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Sedimentation equilibrium of magnetic nanoparticles with strong dipole-dipole interactions
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Langevin dynamics simulation is used to study the suspension of interacting magnetic nanoparticles (dipolar
spheres) in a zero applied magnetic field and in the presence of a gravitational (centrifugal) field. A particular
emphasis is placed on the equilibrium vertical distribution of particles in the infinite horizontal slab. An increase
in the dipolar coupling constant λ (the ratio of dipole-dipole interaction energy to thermal energy) from zero
to seven units causes an increase in the particle segregation coefficient by several orders of magnitude. The
effect of anisotropic dipole-dipole interactions on the concentration profile of particles is the same as that of
the isotropic van der Waals attraction modeled by the Lennard-Jones potential. In both cases, the area with a
high-density gradient separating the area with high and low particle concentration is formed on the profiles.
Qualitative difference between two potentials manifests itself only in the fact that in the absence of a gravitational
field the dipole-dipole interactions do not lead to the “gas-liquid” phase transition: no separation of the system
into weakly and highly concentrated phases is observed. At high particle concentration and at large values of λ,
the orientational ordering of magnetic dipoles takes place in the system. Magnetic structure of the system strongly
depends on the imposed boundary conditions. Spontaneous magnetization occurs in the infinite horizontal slab
(i.e., in the rectangular cell with two-dimensional periodic boundary conditions). Replacement of the infinite
slab by the finite-size hard-wall vertical cylinder leads to the formation of azimuthal (vortex-like) order. The
critical values of the coupling constant corresponding to the transition into an ordered state are very close for two
geometries.

DOI: 10.1103/PhysRevE.95.032609

I. INTRODUCTION

Magnetic fluid is a colloidal suspension of magnetic
nanoparticles in a nonmagnetic carrier fluid [1]. Because of
their small size (10–20 nm) the particles are single-domain
and have a permanent magnetic moment. In addition, they
are covered with thin surfactant shells that protect them from
aggregation due to interparticle dipole-dipole (magnetodipole)
and van der Waals interactions. The thermal (Brownian)
motion of particles disperses them in an accessible volume of
the carrier fluid, while the external force fields (gravitational
and nonuniform magnetic) create the drift of particles to
the region of the lowest potential energy (sedimentation
and magnetophoresis, respectively). Competition between the
chaotic Brownian motion and the directed drift of particles
leads, in the course of time, to the establishment of an
equilibrium concentration profile resembling a barometric
distribution [2].

The inhomogeneous steady-state distribution of a magnetic
phase may essentially affect the operation of mechanisms in
which the magnetic fluid is used as a working medium [3].
Fluxes of particles and their spatial distribution are strongly
affected by steric, hydrodynamic, magnetodipole, and van
der Waals interparticle interactions. The role of the first
two types of interactions in nonmagnetic colloids is also
significant and has been actively discussed over the years
[4]. There are, however, only a few works dealing with
the influence of magnetodipole interactions on mass transfer
in magnetic fluids [2,5–11]. In Refs. [2,10,11] the spatial
distribution of magnetic particles formed in a zero magnetic
field due to gravitational sedimentation and gradient diffusion
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has been theoretically investigated taking into account only
steric and magnetodipole interparticle interactions (dipolar
hard sphere approximation). Only systems with weak and
moderate magnetodipole interactions have been considered.
The present paper addresses the problem of dipolar spheres
sedimentation equilibrium at high values of the dipolar
coupling constant λ = (μ0/4π )μ2/d3kBT , where μ0 is the
magnetic constant, μ is the particle magnetic moment, d is
the particle diameter, kB is the Boltzmann’s constant, and T is
the temperature. Although most known magnetic fluids can be
characterized by small values of the dipolar coupling constant
(λ � 1), sedimentation-stable magnetic fluids with large λ are
of significant practical interest due to their high magnetic
susceptibility [12,13]. In addition, for λ � 4 magnetodipole
interactions are supposedly able to initiate phase transitions
of the first and second order [14–18]. The consideration of
sedimentation equilibrium under phase transition conditions
might substantially contribute to the understanding of mag-
netic colloids properties.

