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Elastic anisotropy effects on the electrical responses of a thin sample of nematic liquid crystal
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The electrical responses of a nematic liquid crystal cell are investigated by means of the elastic continuum
theory. The nematic medium is considered as a parallel circuit of a resistance and a capacitance and the electric
current profile across the sample is determined as a function of the elastic constants. In the reorientation process
of the nematic director, the resistance and capacitance of the sample are determined by taking into account the
elastic anisotropy. A nonmonotonic profile for the current is observed in which a minimum value of the current
may be used to estimate the elastic constants values. This scenario suggests a theoretical method to determine
the values of the bulk elastic constants in a single planar aligned cell just by changing the direction of applied
electrical field and measuring the resulting electrical current.
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I. INTRODUCTION

The control of the process of director reorientation with
external agents is one of the most important properties of liquid
crystals in electronic devices as displays [1,2] and waveguides
[3,4]. However, in electrical characterizations, for instance,
it can also introduce some difficulties on the experimental
data interpretation. In a homogeneous flat sample, below the
Fréedericksz threshold, the system behaves as a linear medium.
As the critical field is reached, the director reorientation
affects both the electric permittivity and the conductivity
tensors. Some techniques are employed to avoid this kind
of phenomena as, for example, by using an electric field
lower than the Fréedericksz threshold [5,6] or by inducing
an anchoring orientation parallel to the electric field [7]. Some
years ago, the effects of reorientation in electrical responses
of nematic sample, in a situation of strong [8] and weak [9]
anchoring, have been analyzed. This approach using electrical
current responses has been shown to be potentially useful to
obtain information about the anchoring energy [9].

In the framework of the elastic continuum theory for
nematic liquid crystals, three bulk elastic constants, K11, K22,
and K33, are associated to the deformations of splay, twist, and
bend, respectively [10,11]. In many theoretical approaches,
a very useful approximation is to consider all constants to
be alike, thus neglecting effects of the elastic anisotropy.
However, this anisotropy is connected to many phenomena
observed in liquid crystals, such as spontaneous deformations
in cylindrical samples [12,13], blue phases [14], and pattern
formation in cholesterics [15], among others. The classical
method to measure these elastic constants is based on the
Fréedericksz threshold, in which different surface treatments
are necessary [16]. Recently, a method was proposed to
measure K11 and K33 by using capacitance measurements and
a fitting procedure [17].
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In this paper, we study an equivalent electric circuit
in a planar cell and propose a simple approach to obtain
information about both elastic constants, K11 and K33. We
assume that the liquid-crystalline cell can be modeled as a
resistance, R, associated in parallel to a capacitance, C. Thus
the values of these quantities will vary as the deformation
is induced in the sample by an external voltage [9]. For this
reason, here we deal with the role of elastic anisotropy on the
electrical responses of a nematic sample or, more precisely,
on the behavior of the resistance, capacitance, and electric
current in the presence of an external field. This analysis is
performed under the condition of a nonhomogeneous electric
field across the sample, which is due to the coupling between
the applied electric field and the nematic director [11]. There
are several effects influencing the electrical response of the
cell, such as adsorption and desorption of ions, i.e., their
contribution to the formation of an ionic layer near to the
surface sample (Debye layer) and surface inhomogeneity
effects, among others [18,19]. For simplicity and in order to
focus our attention on the role of the elastic anisotropy, we
limit ourselves to the analysis of the reorientation effects. The
paper is organized as follows. The dependence of the director
profile on the electric voltage is analyzed in Sec. II, whereas
in Sec. III the equations for the electric circuit are established.
In Sec. IV, the main results of our work are presented and
discussed. Section V is dedicated to some concluding remarks.

II. STATEMENT OF THE PROBLEM

For the nematic sample, we consider a slab of thickness
d and area A, with the z axis normal to the bounding plates
located in z = ±d/2, in a Cartesian reference frame. In this
case, in which only splay-bend deformations with a planar
orientation at the surfaces are considered, ψ is the tilt angle
formed by the director with the x axis (parallel to the surfaces),
and it is assumed as independent of the y axis. In this scenario,
the nematic director may be written as n = cos ψex + sin ψez.
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The dynamic reorientation of the director occurs in the
presence of a time dependent electrical potential difference
V (t) applied to the sample. Consequently, the electric field
E(z,t) = E(z,t)ez is responsible for a time dependent molec-
ular reorientation such that ψ ≡ ψ(z,t). Thereby, the bulk free
energy due to elastic distortions, accounting for the presence
of a time dependent external field, is given by

W [ψ,∂ψ/∂z; z,t] = 1

2

{
[K11 cos2 ψ(z,t)

+K33 sin2 ψ(z,t)]

(
∂ψ

∂z

)2

− ε0[ε⊥ + εa sin2 ψ(z,t)]E2(z,t)

}
, (1)

where K11 and K33 are the elastic constants associated to
the deformations of splay and bend, respectively, ε0 is the
dielectric permittivity in the free space, and εa = ε‖ − ε⊥ is
the main dielectric anisotropy, in which ⊥ and ‖ refer to the
direction of the n.

