for the slab geometry
it is bVBEG

th 
 15.38. The resulting adjusted scaling functions
ϑ+,O(x) agree with each other and reproduce rather well the
experimental data, especially near the maximum. In contrast,
if these two adjustments of the scaling function is enforced for
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FIG. 22. Adjusted scaling functions (see the main text) obtained
for the slab geometry as in Refs. [20,21] and inferred from the wetting
films compared with the corresponding experimental curve [3]. All
data correspond to the tricritical concentration of 3He. L is the film
thickness of the wetting films, whereas in Refs. [20,21] it denotes
the width of the slab. The reduced temperature t = (T − Ttc)/Ttc

is relative to tricritical point in Refs. [20,21] and relative to the
tricritical end point for the wetting film. The experimental data has
been obtained via private communication with the corresponding
authors.

the one obtained within the slab approximation inferred from
the wetting films [i.e., the black curve in Fig. 20(b)], there is no
satisfactory agreement with the experimental data as a whole
(this adjusted scaling function is not shown in Fig. 22).

The present model lends itself to further investigations
based on Monte Carlo simulations. They would capture the
effects of fluctuations beyond the present mean field theory.
Since the upper critical dimension for tricritical phenomena is
d∗ = 3, this would shed additional light on the reliability of the
present mean field analysis. Moreover, in view of the ubiquity
of van der Waals interactions it will be rewarding to extend the
present model by incorporating long-ranged surface fields.
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APPENDIX A: MEAN FIELD APPROXIMATION
FOR THE LATTICE MODEL

In this Appendix we present the details of the calculations
outlined in Sec. II A. The starting point is the Hamiltonian in
Eq. (3). According to the variation principle, the equilibrium
free energy F obeys the inequality [47]

F � φ = T̂r(ρH) + (1/β)T̂r(ρ ln ρ), (A1)

where ρ is any trial density matrix fulfilling T̂r(ρ) = 1, with
respect to which φ on the right-hand-side of Eq. (A1) has to
be minimized in order to obtain the best approximation for F :

T̂r =
∑

s1=±1,0

∫ 2π

0
d�1 · · · · ·

∑
sLN =±1,0

∫ 2π

0
d�LN (A2)

denotes the trace and β = 1/T where T is the temperature
times kB. Within mean field theory, the total density matrix of

the system factorizes as

ρ =
LN∏
i=1

ρi =
L−1∏
l=0

N∏
vl=1

ρ(l,vl ) (A3)

with

Trρ(l,vl ) =
∑

s(l,vl )=±1,0

∫ 2π

0
d�(l,vl )ρ(l,vl )(s(l,vl ),�(l,vl )) = 1,

(A4)

where l labels the L layers, vl denotes the lattice sites within
the lth layer, and ρ(l,vl ) denotes the density matrix of lattice
site vl within the layer l. (Note that T̂r denotes the trace over
all degrees of freedom, whereas Tr refers to the trace over the
degrees of freedom at a single lattice site.)

By applying mean field approximation to the sites within
each layer, ρ(l,vl ) is taken to be independent of vl . Accordingly,
Eq. (A3) renders

ρ =
L−1∏
l=0

ρN
l (A5)

with

Trρl =
∑

sl=±1,0

∫ 2π

0
d�lρl(sl,�l) = 1, (A6)

where ρl ≡ ρ(l,vl ) indicates the density matrix for a single
site in the lth layer; sl ≡ s(l,vl ) and �l ≡ �(l,vl ) denote the
occupation variable and the angle for a single site within this
layer, respectively, independent of vl . [Note that due to the
definitions in Eq. (5), one has ql ≡ q(l,vl ) and pl ≡ p(l,vl ).] The
summations in Eq. (3) can be written as

LN∑
i=1

=
L−1∑
l=0

N∑
vl=1

= N
L−1∑
l=0

(A7)

and

∑
〈i,j〉

= 1

2

∑
i=1

⎧⎨
⎩

∑
j∈n.n.(l)

+
∑

j∈n.n.(l + 1)

+
∑

j∈n.n.(l − 1)

(1 − δl,0)

⎫⎬
⎭

= N
2

L−1∑
l=0

⎧⎨
⎩4 +

∑
j∈n.n.(l + 1)

+
∑

j∈n.n.(l − 1)

(1 − δl,0)

⎫⎬
⎭, (A8)

where n.n.(l), n.n.(l + 1), and n.n.(l − 1) denote the nearest
neighbors in the layers l, l + 1, and l − 1, respectively. The
factor 1/2 prevents double counting and the factor (1 − δl,0)
appears due to the fact that layer l = 0 next to the surface does
not have a neighboring layer at l = −1. Since the lattice sites
within each layer are equivalent one has

∑
j∈n.n.(l) = 4.