II. MATHEMATICAL MODEL AND SIMULATION
METHOD

The simulated system is a rectangular cell with sides
L × L × Lz, containing N interacting uniformly magnetized
spheres of equal diameter d and with magnetic moments
of equal magnitude μ (see Fig. 1). The gravitational field
is directed opposite to the z axis. The upper and lower
boundaries of the cell (planes z = 0 and z = Lz, respectively)
are impenetrable to particles. Periodic boundary conditions
(PBCs) are imposed in the x and y directions. This allows
us to simulate the geometry of an infinite horizontal slab.
Additionally we conducted a series of simulations for the cell
geometry that we have previously used in Ref. [10], i.e., for a
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FIG. 1. Schematic representation of the simulation cell.

hard-wall finite-size cylinder of height Lz. Analogously to the
first case, the upper and lower ends of the cylinder are in the
planes z = 0 and z = Lz, respectively, and the gravitational
field is directed opposite to the z axis. No PBCs are imposed
on the cylinder. According to our previous results, the vertical
concentration profiles for the cylinder exhibit a systematic
error associated with the formation of a boundary particle
layer near the system side wall. The slab geometry is free from
this drawback. No qualitative differences, however, have been
observed for two geometries. For this reason, only results for
the slab are mostly given below. An important exception is
the magnetic structure, which spontaneously appears in the
system at large coupling constants and strongly depends on
the boundary conditions. This subject will be discussed in
Sec. III D.

To calculate equilibrium properties of the canonical NV T

ensemble of dipolar spheres, we use the Langevin dynamics
simulation method. The equations of translational and rota-
tional motion for the ith particle in a dimensionless form can
be written as follows [19,20]:

v̇∗
i = −∂U ∗

i /∂ r∗
i − γ ∗T v∗

i + η∗T
i , (1)

J ∗ω̇∗
i = −μ̂i × ∂U ∗

i /∂μ̂i − γ ∗Rω∗
i + η∗R

i . (2)

Here “∗” denotes reduced quantities. We use d as a unit of
length, particle mass m as a unit of mass, and kBT as a
unit of energy. Thus, v∗

i = vi

√
m/kBT is the reduced linear

velocity, ω∗
i = ωi

√
md2/kBT is the reduced angular velocity,

r∗
i = r i/d is the reduced position vector of the particle center,

μ̂i = μi/μ is the unit vector along the particle magnetic
moment, U ∗

i = Ui/kBT is the reduced potential energy of
the particle, J ∗ = J/md2 is the reduced moment of inertia,
γ ∗T = γ T

√
d2/mkBT is the reduced translational friction

coefficient, γ ∗R = γ R
√

1/d2mkBT is the reduced rotational
friction coefficient, and η∗T

i and η∗R
i are the random Gaussian

force and torque, respectively, which have zero mean values
and satisfy the standard fluctuation-dissipation relationships:〈

η
∗T (R)
iα (t∗)

〉 = 0, (3)〈
η

∗T (R)
iα (t∗1 )η∗T (R)

jβ (t∗2 )
〉 = 2γ ∗T (R)δαβδij δ

∗(t∗1 − t∗2 ), (4)

where α and β denote the vector components. The reduced
time is t∗ = t

√
kBT /md2. The total potential energy consists

of energy in the gravitational field, energy of interaction with
other particles, and hard-wall repulsion energy:

U ∗
i = Gζi +

∑
j,j �=i

[u∗
dd (i,j ) + u∗

sr (r∗
ij )] +

∑
walls

u∗
w(i), (5)

where G = Lz/lsed is the dimensionless gravitational param-
eter, lsed = kBT /�ρνg is the sedimentation length, �ρ is
the density difference between the particle and carrier fluid,
ν = (π/6)d3 is the particle volume, g is the gravitational
acceleration, ζ = z/Lz is the normalized vertical coordinate
(0 � ζ � 1), u∗

dd is the pair dipole-dipole interaction potential:

u∗
dd (i,j ) = λ

[
μ̂i · μ̂j

r∗3
ij

− 3(μ̂i · r∗
ij )(μ̂j · r∗

ij )

r∗5
ij

]
, (6)

r∗
ij = r∗

i − r∗
j , u∗

sr is the steric repulsion potential, u∗
w(i) =

u∗
sr (r∗

iw + 0.5) is the repulsion from the rigid wall, and r∗
iw is

the distance between the particle center and the closest point
of the wall.

Most theoretical studies of the interparticle interactions’
effect on mass transfer phenomena in magnetic fluids use the
dipolar hard sphere approximation. In this case, by definition,
hard sphere (HS) potential should be used to model steric
repulsion:

u∗
HS(r∗) =

{∞, r∗ < 1
0, r∗ � 1 . (7)

While potential Eq. (7) can easily be incorporated in analytical
studies and Monte Carlo simulations [11,21], in Langevin
dynamics some differentiable approximation for u∗