A simplified scenario would consider the electric field
as uniform across the sample. It is a good approximation
for values of the field close to (or much higher than) the
Fréedericksz threshold. Here, the discussion is valid for values
of the electric field ranging from lower to much higher than
the critical one, so the coupling between the electrical field
and the nematic director must be taken into account for a more
realistic description. The procedure for obtaining the director
profile is the one described in [11] and is reproduced here for
clarity.

If the time dependence of the electrical potential is slow
enough, the viscous torque can be neglected, the quasistatic
regime can be adopted [8,9] and the process of minimizing
the free energy (1) is the standard variational one. By defining
D = ε0(ε⊥ + εa sin2 ψ)E(z) as the z component of the electric
displacement within the sample, it is possible to obtain,
through the Euler-Lagrange, the following equation of motion:

[K11 cos2 ψ + K33 sin2 ψ]

(
∂2ψ

∂z2

)

+ sin ψ cos ψ(K33 − K11)

(
∂ψ

∂z

)2

= − D2εa sin ψ cos ψ

ε0(ε⊥ + εa sin2 ψ)2
. (2)

For the condition of planar alignment on the surfaces,
the maximum distortion occurs in the middle of the sample
and we define ψ(z = 0,t) = ψm(t) because (dψ/dz)|z=0 = 0.
Integration of Eq. (2) yields

dψ

dz
= ±D

√
γ√

ε0ε⊥K11

×
√

sin2 ψm − sin2 ψ

(1 + κ sin2 ψ)(1 + γ sin2 ψ)(1 + γ sin2 ψm)
,

(3)

in which γ = εaε
−1
⊥ and κ = (K33 − K11)K−1

11 . The positive
and negative signs refer to the regions −d/2 � z � 0 and 0 �

z � +d/2, respectively. Furthermore, the electric potential
difference can be written as

V (t) = 2
∫ 0

−d/2
E(z,t)dz

= 2

ε0ε⊥

∫ 0

−d/2

D(t)

[1 + γ sin2 ψ(z,t)]
dz. (4)

By performing the change of variable wherein sin2 χ =
(sin2 ψ/ sin2 ψm) and inserting Eq. (3) into Eq. (4), it is
possible to obtain

V = 2

√
K11

ε0εa

(1 + γ sin2 ψm)1/2

×
∫ π/2

0

√
1 + κ sin2 χ sin2 ψm

(1 + γ sin2 χ sin2 ψm)(1 − sin2 χ sin2 ψm)
dχ.

(5)

The integral in Eq. (5) to be performed numerically establishes
the profile of the tilt angle in the middle of the sample, ψm(t),
as a function of the applied potential V (t). The critical value
for the Fréedericksz transition is determined by solving Eq. (5)
in the limit of ψm → 0, where it is possible to obtain

Vc = π

√
K11

ε0εa

.

This is one of the mechanisms that experimental methods
require to measure the elastic constant K11, for a liquid
crystal with positive dielectric anisotropy. In fact, for a
sample prepared to have planar alignment it is possible to
measure also K22 by applying an electrical field parallel to the
surfaces and perpendicular to the direction of anchoring. For
the measurements of K33 using the Fréedericksz approach,
it is necessary to handle another sample prepared to have
homeotropic alignment [16] and the electric field applied
parallel to the plates.

III. ELECTRIC PROPERTIES AND ELECTRIC CIRCUIT

If we assume that our nematic cell may be represented by an
equivalent circuit, the electric resistance and the capacitance
are defined, respectively, by the following equations:

R(t) = 1

A

∫ d/2

−d/2

dz

σzz(t)
, C−1(t) = 1

A

∫ d/2

−d/2

dz

ε0εzz(t)
. (6)

In Eq. (6), σzz(t) = σ⊥ + σa sin2 ψ(z,t) is the zz component
of the conductivity tensor while εzz(t) = ε⊥ + εa sin2 ψ(z,t)
is the zz component of the dielectric tensor in the dielec-
tric medium. Moreover, σa = σ‖ − σ⊥ is the anisotropy of
the conductivity tensor. Inserting Eq. (3) into Eq. (6) and
promoting the same change of variable that was performed
in the previous section [i.e., sin2 χ = (sin2 ψ/ sin2 ψm)], it is
possible to find the following expressions for R(t) and C(t),
respectively:

R = d

Aσ⊥

[
KR(ψm)

