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A two-dimensional concentrated emulsion exhibits spontaneous rapid destabilization through an avalanche of
coalescence events which propagate through the assembly stochastically. We propose a deterministic model to
explain the average dynamics of the avalanching process. The dynamics of the avalanche phenomenon is studied
as a function of a composite parameter, the decay time ratio, which characterizes the ratio of the propensity of
coalescence to cease propagation to that of propagation. When this ratio is small, the avalanche grows autocatalyt-
ically to destabilize the emulsion. Using a scaling analysis, we unravel the relation between a local characteristic
of the system and a global system wide effect. The anisotropic nature of local coalescence results in a system
size dependent transition from nonautocatalytic to autocatalytic behavior. By incorporating uncertainty into the
parameters in the model, several possible realizations of the coalescence avalanche are generated. The results are
compared with the Monte Carlo simulations to derive insights into how the uncertainty propagates in the system.
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I. INTRODUCTION

Immiscible fluids flow as drop and continuous phases when
forced through a microchannel. These drops can self-organize
to form ordered arrangements as they flow in the channel
[1,2]. Bremond and co-workers fashioned a two-dimensional
(2D) channel with provisions to drain the excess continuous
phase in the system in order to pack drops tightly. In such
concentrated emulsion systems, a single coalescence event in
any part of the channel can trigger an avalanche of similar
events that leads to spontaneous destabilization of the entire
assembly [2]. Coalescence avalanches in a 2D concentrated
emulsion is a complex phenomenon, which is a result of the
many body interactions as the drops flow in the microchannel
[3]. Two closely spaced drops (A and B) when pulled apart,
create a low pressure in the region between the drops that
pulls the interfaces together initiating coalescence [4–6]. Now
in a concentrated emulsion when A and B coalesce they are
pulled away from other drops in their neighborhood. These
neighboring drops experience a force that pulls their interface
towards A and B. In Fig. 1(a), drops (A and B) are shown
in black; other drops surrounding this pair make an angle θ

with them. The magnitude of the force depends on the relative
position of the drop (θ ) with respect to A and B. The anisotropic
nature of coalescence results in a cluster that propagates like
fingers in the 2D channel, giving rise to interfaces with high
curvature that dynamically relax as the cluster grows. This
results in reorganization of the drops in the channel which
continuously alters the film thickness and the proximity of
the drops to active growing regions of the propagating cluster
making the process appear stochastic to an observer.

Recently, we proposed a stochastic model that captures the
salient features of this multibody phenomenon [3]. Coales-
cence is triggered in an assembly of drops on a lattice, and
the destabilization front is allowed to propagate stochastically
according to a probability rule—experimentally measured by
Bremond and co-workers [2]. The probability measure P used
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in the model quantifies the propensity for coalescence locally
in a compact assembly. This measure P (θ ) is a function of
orientation of drops θ , which captures the anisotropic nature of
propagation. Figure 1(c) shows a snapshot of the experimental
results of Bremond and co-workers [2] where one can find
avalanches of different sizes. The stochastic model captures the
dynamics of the propagation of both small and large avalanches
[as shown in Figs. 1(a)–1(g)]. By performing a Monte Carlo
study [1], which involves over 105 independent realizations of
the coalescence propagation, we quantify the average behavior
of the system and derive insights into the autocatalytic nature
of the avalanching process. The collective stability of the emul-
sion system is studied as a function of the system properties—
which is captured by modifying P (θ ) as αP (θ )—and the size
and aspect ratio of the assembly, where α is a number greater
than zero that is used to scale the probability function P (θ ).

The stochastic model is a bottom-up approach that views
any observation of the complex coalescence problem as a
consequence of the interactions at the drop level. For example,
the model predicts that the critical α = αcr, above which the
propagation becomes autocatalytic, depends on the size of the
system αcr = f (N ) and in the transition region, the time and
ensemble-averaged effective number of neighbors is always
3. These observations appear as emergent characteristics of
the complex system, and the reason behind why the system
exhibits such characteristics is difficult to fathom from the
stochastic model. In this article, we propose an alternate route,
a top-down approach, to understand the complex nature of
coalescence avalanches to answer some of these questions.
The simplest deterministic model that directly predicts the
averaged behavior of the system is introduced. From a compu-
tational view point this would be a more efficient strategy when
compared to the stochastic approach which needs a large en-
semble of realizations over which averaging and grouping pro-
cedures are performed to predict the average system behavior.