HS (some
“soft sphere potential”) must be used in order to calculate
corresponding interparticle forces. Truncated and shifted
Lennard-Jones (tsLJ) potential is often used for this purpose:

u∗
tsLJ (r∗) =

{
u∗

LJ (r∗) − u∗
LJ (r∗

co), r∗ < r∗
co

0, r∗ � r∗
co

, (8)

where u∗
LJ is the standard Lennard-Jones potential

u∗
LJ (r∗) = 4ε∗

(
1

r∗12
− 1

r∗6

)
; (9)

r∗
co is the cutoff radius. To make potential purely repulsive

r∗
co = 21/6 is usually used. In our opinion, there is a problem

with the potential (8). For dipolar hard spheres the coupling
constant λ ∝ μ2/d3kBT has an obvious physical meaning: it
characterizes the relation between the system thermal energy
and the dipolar energy of two particles when they are in
the most favorable “head-to-tail” configuration (magnetic
moments are aligned and interparticle separation equals to
d). But for dipolar soft spheres there is no fixed optimal
interparticle distance; the larger the particle magnetic moment,
the closer two particles can approach each other and the lower
their dipolar energy can become. To exclude this effect and
to ensure that the input parameter λ preserves its original
physical meaning we use in our simulations the steric repulsion
potential

u∗
sr (r∗) =

{
4ε∗(1/r∗2s − 1/r∗s + 1/4), r∗ < 21/s

0, r∗ � 21/s (10)
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with parameters ε∗ = 0.68 and s = 50. As shown in the
Appendix this is a much better approximation for the true
hard sphere potential (7) than (8). In what follows we will still
distinguish between “dipolar hard spheres” (DHSs) with steric
repulsion modeled via Eq. (7) and “dipolar spheres” with steric
repulsion modeled via Eq. (10).

When calculating forces and torques due to interaction
between the ith and j th particles with PBCs applied, inter-
actions of the ith particle with all images of the j th particle
also should be taken into account. Long-range dipole-dipole
interactions in this case are calculated using the Ewald
summation technique adapted for the slab geometry. Details
can be found in Ref. [17]. Equations (1) and (2) are integrated
using the modified leapfrog-Verlet algorithm proposed by
Grøbech-Jensen and Farago [22]. Integration parameters are
J ∗ = 0.1, γ ∗T = 1, γ ∗R = 3, and the integration time step
is �t∗ = 0.002. Simulation input parameters are N , L∗

z , λ,
G, and the average volume fraction ϕ = Nν/V , where V is
the simulation cell volume. The main result of the simulation
is the equilibrium concentration profile ϕ = ϕ(ζ ), obtained
as a set of points {ζk,ϕk}, k = 1,2, . . . ,L∗

z , where ϕk is
the (time-averaged) volume fraction of particles inside the
range zk − 0.5d � z � zk + 0.5d, zk = ζkLz. Most results are
obtained for N = 4096, L∗

z = 80, G = 5, and ϕ = 0.15. The
equilibration period is 5 × 105�t∗, and the data sampling
period is 2 × 106�t∗. For λ = 0 particles are homogeneously
distributed in the beginning of the simulation; for larger λ

previously obtained profiles are used as an initial distribution.

III. RESULTS

A. Small and moderate values of the coupling constant

First, let us briefly consider small and moderate values of
the dipolar coupling constant 0 � λ � 4 and particle volume
fractions ϕ < 0.5. Sedimentation and diffusion of particles
in this region were previously investigated in Refs. [2,5–11].
Particularly, in Ref. [10] we proposed the approximation
formula for the isotropic part of the reduced DHS gradient
diffusion coefficient. It describes the effect of interparticle
interactions on the intensity of diffusion processes in the
system at a zero external magnetic field. The formula was
determined from a considerable body of numerical simulation
data and reads as follows:

D̃(λ,ϕ) = 1 + 2ϕ
4 − ϕ

(1 − ϕ)4
− (eA(λ)ϕ − eB(λ)ϕ), (11)

A(λ) = 1.3λ, (12)

B(λ) = 1.3λ − 3λ2 + 0.1λ4 − 0.018λ6, (13)

where D̃ = D/D0K(ϕ), D is the gradient diffusion coefficient
of a magnetic nanoparticle in a magnetic fluid, D0 = b0kBT

is Einstein’s diffusion coefficient for a Brownian particle
in a dilute solution, K(ϕ) = b(ϕ)/b0, and b(ϕ) and b0 are
the particle mobility in a magnetic and in a carrier fluid,
respectively. The second term in the right-hand side of
Eq. (11) describes steric repulsion in the Carnahan-Starling
approximation for a hard sphere equation of state [23], and the
third term accounts for the magnetodipole interactions. As was
shown in Ref. [10], Eq. (11) has a wider application range than
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FIG. 2. Equilibrium concentration profiles of dipolar spheres at
different values of the dipolar coupling constant λ. ϕ = 0.15, G = 5.
Points are Langevin dynamics results for N = 2048 and L∗

z = 40;
solid lines are from Eqs. (11)–(15).

other available expressions for the DHS diffusion coefficient.
Approximation Eq. (11) allows us to describe sedimentation
equilibrium profiles of dipolar spheres rather accurately in
the case of small and moderate coupling constants, which is
illustrated in Fig. 2. Concentration profiles in figure correspond
to ϕ = 0.15, G = 5, and different values of the coupling
constant λ. Symbols are Langevin dynamics results; solid lines
are plotted using the equilibrium profile equation [10]