J (ψm)

]
, C = Aε0ε⊥

d

[
J (ψm)

KC(ψm)

]
, (7)
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with

J (ψm) =
∫ π/2

0

√
(1 + κ sin2 χ sin2 ψm)(1 + γ sin2 χ sin2 ψm)

1 − sin2 χ sin2 ψm

dχ , (8)

KR(ψm) =
∫ π/2

0

√
(1 + κ sin2 χ sin2 ψm)(1 + γ sin2 χ sin2 ψm)

(1 + 
 sin2 χ sin2 ψm)2(1 − sin2 χ sin2 ψm)
dχ, (9)

KC(ψm) =
∫ π/2

0

√
(1 + κ sin2 χ sin2 ψm)

(1 + γ sin2 χ sin2 ψm)(1 − sin2 χ sin2 ψm)
dχ , (10)

in which 
 = σa/σ⊥.

As mentioned earlier, in this approximation, the nematic
sample behaves as a parallel circuit, where the resistance R(t)
and the capacitance C(t) are subject to the same voltage. This
yields a total current I (t) across the sample in the form

I (t) =
[

1

R(t)
+ dC(t)

dt

]
V (t) + C(t)

dV (t)

dt
, (11)

where the first and the second terms are the resistive and
capacitive current, respectively.

A complete description of the electrical responses of an
ordinary nematic sample, even in the quasistatic regime, should
consider ionic adsorption effects inside the sample. Due to the
accumulation of ions near the surfaces, a thin double layer with
the thickness of the Debye’s length appears at each surface,
and this would reduce the voltage inside the nematic sample
[18–20]. The length of the double layer depends, among other
parameters, on the ion concentration.

As pointed out before, we are addressing our attention
only to reorientation effects caused by the electric field in
order to analyze the effects of the elastic anisotropy. Thus our
approximation is valid for a sample filled with a very weakly
ionized material (like most liquid crystals [21]).

IV. ELECTRICAL RESPONSE CHARACTERIZATION

In order to analyze the electrical properties of this sample,
let us consider the effect of a linearly increasing potential
V (t) = (V0/T )t , where V0 is the potential for t = T . For
simplicity, we use V0 = 10 V and T = 10 s. Moreover, we
consider also some typical values for the parameters charac-
terizing the cell, as indicated in Table I [8]. The numerical
procedures were performed with the software Mathematica R©
with standard precision and no problem of convergence was
encountered.

The profile of ψm(t), obtained from Eq. (5), is shown in
Fig. 1, for different values of κ . As expected, it is possible to
identify the Fréedericksz transition in the behavior of ψm as
a function of t . Indeed, before the transition t < tc, one can
observe the uniform orientation, i.e., ψm = 0. When t � tc,
one observes that ψm > 0, which leads to a distortion in the
middle of the sample.

It is possible to verify that ψm → π/2 when t → ∞,
but when t → T , its asymptotic value is practically reached
[11], which means that the tilt angle in the middle of the
sample is perpendicular to the orientation of the surface, as
denoted in Fig. 1 by a saturation behavior. A distinguished

feature of Fig. 1 may be identified by the different response
times of the director profile according to the applied electrical
field. Since κ = (K33 − K11)/K11, when κ < 0, the privileged
elastic deformation is of the bend type. This implies that
the molecular reorientation along the electric field direction
is favored. In fact, when the elastic energy and the electric
field favor the molecular reorientation in the same direction,
it results in a faster electrical response shown in Fig. 1.
On the other hand, when κ > 0, the larger elastic constant
is K33 and the molecular reorientation is favored along the
direction perpendicular to the applied electric field. It is worth
mentioning that, in this case, there is a competition among the
elastic energy and the applied electric field, which results in
the slower electrical response depicted in Fig. 1.

The behavior of R(t) and C(t) can be obtained by means of
Eqs. (7) and their profiles are illustrated in Figs. 2(a) and 2(b),
respectively. From Eq. (11) we obtain the electric current
through the sample and its profile is shown in Fig. 3.

FIG. 1. Behavior of the tilt angle profile ψm(t) vs t(s), for different
values of κ and the parameters presented in Table I. The discontinuity
observed occurs at time t = tc ≈ 0.8592 s, which coincides with the
time that V (t) reaches Vc for these parameters.
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TABLE I. Physical parameters used in numerical experiments.