Figure 2 presents an overview of how the modeling
approaches, although different, can be used in conjunction to
uncover the underlying physics of the process. Every time the
stochastic model is run, a possible realization of the process
is simulated. On the other hand, the averaged model, which
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FIG. 1. Coalescence avalanches in a 2D emulsion, experiments [2], and simulation [3]: (a) and (d) trigger events where a pair of drops
is allowed to coalesce. (b) Avalanching process stops with just one more coalescence event which results in a small sized avalanche.
(c) Experiments of Bremond and co-workers [2] where coalescence avalanches both small and large in size are observed [courtesy: N. Bremond
(ESPCI, France)]; (d)–(g) dynamic growth of a large sized avalanche [time (in generations): 1, 5, 15, and 25].

estimates the average ensemble behavior, is a deterministic
model that yields the same result for fixed initial conditions
and parameter values. However, with the addition of an
uncertainty into the various elements of the averaged model,
say the initial conditions or the parameters, it may be possible
to generate an ensemble of possible realizations. Various
interesting questions will arise at this point: By adding a
certain uncertainty will it be possible to reconstruct the results
of the stochastic model? What uncertainty should be added to

FIG. 2. Modeling schemes to understand the collective averaged
behavior of coalescence avalanches in 2D emulsions. There are
two ways to model—a stochastic approach and an averaged model
(deterministic) approach.

the system? How is the uncertainty related to the complex drop
movement which is responsible for the stochastic behavior
in the first place? In this article, we answer such questions.
An equivalence is established between the stochastic and the
deterministic models, and a hybrid formulation is proposed to
study destabilization of the drop ensembles.

II. AVERAGED MODEL

Once a coalescence event is triggered, it continues to
propagate from the active sites that are formed in the growing
cluster. An active site is that part of the cluster where there
was a recent coalescence event which has created a local low
pressure zone that pulls interfaces of neighboring drops to the
cluster. Hence, the rate of propagation at any instant in time
depends on the number of active sites available for coalescence
and the availability of free drops in the neighborhood of these
active drops. If β refers to the average number of neighboring
drops available per active site, then for X active sites, the
rate should be proportional to the term βX. Note that this term
also refers to the total number of neighbors available at a given
instant in time. Consider two cases (1 and 2) where the number
of active sites in case 1 is greater than that in case 2(X1 > X2),
but the total number of neighbors available for coalescence is
the same β1X1 = β2X2 as shown in Figs. 3(a) and 3(b). The
propensity for neighboring drops to coalesce with the cluster
depends on the angle these drops make with the active sites due
to the anisotropic nature of propagation as shown in Fig. 3(c).

When the angles made by drops with the active sites
are lower, the coalescence propagation rate is higher. When
the numbers of active sites are greater for a given set of
neighboring drops one would expect this angle, on average,
to be lower as illustrated in Fig. 3(b). The configuration in
(a) contains two active sites and ten associated neighboring
drops, and the configuration in (b) has four active drops with
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FIG. 3. (a) A configuration of drops that contains two active sites with ten neighbors in total. The angles made by the neighbor drops are
marked in the figure. (b) A configuration with ten neighbor drops and four active sites with angles marked in the figure. (c) The probability of
propagation as measured by Bremond et al. in their experiments [2], which shows the anisotropic nature of propagation. [Note: the average
angle made by the configuration in (b) is greater than that in (a). Hence the propagation rate is expected to be greater for (b)].

the same number of neighbors. Comparing the different angles
made by the neighboring drops in the two configurations we
observe that case (b), which has more active drops, has lower
angles than case (a) with less numbers of active drops. The
propagation rate due to this effect is captured by the term
Xγ where the value of γ is a small positive number. If the
propagation were to be isotropic, P (θ ) will be a constant, and
correspondingly γ will take a value of zero. Hence, the rate of
growth of an avalanche (dA/dt) can be represented by the term
k1βX1+γ as shown in Eq. (1). Here the size of an avalanche A

always refers to the numbers of coalescence events that have
occurred after the avalanche is triggered

dA

dt
= k1βX1+γ . (1)