D̃(λ,ϕ)
∂ϕ

∂ζ
= −ϕG, (14)

approximation (11) for the diffusion coefficient, and the
normalization condition

ϕ′ =
∫ 0.9

0.1 ϕ dζ

0.8
, (15)

where ϕ′ is the average volume fraction of particles in the range
0.1 � ζ � 0.9, which is chosen to exclude boundary effects
(ϕ′ for every λ is obtained from corresponding simulation).
Equation (14) is derived from the balance between the
sedimentation flux density j sed = ϕb�ρg and the diffusion
flux density jdif = −D∇n. It is seen from the figure that a
very good agreement between simulation results and solutions
of Eqs. (11)–(15) is observed up to λ = 4.

For an additional verification of Eq. (11) we can derive
from it new expressions for thermodynamic quantities of the
magnetic nanoparticles suspension in a zero magnetic field
and compare these expressions with known numerical and
analytical results. For example, in the absence of an applied
magnetic field the following relation is valid:

D̃ = ν

kBT

(
∂�

∂ϕ

)
T

, (16)
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FIG. 3. The osmotic pressure of DHS ensemble as a function
of DHS volume fraction at different values of the dipolar coupling
constant λ. Symbols are Monte Carlo results from Ref. [21], solid
lines are from our approximation Eq. (17), dashed lines are from the
LFE theory [25].

where � is the osmotic pressure of colloidal particles [7].
Substituting Eq. (11) into Eq. (16) and integrating with respect
to ϕ (considering that � = 0 at ϕ = 0), one obtains

ν�

kBT
= ν�HS

kBT
+ 1 − eA(λ)ϕ

A(λ)
− 1 − eB(λ)ϕ

B(λ)
, (17)

ν�HS

kBT
= ϕ + ϕ2 + ϕ3 − ϕ4

(1 − ϕ)3
, (18)

where �HS is the osmotic pressure of nonmagnetic hard
spheres (Carnahan-Starling approximation). Dependencies of
the DHS osmotic pressure on ϕ for different values of λ are
given in Fig. 3. Symbols are Monte Carlo simulation results
from Ref. [21], solid lines correspond to our approximation
Eq. (17), and dashed lines are from the logarithmic free energy
(LFE) theory recently developed by Elfimova and co-workers
[21,24,25]. The figure shows that at λ � 4 and ϕ � 0.45 our
approximation formula works as well as the LFE theory and
even outperforms it at λ = 3 and λ = 4.

B. On the possibility of the “gas-liquid” phase transition
in dipolar sphere suspension

The first-order phase transition in real magnetic fluids
is a well-known experimental fact, which poses no doubts.
The transition is accompanied by the separation of magnetic
nanoparticles into weakly and strongly concentrated phases
(with increasing magnetic field or decreasing temperature) and
the formation of so-called droplike aggregates up to several mi-
crometers in size, which are visible with an optical microscope
and occur both in ionic magnetic fluids and in surfactant-
stabilized ferrocolloids [26]. These objects correspond to a
denser “liquid” phase. On the boundary between the aggregate
and its environment, there exists a surface tension and in a
zero magnetic field aggregates are of spherical shape. Under
the applied field they extend along the field and transform into

thin fibers. With the magnetic field off, the droplike aggregates
again take a spherical shape. The strong effect of a magnetic
field on aggregate formation indicates that the magnetodipole
interparticle interactions play a significant role in the phase
separation of magnetic fluid. The main question is whether
magnetodipole interactions alone are sufficient to cause the
separation or some additional attraction potential should be
applied. No clear answer to this question was obtained in
laboratory experiments because weak dispersion interactions
between colloidal particles are always present in real magnetic
fluids. Many analytical studies predict the first-order phase
transition in the DHS system, though a broad scatter in its
critical parameters (λc,ϕc) exists: λc = 4.08,ϕc = 0.092 in
terms of the effective field model [27]; λc = 2.82,ϕc = 0.13 in
the framework of the thermodynamic perturbation theory [28];
λc = 4.45,ϕc = 0.056 in a mean-spherical approximation
[29]; and λc = 5.97,ϕc = 0.032 according to the LFE theory
[25]. However, these estimates lie beyond the applicability
range of the corresponding theories. The same holds for
our own approximation described in Sec. III A: according to
Eq. (17) the critical point is λc = 5.9545,ϕc = 0.2423 (from
the condition ∂�/∂V = ∂2�/∂V 2 = 0), but approximation
formulas describe simulation data only at λ � 4. At the same
time authors of most works on numerical simulation of dipolar
hard and soft spheres report no classical phase separation at
large coupling constants 4 � λ � 8 [14,30]. In this parameter
range a dipolar system remains macroscopically homogeneous
while particles form chains, rings, and branching structures.

