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Onset of anomalous diffusion in colloids confined to quasimonolayers
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It has been recently shown that a colloidal monolayer, e.g., formed at a fluid interface or by means of a
suitable confining potential, exhibits anomalous collective diffusion. This is a consequence of the hydrodynamic
interactions mediated by the three-dimensional (3D) ambient fluid when the particles are confined to reside on
a two-dimensional (2D) manifold. We study theoretically and with numerical simulations the crossover from
normal to anomalous diffusion as the particles are, in real systems, confined by a 3D external potential and thus
have the possibility to fluctuate out of the 2D manifold, thus forming a quasimonolayer.
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I. INTRODUCTION

Particle-laden fluid interfaces are a common subject in
soft matter physics and offer an interesting approach to
effectively create two-dimensional (2D) systems for theory
and experiment. In many cases, it is a good simplification to
treat the system of fluids, interface, and particles as a genuine
2D problem, e.g., in order to explore phase transitions [1,2] or
clustering behavior in lower dimensions [3]. However, as soon
as hydrodynamic interactions are considered, the full three-
dimensional (3D) nature of the setup becomes important [4].
A colloidal monolayer is an example of the configuration of
partial confinement, as called in Ref. [4], because a part of
the components of the system is confined (the particles are
restricted to move in a plane), whereas other constituents are
not confined (the ambient fluid occupies the adjacent volume).
The dimensional mismatch between the 2D colloidal dynamics
and the 3D hydrodynamic interactions mediated by the ambi-
ent fluid flow induces anomalous diffusion (more precisely,
superdiffusion) for the collective, i.e., large-scale dynamics
of the monolayer [4–7]. These theoretical predictions lead
to a reinterpretation of experimental results that had actually
measured the anomalous collective diffusion [8].

The dynamics of the spatial distribution of particles in a
colloidal monolayer can be conveniently characterized by a
wave number dependent diffusion coefficient D(k), which can
be expanded in powers of the wave number,

D(k)

D0
=

∞∑
n=−∞

βnk
n, (1)

where the constant D0 is conventionally taken to be the
single-particle diffusion coefficient in the dilute limit. Normal
diffusion is then characterized by the absence of negative
powers of k, so that a large-scale (k → 0) perturbation in the
monolayer density would relax ∝ exp(−k2D0β0t), exhibiting
a Gaussian tail in the distribution of particles in real space.
The 3D hydrodynamic interactions lead to a value β−1 �= 0 in
Eq. (1), signaling anomalous diffusion beyond a characteristic
length scale Lhydro = β0/β−1. This divergence of D(k → 0)
leads, in the real-space particle distribution, to an algebraic
decay ∝ x−3 with the distance x from a density perturbation.

These conclusions rely on constraining the particles to a
monolayer, identified conventionally with the plane z=0. This
is the simplest model of an actual experimental configuration,
where the particles are trapped at a fluid interface by wetting
forces or are forced to stay within a plane by the effect
of a strong external potential (e.g., a sheetlike trap created
by optical tweezers, the gravitational field if the particles
are sufficiently heavy to reside in a bottom layer [1], or
the electrostatic attraction to an interface [9]). The goal of
this work is to relax the strong-confinement assumption by
considering the quasimonolayer configuration. We will allow
for a more realistic model in which the position of the particles
can fluctuate in the z direction, so that the associated dynamics
is truly 3D, and we will address how the large-scale anomalous
diffusion emerges from the underlying 3D normal diffusion.
If the quasimonolayer is characterized by a small thickness
�c, then the main result of our analysis is that the diffusion
is normal on scales below �c, regardless of the presence
of hydrodynamic interactions, but the anomalous-diffusion
scenario is observed on scales above �c.

The article is arranged as follows: in Sec. II the theoretical
model is described, including a brief review of the general
framework and the emergence of anomalous diffusion. The
special case of a harmonic trap in the z direction is studied in
detail with the linear approximation for density perturbations.
Section III presents results from truncated Stokesian dynamics
simulations of particles in the harmonic trap, as well as from
numerical solutions of the corresponding dynamical evolution
equation beyond the linear approximation. The last section
summarizes our conclusions. The appendices collect the more
technical parts of the work.

II. THEORETICAL MODEL

For the theoretical description of the dynamics of colloids,
the simplifying assumption can be made that the evolution
occurs in the overdamped regime and that the ambient flow
can be described with the time-independent Stokes equation,
i.e., small Reynolds number and instantaneous adjustment
of the flow to the particle configuration. This is usually a
good approximation for the diffusive dynamics because the
time scale of change of the conserved field “particle density”
diverges as the spatial extension of a density perturbation

2470-0045/2017/95(3)/032604(12) 032604-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.032604
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is taken arbitrarily large (but see Ref. [7] for a discussion
of how the anomalous diffusion is affected by allowing for
the dynamical evolution of the ambient flow). Under these
approximations, the hydrodynamic interactions mediated by
the ambient fluid can be taken completely into account by
means of the mobility matrix Mij ({x}), a 3 × 3 matrix for
each particle pair (i,j ) [10,11]. It depends on the position
{x} = (x1, . . . ,xN ) of all the N particles forming the colloid
and implicitly on their shape and size through the boundary
conditions that they impose on the ambient flow. The physical
meaning of this matrix is that the velocities vi of the particles
are determined by the forces fj acting on them as

vi =
N∑

j=1

Mij · fj . (2)