When there are no active sites or no available neighbors
for propagation, the growth term takes a value of zero. For
all other situations, it is greater than zero, which captures
the unidirectional growth of an avalanche. As drops coalesce
to the cluster, they form new active sites. So, the number
of coalescence events at a certain time would correspond
to the number of active sites formed. Hence the avalanche
propagation rate [right-hand side (rhs) of Eq. (1)] will be the
same as the rate of the formation of active sites [the first term
on the rhs of Eq. (2)]. All the active sites that are produced at a
particular instant in time need not result in propagation. Hence
one would expect a certain number of active sites to become
inactive, and this number would depend on the probability
associated with coalescence propagation (the propensity) and
total number of active sites at a given instant in time. This
reduction in the number of active sites is given by the second
term in Eq. (2),

dX

dt
= k1βX1+γ − kdX. (2)

The number of neighbors available per unit active site β for
propagation would depend on the size of the avalanche and the
way in which the cluster is propagating. This makes it hard to
estimate the instantaneous value of β. But on average, we know
that when avalanche size is small, the number of neighbors
available per active site is maximum, say λ, and it takes a
value of zero when the avalanche size is close to the maximum
possible size N. Hence the simplest model for β that can be
postulated would be a linear model as shown in Eq. (3). The
parameter λ represents the maximum neighbors available for

coalescence. In a hexagonally close packed arrangement a drop
typically has six neighbors, but because neighbors have differ-
ent tendencies to coalesce this parameter λ will take a value
less than 6. Changing the properties, such as viscosity and
surface tension, would also change the value of λ. For the case
where the surfactant concentration is very high, Gunes and co-
workers showed that drops are stable to coalescence by decom-
pression [6]. It is only intuitive to expect the value of λ to be low
for such cases. Baret and co-workers showed that by manipu-
lating the surface coverage of the drop phase by the surfactant
molecules one can transition from a stable to an unstable con-
figuration [7]. Hence one can also expect the avalanche dynam-
ics to transition to the unstable regime with the manipulation
of the parameter λ. One can compute β from the Monte Carlo
simulations by counting the effective neighbors and the active
sites available at the end of every generation. Monte Carlo
simulations are carried out on the stochastic model proposed
earlier (an algorithm can be found in Ref. [3]) where propaga-
tion is studied on a lattice. A random pair of drops is allowed
to coalesce, and propagation is studied as a function of the
probability of local coalescence [αP (θ )]. Figure 4 shows how
the neighbors available per active site β, computed from the
Monte Carlo simulations (scatter plot), vary with the avalanche

FIG. 4. The number of neighbors per active drop β, plotted as a
function of avalanche size from the Monte Carlo simulations (points)
and the averaged model [Eq. (3), solid lines] for different values of
α (tunable parameter that accounts for the propensity to propagate).
(a) α = 1.2 higher propensity for coalescence. (b) α = 1 (corresponds
to the propensity for coalescence as observed by Bremond et al. [2]
in their experiments). (c) α = 0.7 (lower propensity for coalescence).
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size (several realizations plotted together) for different values
of α. The solid line in Fig. 4 corresponds to the linear model
as explained in Eq. (3). One can observe that the linear model
approximately captures the relationship between β and A,

β = − λ

N
A + λ. (3)

Since we are solving an initial value problem we need the
initial avalanche size a0 and active site size x0. For the cases
where a single pair of drops triggers an avalanche, a0 is 1 and
x0 is 2,

A(0) = a0, X(0) = x0. (4)

We nondimensionalized the equations in an attempt to ob-
tain the minimal set of parameters that governs the dynamics of
the system [8]. Expressing all the dependent and independent
variables in terms of scaled variables we have Eqs. (7) and (8).
The natural choice for the scale of avalanche size which will
make the variable o(1) is N, which is the maximum possible
avalanche size. Note that N does not refer to the number
of drops in the system but the total number of coalescence
events possible, which scales as the number of drops n [2].
For example, when n × n drops are arranged in a hexagonally
close packed configuration, the total number of coalescence
events possible can be found to be approximately equal to
3n2 − 4n + 1,

X = XsX̄, A = AsĀ, t = ts t̄ , (5)