Here we will consider the possibility of the phase separation
in the dipolar system in the presence of a complicating factor,
a relatively strong gravitational field, and also the effect of
gravity on the structure of a transition layer between high
and low concentration regions. We will additionally compare
the results for the dipolar sphere system with those for the
ensemble of Lennard-Jones spheres, whose ability to stratify
is beyond question. In the last case, the particles interact only
through the short-range potential Eq. (8) with the cutoff radius
r∗
co = 2.5. Note that, in the general formulation (no referencing

to any particular interaction potential), the structure of a
gas-liquid interface layer was considered in Refs. [31–33].
In Ref. [33] the effect of gravity on the transition layer was
investigated, and the obtained results indicated that “gravity
modifies the local fluid properties themselves very close to the
critical point and changes the nature of the critical-point phase
transition”.

Concentration profiles for the Lennard-Jones system at
G = 5 and ϕ = 0.15 are given in Fig. 4. The potential well
depth ε∗ varies near the critical value ε∗

c (for r∗
co = 2.5 this

is ε∗
c 	 0.92 [34]). The middle part of profiles with ε∗ > ε∗

c

therefore corresponds to the interface layer between two
phases. This layer has no distinct boundaries, and for assessing
its relative thickness we use the following quantity:

� = [ max
0.1�ζ�0.9

(|∂ϕ/∂ζ |)]−1. (19)

It is known that under the phase transition conditions the
interfacial layer thickness increases with increasing temper-
ature and becomes infinite at the critical temperature [31].
The quantity � should have the same behavior in the limit
ε∗ → ε∗+

c . However, it follows from Ref. [33] that at the phase
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FIG. 4. Equilibrium concentration profiles of Lennard-Jones
spheres at different values of ε∗, obtained via Langevin dynamics for
ϕ = 0.15, G = 5, N = 4096, and L∗

z = 80. Potential cutoff radius is
r∗
co = 2.5.

transition point quantity � actually will have a finite value due
to the gravity effect. The dependence � = �(ε∗) depicted in
Fig. 5 confirms this prediction. It is also seen from figure that
the curve is separated into two segments by the value ε∗ 	 ε∗

c :
� rapidly ascends with decreasing ε∗ at ε∗ < ε∗

c and reaches
a plateau at ε∗ > ε∗

c .
Concentration profiles for the system of dipolar spheres

with large coupling constants λ � 4 are presented in Fig. 6.
Unfortunately, these profiles give no way of deducing an
unambiguous conclusion about the existence of the first-
order phase transition in the dipolar sphere system. The
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FIG. 5. The inverse of the maximum concentration gradient �

for Lennard-Jones spheres as a function of the potential well depth
ε∗. Langevin dynamics results for r∗

co = 2.5, ϕ = 0.15, G = 5, N =
4096, and L∗

z = 80. Vertical dashed line corresponds to the critical
value ε∗

c = 0.92 [34].
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FIG. 6. Equilibrium concentration profiles of dipolar spheres at
different values of λ, obtained via Langevin dynamics for ϕ = 0.15,
G = 5, N = 4096, and L∗

z = 80.

compressibility of a “liquid phase” appears to be too high, and
the intermediate zone with high density gradients occupies
half the slab. Nonetheless, the plots of the parameter �

versus the reduced energy of interparticle interactions for
the Lennard-Jones system and the dipolar sphere system are
qualitatively similar (Figs. 5 and 7, respectively). Based only
on this similarity, we can assume that the phase separation
in the dipolar sphere system takes place within a range 4 <

λ < 6, which agrees well with the known analytical estimates.
However, in the investigated energy ranges the minimum value
of � for dipolar spheres is approximately four times larger
than for Lennard-Jones spheres, i.e., the maximum achievable
density gradient in the first case is noticeably smaller.

2 4 6 8
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3.0

FIG. 7. The inverse of the maximum concentration gradient �

for dipolar spheres as a function of the dipolar coupling constant
λ. Langevin dynamics results for ϕ = 0.15, G = 5, N = 4096, and
L∗

z = 80.
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FIG. 8. Instantaneous concentration profiles of dipolar spheres at
different moments of time after the disappearance of a gravitational
field. λ = 7, ϕ = 0.15, G = 5, N = 4096, and L∗

z = 80.

A qualitative difference between two systems manifests
itself after “switching off” the gravitational field. In the
absence of gravity, the initially inhomogeneous system of
dipolar spheres shortly becomes homogeneous even at cou-
pling constants as large as seven (see Fig. 8), whereas in the
Lennard-Jones system the phase separation is preserved at high
ε∗ > ε∗

c (Fig. 9). This indicates that in the absence of gravity
the “gas-liquid” transition does not take place in the dipolar
system.