By using Eq. (3) together with the above considerations,
Eq. (A1) renders

φ = − KN
2

L−1∑
l=0

〈sl〉[4〈sl〉 + 〈sl+1〉 + 〈sl−1〉(1 − δl,0)]

− JN
2

L−1∑
l=0

〈ql〉[4〈ql〉 + 〈ql+1〉 + 〈ql−1〉(1 − δl,0)]
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− CN
2

L−1∑
l=0

〈sl〉[4〈ql〉 + 〈ql+1〉 + 〈ql−1〉(1 − δl,0)]

− CN
2

L−1∑
l=0

〈ql〉[4〈sl〉 + 〈sl+1〉 + 〈sl−1〉(1 − δl,0)]

− JsN
2

L−1∑
l=0

〈pl cos �l〉[4〈pl cos �l〉

+ 〈pl+1 cos �l+1〉 + 〈pl−1 cos �l−1〉(1 − δl,0)]

− JsN
2

L−1∑
l=0

〈pl sin �l〉[4〈pl sin �l〉 + 〈pl+1 sin �l+1〉

+ 〈pl−1 sin �l−1〉(1 − δl,0)]

− Nμ−
L−1∑
l=0

〈sl〉 − Nμ+
L−1∑
l=0

〈ql〉 − N
L−1∑
l=0

〈f−(l)sl〉

− N
L−1∑
l=0

〈f+(l)ql〉 + (1/β)

〈
ln

L−1∏
l=0

ρN
l

〉
, (A9)

where 〈...〉 = Tr(ρl...) denotes the thermal average taken with
the trial density matrix ρl associated with a single lattice site
in layer l.

The last term in Eq. (A9) can be written as

(1/β)

〈
ln

L−1∏
l=0

ρN
l

〉
= (N /β)

〈
L−1∑
l=0

ln ρl

〉
. (A10)

Minimizing the variational function φ/N with respect
to ρl renders the best normalized functional form of ρl

among the single-site, factorized density matrices. Thus we
determine the functional derivative of φ/N in Eq. (A9) with
respect to ρl(sl,�l) using δρl (sl ,�l )

δρl′ (s ′
l′ ,�

′
l′ )

= δl,l′δ(�l − �′
l′)δsl ,s

′
l′
,

and equate it to the Lagrange multiplier η corresponding to the
constraint Tr(ρl) = 1:

η = δ(φ/N )

δρl(sl,�l)

= − K{sl[4Xl + Xl+1 + Xl−1(1 − δl,0)]}
− J {ql[4Dl + Dl+1 + Dl−1(1 − δl,0)]}
− C{sl[4Dl + Dl+1 + Dl−1(1 − δl,0)]}
− C{ql[4Xl + Xl+1 + Xl−1(1 − δl,0)]}

− [μ− + f−(l)]sl − [μ+ + f+(l)]ql

− Js

{
pl cos �l

[
4Mx

l + Mx
l+1 + Mx

l−1(1 − δl,0)
]}

− Js

{
pl sin �l

[
4M

y

l + M
y

l+1 + M
y

l−1(1 − δl,0)
]}

+ (1/β)(1 + ln ρl), (A11)

where we have defined the following order parameters (OPs):

Xl := 〈sl〉,
Dl := 〈ql〉,

Mx
l := 〈pl cos �l〉,

M
y

l := 〈pl sin �l〉. (A12)

Equation (A11) can be solved for ρl(sl,�l):

ρl = eβη−1−βhl , (A13)

where

hl = − sl{K[4Xl + Xl+1 + Xl−1(1 − δl,0)] + C[4Dl + Dl+1

+ Dl−1(1 − δl,0)] + μ− + f−(l)}
− ql{J [4Dl + Dl+1 + Dl−1(1 − δl,0)] + C[4Xl + Xl+1

+ Xl−1(1 − δl,0)] + μ+ + f+(l)}
− pl cos �l

{
Js

[
4Mx

l + Mx
l+1 + Mx

l−1(1 − δl,0)
]}

− pl sin �l

{
Js

[
4M

y

l + M
y

l+1 + M
y

l−1(1 − δl,0)
]}

(A14)

is the effective single-site Hamiltonian for a lattice site in the
lth layer.