Parameter A d K11 ε‖ ε⊥ σ‖ σ⊥

Value 10−4 m2 5 × 10−6 m 10−11 N 20.6 5.5 10−10(� m)−1 5σ‖

It is important to note in Fig. 3 the presence of a sharp
transition when t = tc. This discontinuity is due to the term
dC(t)/dt present in Eq. (11), as discussed in [8]. Another
interesting feature observed here is that the amplitude of the
discontinuity varies with κ in a decreasing rate, even the slight

FIG. 2. (a) Behavior of the resistance R(t) vs t(s), for different
values of κ , and (b) behavior of the capacitance C(t) vs t(s), for
different values of κ . The physical parameters are given in Table I.

one, which is evidenced in the inset of Fig. 3. The origin of this
change on the amplitude of the discontinuity can be observed
in Fig. 4, where we present the term connected to the derivative
of the capacitance in Eq. (11).

A much more prominent effect of the elastic anisotropy
on the electric current behavior is the nonmonotonic profile
above the Fréedericksz transition. After the arising of the
discontinuity, the electric current is still increasing with time
until reaching a maximum point, which is then followed by a
local minimum. The values of the current and time associated
to this minimum depend on the different values of κ . To
investigate the origin of this minimum, we notice that there
are three terms forming the total electric current expression in
Eq. (11). The two first terms, which are multiplied by V (t),
are the resistive part, while the last term is the capacitive
part. According to our numerical values, the capacitive term
coincides with the capacitance profile, and it makes no
contribution to the nonmonotonic behavior of the current.
Figure 4(b) show that the purely resistive part of the current,
V (t)/R(t), is responsible for this local minimum. Physically,
one should expect an increase of the electric current with the
voltage. In fact, the decreasing of the electric current is given by
the negative value of σa . After the threshold, as the conductivity
decreases, the resistance increases and it influences the electric
current. When the voltage increases, the competition between
voltage and resistance produces this nonmonotonic behavior in
the electric current. The electric-current characteristics should

FIG. 3. Behavior of the intensity of the electric current I (t) vs
t(s), for different values of κ and physical parameters presented
in Table I. The highlighted part shows more clearly the behavior
immediately below and above of the Fréedericksz threshold.
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FIG. 4. Separate profiles of the contributions to electric current
from Eq. (11) evidencing (a) the amplitude of the discontinuity, and
(b) the concavity observed in Fig. 3. The capacitive part of the electric
current coincides with the profile of capacitance due the fact that
dV/dt = 1.

be different if the anisotropy in the conductivity is positive.
In that case, both voltage and the decrease in resistance tend
to increase the electric current, and no minimum would be
found.

Figure 3 shows that the minimum found in the electrical
current moves to the right when κ increases, i.e., when the
splay elastic distortion begins to prevail, the electrical current
increases. This makes perfect sense when we take into account
Fig. 2. The higher the value of κ , the lower the resistance, which

FIG. 5. Behavior of the time in which the minimum occurs vs κ .
Physical parameters are given in Table I.

fits perfectly with Ohm’s law. Then, we can build a profile
for the value of tmin in which the minimum is observed as a
function of the elastic parameter κ . This behavior is shown in
Fig. 5, for the set of parameters used in our analysis. This figure
shows that in the range from κ = −0.5 (K33/K11 = 0.5) to
κ = 2.5 (K33/K11 = 3.5), tmin varies from approximately 1.9
s to 3.0 s. This feature could be useful to estimate the values of
the ratio K33/K11. In this way, once the value of K11 is obtained
from the Fréedericksz transition, our numerical results indicate
the possibility of estimating the value of K33 as well with
a single sample and a single measurement of the electric
current. In principle, the value of K33 can be extracted from
this electric current analysis; however, as the model considers
some approximations (as, e.g., the strong anchoring), this value
should present a slight deviation from the measured value
in the standard method. In fact, this approach can be useful
as a preliminary characterization of the elastic proprieties of
the sample. Once K11 has been measured with the threshold
potential, one can obtain some information about the bend
elastic constant by increasing the voltage until the minimum
of current is reached.

V. CONCLUSIONS

We have investigated the electrical properties, more specif-
ically, the behavior of the resistance, capacitance, and total
electric current of a pure sample of nematic liquid crystals in
the presence of an external field. The analysis was developed
by considering the coupling of the electric field and the nematic
director, which results in a nonuniform distribution of the
electric field across the sample. We have investigated the role
of the elastic anisotropy on these electrical properties. Our
studies indicate a significant change in the profiles of electric
current according to the values of the ratio between the K33
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and K11 elastic constants. Indeed, a nonmonotonic behavior
of the electric current is observed, in which a minimum value
is found for an electric voltage only few times larger than
the Fréedericksz threshold. We have shown that this minimum
occurs for different values of voltage as the elastic constants
ratio varies. The time profile of this minimum is built as a
function of the elastic parameters, showing that it changes
significantly for different values of elastic constants. This
behavior suggests that it is possible to use electric current
measurements to yield estimates of both elastic constants, K11

and K33, if we assume that the value of one of them is obtained
from the critical voltage.
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