As = N (6)

dX̄

dt̄
= [k1tsλ(Xs)

γ ][−Ā + 1](X̄)1+γ − kdtsX̄, (7)

dĀ

dt̄
=

[
k1tsλ(Xs)1+γ

N

]
[−Ā + 1](X̄)1+γ (8)

AsĀ(0) = a0, XsX̄(0) = x0. (9)

One can choose the scales for Xs and ts based on the growth
or the decay dynamics of active sites. The scales for active
sites Xs and time ts as shown in Eq. (10) are chosen based
on the growth rates of active sites and avalanche size [from
(7) and (8)]. This is an appropriate choice for cases where
the dynamics is dominated by the growth of active sites. By
grouping the terms in Eq. (7), a new composite parameter τD

can be obtained, which we call the decay time ratio. It is the
ratio of the propensity of the active sites to stop propagating to
the propensity to propagate. The scaled equations are (11) and
(13), which are governed only by the parameters γ and τD ,

Xs = N, ts = 1

k1λNγ
, (10)

dX̄

dt̄
= [−Ā + 1]X̄1+γ − τDX̄, (11)

τD = kd

k1λNγ
, (12)

dĀ

dt̄
= [−Ā + 1]X̄1+γ , (13)

Ā(0) = a0

N
, X̄(0) = x0

N
. (14)

When one scales Xs and ts based on the decay dynamics,
they take the form as shown in Eq. (15). Equations (16)–(18)
are the new sets of governing equations and initial conditions
based on the revised scaling. These are the scales governing the
dynamics of the system when the phenomenon is dominated by
the decay of active sites. In this regime, there is an additional
parameter that comes into play—the trigger ratio, which is
the ratio of the number of initial triggered active sites to
the maximum avalanche size possible. This parameter does
not play a major role in the dynamics because it is bounded
between 0 and 1,

Xs = x0, ts = 1

kd

, (15)

dX̄

dt̄
= 1

τD

(
x0

N

)γ

[−Ā + 1]X̄1+γ − X̄, (16)

dĀ

dt̄
= 1

τD

(
x0

N

)γ+1

[−Ā + 1]X̄1+γ , (17)

Ā(0) = a0

N
, X̄(0) = 1. (18)

III. AVALANCHE DYNAMICS

All the analyses described in this article are based on the
scaled equations. Hence for convenience from henceforth the
"bar" over the variables will be dropped. From Eq. (13),
we infer that an avalanche stops propagating only if there
are no active sites (X = 0) or when there are no neighbors
available (β → 0, which happens only when A → 1). From
Eqs. (11) and (13), we can find that Xeq = 0 is the only possible
steady state for X. This is consistent with the physical picture
of coalescence propagation—where once the avalanching
phenomenon stops, all the active sites cease propagating. On
the other hand, the avalanche size Aeq can take any value
between 0 and 1 based on the initial conditions and the active
site generation or depletion dynamics.

To understand how the avalanche size attains a certain
steady value, it is important to study the transient dynamics
of the avalanching process. There are two parameters in the
governing equations τD,γ and the initial conditions (trigger
events) that determine the time evolution of the avalanching
phenomenon. The parameter γ and the initial conditions do
not change the dynamics of the process qualitatively. This
is because γ only makes the growth term in the dynamics
nonlinear, which increases the growth of active sites and hence
the avalanche size. And increasing the initial conditions will
speed up the avalanching process by increasing the number of
triggers. However, the parameter τD controls the propagation
dynamics strongly.