The observed recovery of dipolar spheres homogeneity at
high λ contradicts the results previously reported in Ref. [16],
where the evaporation of a concentrated DHS drop inside a
long hard-wall cylinder was simulated via a Monte Carlo

0.0 0.2 0.4 0.6 0.8 1.0
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0.1
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0.4

FIG. 9. Instantaneous concentration profiles of Lennard-Jones
spheres at different moments of time after the disappearance of
a gravitational field. ε∗ = 1.3, ϕ = 0.15, G = 5, N = 4096, and
L∗

z = 80.
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FIG. 10. Segregation coefficient of dipolar spheres as a function
of the dipolar coupling constant λ. Langevin dynamics results for
ϕ = 0.15, G = 5, N = 4096, and L∗

z = 80.

method. At λ � 3 no full evaporation was achieved, which was
interpreted as a sign of the first-order phase transition. It was
suggested that observation of the transition was possible due
to avoidance of potentially dangerous PBCs. But we should
again emphasize that a series of simulations with the finite-size
cylinder instead of the slab (with a two-dimensional PBC) was
also conducted in the present work: all other things being
equal, the restoration of dipolar spheres’ uniform distribution
in the cylinder and in the slab takes approximately the same
amount of time. It is possible that the actual reason why the
phase separation was reported earlier is another nonstandard
feature of the Monte Carlo scheme implemented in Ref. [16]:
the maximum random displacement of a trial particle was a
function of the local particle density. In the present work, we
have not tested the analogues of this algorithm.

Despite the absence of explicit (significant) signs of
the first-order phase transition, the effect of magnetodipole
interparticle interactions on particle segregation in the dipolar
sphere system turns out to be very strong. To quantitatively
assess the inhomogeneity, we use the segregation coefficient

κ = ϕ(0.1) − ϕ(0.9)

ϕ(0.9)
. (20)

Coefficient κ as a function of the dipolar coupling constant is
plotted in Fig. 10. It is seen that at moderate values of aver-
age particle concentration (ϕ = 0.15) and large gravitational
parameter (G = 5) the magnetodipole interactions alone may
enhance the system inhomogeneity by three to four orders of
magnitude. Since the average particle concentration itself is a
factor that strongly influences the system inhomogeneity [2],
we can expect that the effect of magnetodipole interactions
on the segregation of low-concentrated systems will be even
greater.

C. Crystallization of dipolar spheres in concentrated systems

Figure 11 depicts concentration profiles of a highly concen-
trated dipolar sphere system in the strong gravitational field
(ϕ = 0.4, G = 20). In the lower part of the slab one can see
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FIG. 11. Equilibrium concentration profiles of dipolar spheres
at different values of λ, obtained via Langevin dynamics for
ϕ = 0.4, G = 20, N = 4096, and L∗

z = 80. Horizontal dashed line
corresponds to the hard spheres’ freezing concentration ϕf = 0.493
[35,36].

a sharp increase in a local volume fraction and the formation
of a periodic density structure. Simple visual analysis of the
system configuration (see Fig. 12) indicates a hexagonal lattice
arrangement of particles in this area. Close packing is observed
regardless of the intensity of magnetodipole interactions, even
at λ = 0, which means that it is mainly due to the steric
repulsion between particles. At low coupling constants the
transition to close packing takes place at ϕ � ϕf , where
ϕf 	 0.493 is the freezing volume fraction of nonmagnetic
hard spheres [35,36]. Gravity-induced crystallization of hard
spheres near a hard wall is a known phenomenon which has
been investigated experimentally, via molecular dynamics,
Monte Carlo simulations, and the density functional theory
[37]. An increase of λ leads to an increase in the volume,
in which periodic arrangement of particles exists. Also at
λ � 4 the freezing concentration starts to decrease. This result
qualitatively agrees with the predictions of Ref. [38], where
crystallization of dipolar spheres has been investigated in the
framework of the density functional theory. After “switching
off” the gravitational field close packing disappears relatively
quickly; irrespective of λ value, at ϕ = 0.4, L∗

z = 80, and

N = 4096 the restoration of the homogeneous particle distri-
bution takes ∼105�t∗.