The normalization Tr(ρl) = 1 yields

e−βη+1 = Tr(e−βhl ) (A15)

so that

ρl = e−βhl

Tr(e−βhl )
, (A16)

where hl is given by Eq. (A14).
Within the expression for hl given in Eq. (A14) one has

Tre−βhl = 1 + Wl(Xl,Dl ; μ−,μ+,f+(l),f−(l),T )

+ Rl(Xl,Dl ; μ−,μ+,f+(l),f−(l),T )I0(βJsM̃l),

(A17)

where I0 and I1 are modified Bessel functions (see Sec. 9.6 in
Ref. [48]) and

M̃l =
√[

Mx
l−1(1 − δl,0) + 4Mx

l + Mx
l+1

]2 + [
M

y

l−1(1 − δl,0) + 4M
y

l + M
y

l+1

]2
. (A18)

The functions W (Xl,Dl ; μ−,μ+,f+(l),f−(l),T ) and R(Xl,Dl ; μ−,μ+,f+(l),f−(l),T ) are given by

Wl(Xl,Dl ; μ−,μ+,f+(l),f−(l),T ) = exp β{(J − C)[Dl−1(1 − δl,0) + 4Dl + Dl+1] + (C − K)[Xl−1(1 − δl,0) + 4Xl + Xl+1]

+ μ+ + f+(l) − μ− − f−(l)} (A19)

and

Rl(Xl,Dl ; μ−,μ+,f+(l),f−(l),T ) = exp β{(J + C)[Dl−1(1 − δl,0) + 4Dl + Dl+1] + (C + K)[Xl−1(1 − δl,0)

+ 4Xl + Xl+1] + μ+ + f+(l) + μ− + f−(l)}. (A20)
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Using the definitions in Eq. (A12) the OPs are given by four
coupled self-consistent equations:

Xl = −Wl + RlI0(βJsM̃l)

1 + Wl + RlI0(βJsM̃l)
(A21)

and

Dl = Wl + RlI0(βJsM̃l)

1 + Wl + RlI0(βJsM̃l)
; (A22)

Mx
l and M

y

l are given by

Mx
l = (1 − δl,0)Mx

l−1 + 4Mx
l + Mx

l+1

M̃l

× RlI1(βJsM̃l)

1 + Wl + RlI0(βJsM̃l)
(A23)

and

M
y

l = (1 − δl,0)My

l−1 + 4M
y

l + M
y

l+1

M̃l

× RlI1(βJsM̃l)

1 + Wl + RlI0(βJsM̃l)
(A24)

so that

Ml :=
√(

Mx
l

)2 + (
M

y

l

)2 = RlI1(βJsM̃l)

1 + Wl + RlI0(βJsM̃l)
.

(A25)

Since (Mx
l ,M

y

l ) and M̃l are invariant under rotation around
the z axis, it is sufficient to consider only one of the two
components. We choose a rotation such that M

y

l = 0 and
Mx

l > 0. With this choice one has

M̃l = (1 − δl,0)Mx
l−1 + 4Mx

l + Mx
l+1 (A26)

and

Ml =
√(

Mx
l

)2 + (
M

y

l

)2 = Mx
l = RlI1(βJsM̃l)

1 + Wl + RlI0(βJsM̃l)
.

(A27)

In order to determine the equilibrium free energy given in
Eq. (A9) we first rearrange the term (1/β)〈ln ∏L−1

l=0 ρN
l 〉 [see

also Eq. (A10)]:

(1/β)

〈
ln

L−1∏
l=0

ρN
l

〉
= (N /β)

〈
L−1∑
l=0

ln ρl

〉

= (N /β)
L−1∑
l=0

〈
ln

e−βhl

Tre−βhl

〉

= −N
L−1∑
l=0

〈hl〉 − (N /β)
L−1∑
l=0

〈ln Tre−βhl 〉,

(A28)

where in the last step, using Eqs. (A17) and (A22), we can
write Tre−βhl = (1 − Dl)−1.

Inserting ρl into Eq. (A9) with the choice M
y

l = 0 and
Mx

l > 0 and taking into account Eq. (A28) one obtains the

following mean field expression for the equilibrium free
energy:

φ/N =
L−1∑
l=0

{
K

2
Xl[4Xl + Xl+1 + Xl−1(1 − δl,0)]

+ J

2
Dl[4Dl + Dl+1 + Dl−1(1 − δl,0)]

+ C

2
Xl[4Dl + Dl+1 + Dl−1(1 − δl,0)]

+ C

2
Dl[4Xl + Xl+1 + Xl−1(1 − δl,0)]

+ Js

2
Mx

l

[
4Mx

l + Mx
l+1 + Mx

l−1(1 − δl,0)
]

+ (1/β) ln(1 − Dl)

}
. (A29)

Note that in the general case (i.e., for both M
y

l and Mx
l

being nonzero) the contribution
∑L−1

l=0
Js

2 M
y

l [4M
y

l + M
y

l+1 +
M

y

l−1(1 − δl,0)] has to be added to the right-hand side of
Eq. (A29).