When this parameter (the decay time ratio) is very small
τD � 1, which corresponds to cases where the propensity to
propagate is very high, the number of active sites starts to
increase autocatalytically, which results in a steep rise in the
avalanche size with time as seen in Fig. 5(a). The sigmoidal
nature of the growth of the avalanche is a characteristic feature
of the autocatalytic nature of the avalanching phenomenon akin
to reaction systems [9]. During this short period one can simply
drop the decay term in Eq. (11) to understand the dynamics
of the process which are dominated by the growth kinetics.
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FIG. 5. A comparison of the predictions of Monte Carlo simulations of the stochastic model [3] and the average model for coalescence
avalanches. The time evolution of avalanche size and active sites is plotted for different values of the parameters α, τ which quantify the
propensity to propagate. The scales used to normalize the avalanche size, active site number, and time are based on the growth kinetics:
Eqs. (11) and (13). (a) Averaged model with τD = 0.28,γ = 0.1 exhibit autocatalytic propagation characterized by the sigmoidal rise in the
time evolution of the avalanche size; Monte Carlo simulations are carried out on a 14 × 14 lattice with α = 1.9. (b) Averaged model with
τD,cr = 0.57,γ = 0.1, a critically autocatalytic condition characterized by a maximum in the number of active sites at Ts = 0; Monte Carlo
simulations: 14 × 14 lattice with α = 0.84. (c) Averaged model with τD = 0.68,γ = 0.1, and nonautocatalytic propagation characterized by
the pseudofirst order response (nonsigmoidal); Monte Carlo simulations: 14 × 14 lattice with α = 0.5.

As the propagation continues the number of neighbors that
are available for coalescence decreases. This is because as A

goes closer to unity the value of β goes close to zero [from
Eq. (3)], which slows down the growth of active sites and the
avalanching process as seen in Fig. 5(a) when Ts > 20. Hence
the number of active sites X starts decreasing and so does the
avalanche size growth rate, and A approaches a steady value
of Aeq. The decay term in Eq. (11) dominates as β becomes
very small and eventually takes X to Xeq = 0, which is the
only possible steady state value for active sites. As the decay
time ratio (τD) is reduced, the peak value of X decreases, and
when τD is τD,cr, the system reaches a critical state where the
maxima in X(t) are found at Ts = 0 as shown in Fig. 5(b). This
is the point in the parameter space where the behavior of the
system switches from autocatalytic to nonautocatalytic. Note
that the value of τD,cr varies with the parameter γ .

A further increase in the value of τD results in the
nonautocatalytic time evolution of avalanche size as shown in
Fig. 5(c). The number of active sites reduces with time and goes
to its steady value of zero. The positive number of active sites
results in the propagation of the avalanche as it slowly increases
to a steady value. The time evolution is no longer sigmoidal
but exponential. This is because when A � 1, the value of
β ≈ λ [from Eq. (3)] a constant, which makes Eq. (13) a
pseudofirst order equation with a weak nonlinearity introduced
by the parameter γ . This can be expressed approximately using
the functional form Aeq[1 − e−σ t + O(γ )]. Similarly, from
Eq. (11) we can observe that as τD increases, the first term
on the right-hand side becomes insignificant, which makes
the active sites decay with a first order dynamics as seen in
Fig. 5(c) (the red curve).

Figure 5 also shows a good quantitative match between the
results of the averaged model and that of the Monte Carlo
simulations of the stochastic model, except for the case of α =
1.9 where the deviation from the standard sigmoidal evolution
results in a slight mismatch. Monte Carlo simulations of the
avalanche size and number of active sites for a system 14 × 14

(in size) is compared with an averaged model for different
propensities for avalanche propagation. From the comparison
made in Fig. 5, we observe that the propensity for propagation
in the stochastic model (characterized by the parameter α)
is inversely proportional to the decay time parameter τD . In
the stochastic model, time is measured in terms of generations
without a specific scale factor. For the averaged model the time
is scaled by ts = 1

k1λNγ = τD

kd
. To compare the results, the time

in the stochastic model is scaled by choosing a suitable kd , and
once the decay time parameter τD is fixed, we observe that
the averaged model predicts the ensemble-averaged transient
dynamics quite well.

The neighbors available for propagation are characterized
by the parameter β, which is explained in Eq. (3). This
parameter contains information on the packing characteristics
of the 2D ensemble and the probability to coalesce. A simple
linear model for the dependence of this parameter on the
avalanche size has been used in our simulations. We observed
that the results of the averaged model were robust to minor
perturbations in the functional form of β. If one were to
change the aspect ratio of the ensemble and study the kinetics,
one would expect this parameter β to change appropriately. It
would be interesting to understand the connection between the
various geometric parameters and the form for β.