D. Spontaneous orientational ordering of magnetic dipoles

The possibility of orientational order and the occurrence
of spontaneous magnetization in the system of soft or hard
dipolar spheres at high coupling constants has been repeatedly
demonstrated in simulations with three-dimensional [39] and
two-dimensional PBCs (i.e., for the infinite slab geometry)
[17]. In the latter case, the ordering occurs strictly in the
slab plane. For the system studied in our work, this type of
ordering also should be expected. Spontaneous magnetization
is considered here as a function of the vertical coordinate.
Average tangential (Mxy) and normal (Mz) magnetization
components corresponding to some height ζ are calculated
as

Mxy(ζ ) =
〈√√√√(∑

i

ζ
μix

)2

+
(∑

i

ζ
μiy

)2
〉

1

L∗2μ
, (21)

Mz(ζ ) =
〈∣∣∣∣∑

i

ζ
μiz

∣∣∣∣
〉

1

L∗2μ
, (22)

where the summation is over particles whose centers fall in the
range z − 0.5d � zi � z + 0.5d, z = ζLz. Figure 13 presents
a concentration profile along with profiles of magnetization
components for a dipolar sphere system at λ = 7. From the
figure it can be seen that, as in Ref. [17], the ordering occurs
strictly in the xy plane [see also Fig. 14(a)]. This result is
logical because the occurrence of a magnetization component
normal to the slab is energetically unprofitable due to large
demagnetizing fields. The tangential magnetization, on the
contrary, does not increase the magnetostatic energy of the
slab. It is also seen that in the presence of gravitational
field the system is magnetized nonuniformly along a vertical
coordinate.

Replacement of the slab, created using two-dimensional
PBCs, with the finite-size hard-wall cylinder produces a
qualitative change in the orientational ordering. The total
magnetic moment of the cylinder fluctuates near zero even
at high λ. Magnetic moments of particles acquire azimuthal
ordering [see Fig. 14(b)]. In this state local magnetization
is always tangential to the container surface, so that de-
magnetizing fields are absent and the free energy of the

FIG. 12. Snapshot of the dipolar sphere system in projection onto a vertical plane, parallel to the gravitational field. λ = 4, ϕ = 0.4, G = 20,
N = 4096, L∗

z = 80. Every sphere corresponds to one of the particles, but the sphere diameter is half the particle diameter d: this allows one
to see regular arrangement of particles more clearly.
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FIG. 13. Equilibrium concentration and spontaneous magnetiza-
tion profiles of the dipolar sphere system. Langevin dynamics results
for λ = 7, ϕ = 0.15, G = 5, N = 2048, and L∗

z = 40.

ordered system is minimal. This result qualitatively agrees with
theoretical predictions of Ref. [40], and the density functional
theory results from Ref. [41] for the finite-size cavity with
spontaneously magnetized Stockmayer fluid.

Figure 15 shows dependencies of the system global orien-
tational order parameter on the coupling constant. In the case
of a slab geometry the order parameter is the reduced dipolar
moment

P = 1

μN

〈∣∣∣∣∣
N∑

i=1

μi

∣∣∣∣∣
〉
, (23)

FIG. 14. Snapshots of the dipolar sphere system in projection
onto the plane ζ = 0 (the system bottom) for different boundary
conditions. λ = 7, ϕ = 0.15, G = 5, N = 4096, L∗

z = 80. The sphere
diameter coincides with the particle diameter d . Each arrow indicates
the direction of the tangential component of the particle magnetic
moment (μxy). The arrow size is proportional to μxy/μ: if μxy/μ=1,
then the arrow size equals d . (a) A rectangular cell with two-
dimensional PBC (an infinite horizontal slab); (b) a finite-size
hard-wall cylinder.
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FIG. 15. Global orientational order parameters of the dipolar
sphere system as a function of the dipolar coupling constant λ for
different boundary conditions. The reduced dipolar moment P serves
as the order parameter for a horizontal slab, and the reduced toroidal
moment Q; for a vertical cylinder. ϕ = 0.15, G = 5, N = 2048,
L∗

z = 40.

and for a cylinder this is the reduced toroidal moment

Q = 1

μN

〈∣∣∣∣∣
N∑

i=1

rC
i × μi

rC
i

∣∣∣∣∣
〉
, (24)

where rC
i is the particle position relative to the system center

of mass. Average volume fraction ϕ, vertical size Lz, and the
gravitational parameter G are the same in both cases. It is
seen that the critical value of the coupling constant lies in
the interval 5 < λ < 6 and weakly depends on the applied
boundary conditions.

IV. SUMMARY AND CONCLUDING REMARKS

Langevin dynamics simulations of dipolar spheres’ gravi-
tational sedimentation have been performed over a wide range
of the dipolar coupling constants 0 � λ � 8. Analysis of the
results indicates that dipole-dipole interactions can strongly
affect the equilibrium concentration profile of magnetic phase.
At moderate values of the average particle volume fraction
(ϕ = 0.15), magnetodipole interactions can enhance the sys-
tem inhomogeneity by several orders of magnitude. A stronger
effect of magnetodipole interactions should be expected in
the case of low-concentrated systems, whereas their role in
the segregation of concentrated systems should be reduced.
Comparison of the dipolar system with the Lennard-Jones fluid
reveals an explicit analogy between the effects of short-range
isotropic attraction and dipole-dipole interaction on particle
distribution in the gravitational field. However, there was no
clear evidence that magnetodipole interactions are able to
produce the “gas-liquid” phase transition without additional
attractive potential.