In order to obtain the functional form of the expressions for
the chemical potentials, first Eqs. (A21) and (A22) have to be
solved for Wl and Rl . Then, by comparing these solutions with
the definitions of Wl and Rl as in Eqs. (A19) and (A20), one
finds

μ+ = T

2
ln

(
D2

l − X2
l

) − T ln 2 − T ln(1 − Dl)

− T

2
ln[I0(βJsM̃l)] − J [Dl−1(1 − δl,0)

+ 4Dl + Dl+1] − C[Xl−1(1 − δl,0)

+ 4Xl + Xl+1] − f+(l) (A30)

and

μ− =T

2
ln

Dl + Xl

Dl − Xl

− T

2
ln[I0(βJsM̃l)]

− C[Dl−1(1 − δl,0) + 4Dl + Dl+1]

− K[Xl−1(1 − δl,0) + 4Xl + Xl+1] − f−(l). (A31)

Finally, one can implicitly express the magnetization Ml in
terms of Xl and Dl by using Eqs. (A21), (A22), and (A25):

Xl + Dl

2
= MlI0(βJsM̃l)

I1(βJsM̃l)
. (A32)

APPENDIX B: CHOICE OF THE COUPLING CONSTANTS
FOR THE CASE OF 3He-4He MIXTURES

In this Appendix we provide the reasoning for the choice of
the phase diagram in Fig. 4(c) as mentioned in Sec. II B. We
start by reviewing the corresponding discussion in Ref. [33]
about how, within the present model, for a suitable value of
Js the bulk phase diagram of a classical binary mixture with
specific values of (C0/K0,J0/K0) and for Js = 0 (dotted curve
in Fig. 23) transforms into that of 3He-4He mixtures. Figure 23
illustrates schematically this transformation. One has to find
and to adopt a nonzero value of Js = J 0

s such that the critical
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FIG. 23. Schematic representation of the transformation of the
bulk phase diagram of a classical binary liquid mixture for fixed
values of (C0/K0,J0/K0) and Js = 0 (the dotted curve) into that
of 3He-4He mixtures with Js = J 0

s �= 0 (solid curves). In a first
step, for suitable, fixed values of (C0/K0,J0/K0) and Js = 0 one
has the phase diagram of a classical binary mixture with ce as
in Fig 4(a). In a second step, one has to find a nonzero value of
Js = J 0

s (which produces the superfluid phase) such, that the critical
end point ce of the phase diagram for (C0/K0,J0/K0,Js = 0), is in
thermodynamic coexistence with a superfluid phase. For this new set
of coupling constants (C0/K0,J0/K0,Js > J 0

s ), the phase diagram
with (C0/K0,J0/K0,Js = 0) lies in the two-phase region of the phase
diagram with (C0/K0,J0/K0,Js > J 0

s ).

end point ce of the phase diagram for (C0/K0,J0/K0,Js = 0)
is in thermodynamic coexistence with a superfluid phase. This
locates the critical end point ce on the right shoulder of the

transformed phase diagram. Thus for Js > J 0
s , the initial phase

diagram for (C0/K0,J0/K0,Js = 0) (including its critical end
point ce), lies in the two-phase region of the phase diagram for
(C0/K0,J0/K0,Js > J 0

s ) [37]. Although the phase diagram
in Fig. 4(b) satisfies the above condition and captures the
main features of the bulk phase diagram of 3He-4He mixtures,
its shape near the tricritical end point tce differs from the
experimental one (see Fig. 2). In particular, in the phase
diagram in Fig. 4(b), upon lowering the temperature below
Ttce along the path X3 = Xtce

3 , the model mixture does not
enter the two-phase region, as it is the case for the actual
3He-4He mixtures. Note that the experimental phase diagram
schematically shown in Fig. 2 is drawn in the (T ,C3) plane.
[The model phase diagram in the same (T ,C3) plane is shown
in the inset of Fig. 4(b).] Furthermore, although the condition
Js > J 0

s places the critical end point ce of the phase diagram
with (C0/K0,J0/K0,Js = 0) into the two-phase region of
the phase diagram with (C0/K0,J0/K0,Js > J 0

s ), a certain
residual, distorting influence of this critical end point ce on
the wetting films may still be present, especially if ce lies near
any of the two binodals of the demixing transitions of the
transformed phase diagram [solid black lines in Figs. 4(b) and
4(c)]. In order to address this issue, after finding the necessary
conditions for the coupling parameters leading to the desired
topology, we have modified the values of (C0/K0,J0/K0) with
Js = J 0

s such, that the critical end point ce (which starts to shift
into metastablity for Js = J 0

s ) moves deeply into the two-phase
region of the transformed phase diagram. These considerations
have led us to choosing the following choice for the cou-
pling constants: (C/K,J/K,Js/K) = (1,9.10714,3.70107).
The corresponding phase diagram is shown in Fig. 4(c).
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