IV. THE AVERAGED MODEL VS THE STOCHASTIC
MODEL: AN EQUIVALENCE

The averaged model captures the autocatalytic nature of
the process. By varying the decay time ratio τD , we are
able to observe two characteristic regimes as observed in
the Monte Carlo simulations: one where the time evolution
of the avalanche size is sigmoidal (autocatalytic) and the
other where it is not (nonautocatalytic). The parameter τD

is inversely proportional to the parameter λ [as seen in
Eq. (12)], which characterizes the maximum number of
effective neighbors available for propagation. In the Monte
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FIG. 6. Plot of αcrvsN that divides the parameter space into
two regions: the region above the solid line corresponds to the
autocatalytic propagation, whereas that region below it corresponds
to the nonautocatalytic propagation regime. The solid line with
the circular bullets corresponds to the case where propagation is
anisotropic, and the solid line with the square bullets corresponds to
the case where the propagation is isotropic. The results of Bremond
et al. [2] (anisotropic propagation) lie in the autocatalytic region. The
solid line for the anisotropic propagation has been approximated as a
power law with a constant. However, for the isotropic case αcr is not
a function of the N size of the system (α = αcr). The probability of
propagation at the drop level for the isotropic case is P (θ ) = α. When
P (θ ) ≈ 0.28, there is a sharp transition to autocatalytic behavior.

Carlo study, a continuation parameter α was employed to study
the effect of probability on propagation, and we observe from
Fig. 5 that the parameter τD is inversely proportional to α.
Hence one can expect λ to be proportional to this parameter
α as shown in Eq. (19). This is consistent with the physical
picture of coalescence where, when the propensity to coalesce
is large, the value of α is large, which corresponds to a large
value for the available neighbors λ and a small value of τD ,
respectively. We know that there is a critical value τD,cr which
divides the space into autocatalytic and nonautocatalytic parts.
Hence one can arrive at a scaling as shown in Eq. (20). This
is a scaling that is like the one predicted by the Monte Carlo
study as shown in Fig. 6. Hence one can establish equivalence
between the two different representations of the same physical
process,

τD = kd

k1λNγ
= kd

k1(αε)Nγ
= krα

−1N−γ , (19)

α = kr

τcr
N−γ . (20)

From Fig. 6, which shows the results of the Monte Carlo
simulations, one can observe that the size dependence of
α can be adequately represented by the functional form
α = aN−1.013 + bN0. This would mean that the parameter

γ is a function of N. Hence we estimate the exponents from
the Monte Carlo data for two asymptotic regions: small N and
large N. When the size of system N is small, we observe that γ

assumes a value of approximately 0.3 [see Eqs. (21) and (22)],

α = aN−γ ,

a = 3.63, γ = 0.3, (21)

kr

τcr
= 3.63, γ = 0.3. (22)

For large N the curve plateaus, and the parameter γ

assumes a value of zero, which makes it independent of size.
Equations (23) and (24) show the equivalence for large N,

α = aN−γ ,

a = 0.81, γ = 0, (23)

kr

τcr
= 0.81, γ = 0. (24)

The power law dependence of α on N was an emergent
characteristic in the stochastic framework. It was not obvious
why such a dependence should be observed. But the deter-
ministic averaged model allows us to explain this dependence
using physical arguments according to which the parameter γ

is a result of the anisotropic nature of propagation. We also
observe that the dependence of propagation on this anisotropic
nature of propagation reduces with the increase in system size
N. According to this hypothesis, if the propagation were to be
isotropic (probability is independent of the angle made by the
neighbor), then the critical curve in Fig. 6 should become flat.

To confirm the hypothesis, simulations are performed
using a local propagation probability P (θ ) = α. Here α is
a parameter, which is not a function of θ , that quantifies the
propensity for isotropic propagation at the drop level. Using
this new definition for the probability which characterizes
a system exhibiting isotropic propagation, we reconstruct
the parameter space plot (α,N ), which is shown in Fig. 6.
Now when the value of α > 0.28, we observe that the
system transitions critically from a dominant nonautocatalytic
behavior (region below the dotted curve) to an autocatalytic
behavior for all system sizes.