We have investigated systems of different geometries with
two different types of boundary conditions: (1) the infinite
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horizontal slab (a two-dimensional PBC applied to the rectan-
gular box) and (2) the finite-size hard-wall vertical cylinder.
We have revealed no qualitative differences between two cases
except for the nature of spontaneous orientational ordering
of magnetic moments. At λ � 5 (for ϕ = 0.15 and G = 5)
the slab is spontaneously magnetized and the magnetization
vector lies in the slab plane. At the same coupling constants a
hard-wall cylinder obtains an azimuthal magnetic order with
vanishing net magnetization. In both cases global magnetic
structure provides a zero demagnetizing field.

In the end we want to address two issues, which (in our
opinion) are important:

(1) The problem of dipolar spheres phase transformations
was previously considered in another work by our group
[16], and it was suggested that the usage of PBCs might
lead to erroneous numerical results. But based on findings
of the present paper, we now connect the “gas-liquid” phase
transition observed in Ref. [16] not to the avoidance of PBCs
but, to the nonstandard Monte Carlo algorithm, in which the
amplitude of particle random walks was a function of the
local particle density. As for the orientational phase transition,
Ref. [16] explored the magnetic structure of spatially isotropic
three-dimensional clusters, which form in low-concentrated
magnetic fluids due to interparticle interactions. It has been
found that with increasing particle number the reduced
magnetic and toroidal moments of the cluster decrease, and
the cluster magnetic structure becomes chaotic in spite of its
relatively small size and high values of the coupling constant
λ. Fluctuations of the cluster density and shape are probable
reasons why the chaotization takes place. We guess that the
presence of rigid and geometrically smooth cavity boundaries
or PBCs suppresses these fluctuations, reduces system entropy,
and makes possible the global orientational ordering of the
system in a zero magnetic field. In our future works, we
will continue to study the effect of boundary conditions on
orientational ordering in dipolar systems.

(2) The free energy of the inhomogeneous particle system
differs from that of the homogeneous one by an additional
Cahn-Hilliard term, quadratic in the concentration gradient
[31]. A corresponding term should appear in the expression
for a full particle flux. However, this term is not considered
in Eq. (14), which means that this formula is merely an
approximation. The maximum error of Eq. (14) should fall
in the area with maximum concentration gradients. Figure 2
shows that at moderate values of the coupling constant λ � 4,
this error is quite small, and Eqs. (11)–(15) give reliable results
for the system of dipolar spheres. An accurate description
of the dipolar fluid equilibrium concentration distribution at
λ > 4 can be obtained, apparently, only with the Cahn-Hilliard
term being taken into account.
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APPENDIX: APPROXIMATION FOR THE
HARD SPHERE POTENTIAL

Let us consider the following system: a rigid-wall spherical
cavity filled with N = 256 dipolar spheres, without PBCs,
volume fraction is ϕ = 0.3, external fields are absent. We
examine four variations of the system with different steric
repulsion potentials: hard sphere potential (7) and the gener-
alized truncated and shifted Lennard-Jones potential (10) with
exponents s = 6, 12 and 50. Parameter ε∗ for potential (10)
with given s is defined by the condition

∫ 21/s

0
[1 − exp(−u∗

sr (x))] dx = 1, (A1)

which is based on the results of Ref. [42]. Equation
(A1) ensures that thermodynamic quantities of nonmagnetic
(λ = 0) soft spheres with repulsion potential u∗

sr coincide
with corresponding quantities of nonmagnetic hard spheres of
diameter d. For s = 50 Eq. (A1) gives ε∗ 	 0.68. Now we need
to test “thermodynamic equivalence” of dipolar hard spheres of
diameter d and dipolar soft spheres with different exponents s.
The criterion of equivalence is the average magnetodipole en-
ergy per particle U ∗

dd/N = 〈∑N
i=1

∑N
j=i+1 u∗

dd (i,j )〉/N . De-
pendencies of U ∗

dd/N on the coupling constant λ for different
steric repulsion potentials are given in Fig. 16. Data for u∗

sr

were obtained via Langevin dynamics simulation, and data
for DHS were obtained via standard Monte Carlo method
[19,21,36]. It is seen that for s = 6 at large coupling constants
the average magnetodipole energy is significantly lower than
for DHS, whereas for s = 50 the error does not exceed 1.5%
up to λ = 8. As a result, we used s = 50 in this research. The
reason we did not investigate a DHS system directly via a
Monte Carlo method is that Langevin dynamics allowed us
to use the GPU-equipped supercomputer “Uran” much more
efficiently.

FIG. 16. Average dipolar energy per particle vs λ for the spherical
cavity filled with dipolar spheres. Different curves correspond to
different steric repulsion potentials. N = 256, ϕ = 0.3.
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