V. A HYBRID FORMULATION

The averaged model in Eqs. (11) and (13) can be solved
for different values of τD . As seen earlier, depending on the
value of τD , the avalanche size will reach a corresponding
equilibrium value of Aeq. As the parameter τD is varied,
Aeq changes smoothly as shown in Fig. 7. When the value
of τD is low, Aeq is close to unity, which corresponds to
the autocatalytic propagation of coalescence, and with an
increase in τD , there is a transition from this regime to
a nonautocatalytic regime which reduces the value of Aeq.
Increasing the value of the parameter γ reduces the interval
across which this transition occurs as observed from Fig. 7.
In the context of the stochastic framework for a given trigger
(initial condition) an uncertainty may arise from the choice
of τD . Hence if we view τD as a random variable with a
particular probability distribution, it would correspondingly
result in distribution for the probability of avalanche sizes.
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FIG. 7. Equilibrium avalanche size Aeq as a function of the decay
time ratio τD for different values of γ . There is a sharp transition
from autocatalytic propagation, which results in large values of Aeq, to
nonautocatalytic propagation, which results in hardly any propagation
(low values of Aeq).

From Fig. 5, one can observe that the averaged model can
capture all possible features of the kinetics of avalanche growth
by simply sampling the parameter τD . Hence it is reasonable
to use the averaged model to reconstruct the results of the
Monte Carlo simulations. The parameter τD , which we call the
decay time ratio, is a combination of the parameters kd/k1—
which characterizes the net propensity for coalescence to stop
propagating, λ—the neighbors available for propagation as
the cluster grows and moves inside the channel, and Nγ —the
effect of anisotropy in the overall propagation of the cluster.
All the above-mentioned parameters change—as the cluster
grows, moves, and reorganizes—inside the channel. Hence the
time-averaged behavior of every realization of the avalanching
phenomenon can be associated with a particular value of τD .
One may think of other ways to add uncertainty to the process,
which includes modifying the number of neighbors available
β at an instant of time into β = β0(1 + R), where R is a
random perturbation or sampling τD at every time instant as an
avalanche evolves. These methods were not able to capture the
entire range of possible avalanche sizes the way uncertainties
in τD could.

If one were to sample for τD from an arbitrary range, say
[0.4,1], which is to the right of the transition region, one
would expect only avalanches of very small sizes. Another
range, say [0.01,0.1] to the left of the transition region, would
correspond to large avalanche sizes only. Hence if one wishes
to observe both large and small avalanches in the ensemble
simulations, it would be necessary to sample near the transition
region. The choice for the distribution which should be used
for sampling τD is not obvious at all. From the nature of the
problem, it is very difficult to propose a distribution to sample
τD rationally. But intuitively, after we select a range of τD , one
can use a uniform distribution to sample from that range, a

suitably scaled lognormal distribution, or a truncated normal
distribution with the mean around the transition region.

Algorithm. (1) Choose a probability distribution P (τD) for
sampling τD . (2) Choose a value of τD based on P (τD).
(3) Estimate the equilibrium avalanche size using the averaged
model [Eqs. (11) and (13)]. (4) Repeat steps 2 and 3 for
∼ 105 times. (5) Calculate the probability of an avalanche
as a function of its size.

We choose a lognormal distribution with arbitrary variance
and mean for sample τD from the transition region as shown
in Fig. 8(a). Using the above algorithm, we carry out a Monte
Carlo simulation to estimate the probability of the avalanche
as a function of its size. From Fig. 8(c) we observe that the
avalanche probability shows a characteristic hump as observed
in the Monte Carlo simulations of the stochastic framework.
This choice of the distribution for sampling τD does not affect
the qualitative features of the avalanche-probability curve. It
is very interesting and nonobvious that a simple averaged
description of a multibody phenomenon with uncertainty
imposed in the parameters can explain the ensemble-averaged
stochastic collective behavior of the same. This exercise shows
that it is possible to build a connection between population-
kinetics based models (continuum in the number of drops) and
stochastic framework (entity level models).

We had shown, through the stochastic framework, that
propagation can be completely nonautocatalytic (for low
values of α) or completely autocatalytic (for high values of
α). This can also be observed using the hybrid formulation
by sampling τD from different regions on either side of the
transition zone as shown in Figs. 8(a), 8(b), and 8(d). However,
it is still not clear how the uncertainties in the operating
conditions and the complexities that arise due to the multibody
interactions result in a probability distribution function for
τD . Identifying a correlation between physical processes and
uncertainties that result from its complexity is an open problem
which may be of interest in different fields.

VI. UNCERTAINTY IDENTIFICATION

The probability of an avalanche as a function of its size
that one arrives at with the hybrid formulation—as shown
in Fig. 8(b)—only qualitatively captures the features of the
results of the Monte Carlo simulations [3]. This is because the
uncertainty that is introduced in the parameters of the averaged
model is arbitrary. By comparing the results of the Monte Carlo
simulations [3] with that of the averaged model (AeqvsτD), we
extract the uncertainty in τD that should have been employed
in the hybrid model to obtain a quantitative match. Figure 9(a)
shows the AeqvsτD data that were used to relate the observed
equilibrium avalanche size to the parameter in the averaged
model, plotted along with the probability distributions for
sampling τD , extracted from the Monte Carlo simulations for
different system sizes.

We observe a characteristic feature for the probability
distribution for τD when the system size is very small. This
corresponds to the case which does not show a hump. As
the number of drops in the assembly increases, there is an
emergence of an additional feature—a peak near the transition
τD region—which is similar to the probability distribution
for τD used in the hybrid model. The uncertainty in the
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FIG. 8. (a) A plot of Aeq as a function of τD . The parameter τD is sampled in three different regions. P (τD) − I corresponds to τD sampled
on the rhs of the critical region, P (τD) − II corresponds to τD sampled in the critical region, and P (τD) − III corresponds to τD sampled on the
lhs of the critical region (probability distributions with arbitrary mean, variance, and bounds were used to sample τD in the regions of interest).
(b) The probability of an avalanche as a function of its size corresponding to the distributions for P (τD) − I, which contains only avalanches
of smaller sizes. (c) The probability of an avalanche as a function of its size corresponding to the distributions for P (τD) − II. The probability
distribution captures the emergence of a hump as observed in the Monte Carlo simulations [3]. (d) The probability of an avalanche as a function
of its size corresponding to the distributions for P (τD) − III, which consists of avalanches of large sizes.

FIG. 9. (a) A plot of AeqvsτD from the averaged model under conditions γ = 0.3,A(0) = 0.1,X(0) = 0.1. The uncertainty that has to be
incorporated in the parameter τD to explain the results from the Monte Carlo simulations as shown in (b). (b) Monte Carlo simulation under
conditions N = 82−162,α = 1,aspectratio ≈1 (for the algorithm in Ref. [3]). The probability of an avalanche as a function of its size A.
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process arises out of the complex motion of the drops and the
growing cluster, which change the packing, the film thickness,
and the surfactant concentration in the 2D emulsion system,
continuously perturbing the avalanching phenomenon making
it stochastic. The probability of τD that we have extracted
is related to this complex behavior. It will be an interesting
pursuit to identify how the complex self-organization and
the rearranging cluster contribute to the uncertainty in the
parameters of the averaged model.

VII. CONCLUSION

A deterministic model is proposed which predicts the
averaged behavior of a stochastic avalanching phenomenon
in 2D emulsions. Although the system under consideration is
a spatially extended complex interacting system, the averaged
behavior is explained by a simple dynamical model which
considers the time evolution of the population of active sites
and available neighbors to explain the kinetics of avalanche
growth. Using suitable physical arguments, functional forms
for the growth and death of active sites and avalanche growth
are proposed. The sets of parameters that govern the dynamics
are obtained through an order one scaling analysis which
includes the decay time ratio—which is the ratio between

the propensity to cease coalescence and propagate and γ ,
which characterizes the anisotropy in the local propagation as
observed by Bremond and co-workers [2] in their experiments.
We arrive at a power law scaling that relates the propensity to
coalesce to the size of the system through the propagation
anisotropy in the droplet system. This explains the size effects
observed in the transition of coalescence propagation from
nonautocatalytic to autocatalytic behavior. We confirm our hy-
pothesis using Monte Carlo simulations. The averaged model
can capture both the autocatalytic and the nonautocatalytic
nature of coalescence propagation upon variation of the decay
time ratio. A hybrid formulation is proposed which involves
introducing stochasticity or uncertainty to the decay time
ratio to capture the nonmonotonic avalanche probability as
observed in the Monte Carlo simulations; this establishes a
direct equivalence between the stochastic and the deterministic
descriptions for the avalanche phenomenon.
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