Correspondingly, the time evolution of the probability distri-
bution P ({x},t) of a configuration of particles at temperature
T is described by the Smoluchowski equation [10,12]:

∂P

∂t
=

∑
ij

∇xi
· (Mij · �j ), (3a)

�j ({x}) := kBT ∇xj
P ({x}) + P ({x}) ∇xj

U ({x}), (3b)

with the potential energy

U ({x}) = U int({x}) +
N∑

k=1

V (xk), (4)

consisting of an internal part U int describing the interparticle
forces, and a contribution V by an external single-particle
potential (in particular, the potential confining the particles
to the plane z = 0). Equivalently, the dynamical evolution
for the individual particle trajectories xi(t) can be described
by the associated Langevin equation [12],

ẋi =
N∑

j=1

[−Mij · ∇xj
U + kBT ∇xj

· Mij ] + ηi , (5a)

in terms of a configuration-dependent Gaussian noise with
zero mean and variance

〈ηi,α({x},t) ηj,β({x},t ′)〉 = 2kBT [Mij ({x})]αβ δ(t − t ′) (5b)

(the Greek subindices refer to the components of the vec-
tors and tensors.) Particularly relevant is the driving force
proportional to the divergence of the mobility: it vanishes in
bulk, i.e., when the particles can be distributed in the volume,
because the Stokes flow is incompressible. However, in the
partial confinement configuration, the particles, but not the
fluid, are constrained to a plane and this term has the form of
a nonvanishing 2D divergence of a 3D mobility matrix [see
Eq. (15a)].

The collective (large scale, long time) dynamics of a colloid
is described by the evolution of the one-particle density
distribution,

ρ(x,t) =
∫

d3x2 · · · d3xN P (x1 = x,x2, . . . xN,t). (6)

One cannot derive a closed equation for ρ(x,t) from the
Smoluchowski equation (3) without the introduction of further

approximations because of the multiparticle dependence of
both the mobility matrix Mij ({x}) and the potential energy
U ({x}). The simplest approximation, which will be adopted
in this work, is to consider the dilute limit. For the mobility
matrix, this implies truncating its expansion at the two-particle
level and retaining the asymptotically dominant contributions
for large interparticle separations (I is the identity matrix),

Mij ({x}) = 	δijI + 	(1 − δij ) ω(xi − xj ), (7)

in terms of the single-particle mobility

	 = 1

3πησH
(8)

(for our case of spherical particles of diameter σH inmersed in
a fluid of viscosity η) and the Oseen tensor

ω(x) = 3

8

σH

x

(
I + xx

x2

)
. (9)

Effectively, one is taking into consideration only the longest
ranged contribution of the hydrodynamic interactions.

For the potential energy, the dilute limit approximation
means U int({x}) = 0 in Eq. (4), so that the particles do not
interact directly with each other (“ideal gas” approximation).
With this approximation and Eq. (7), one can obtain from
Eq. (3) the following (nonlinear) evolution equation for the
one-particle density:

∂ρ

∂t
= D0∇2

xρ − ∇x · [ρ(u − 	∇xV )], (10a)

where [see Eq. (8)]

D0 = 	kBT = kBT

3πσHη
(10b)

and

u(x) =
∫

d3x′ [D0∇x′ρ(x′) − 	ρ(x′)∇x′V (x′)] · ω(x − x′),

= −	

∫
d3x′ ρ(x′)[∇x′V (x′)] · ω(x − x′), (10c)

after integrating by parts and accounting for the incompress-
ibility constraint ∇x · ω(x) = 0. Since the Oseen tensor is the
Green’s function of the Stokes equation in an unbounded
volume, one can interpret the field u(x) as the ambient flow
induced by the external forces acting on the particles. Then
Eq. (10a) describes the evolution of the particle density due to
Brownian motion and the simultaneous drag by the ambient
flow and the external force.

Although the dilute limit approximation is useful for
the purpose of this work, it can be relaxed. Thus, in or-
der to account for the effect of direct interparticle forces,
local equilibrium approximations for the potential energy
are customary, for instance, the so-called dynamical density
functional theory [13] and its extension to include the effect of
the hydrodynamic interactions [6,14,15]. The relevant result is
that, for the large-scale dynamics, the effect of the short-ranged
interparticle forces shows up as a (possibly density-dependent)
change in the numerical value D0 of the diffusion coefficient.
Thus, it is not expected that the inclusion of direct interparticle
forces will alter the qualitative picture, particularly that con-
cerning anomalous diffusion in the monolayer configuration.
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FIG. 1. Schematic view of a setup of colloidal particles confined
near the plane z = 0 by an external potential that restricts the motion
of the particles to a quasimonolayer of thickness �c.

This latter expectation is actually confirmed by numerical
simulations of monolayers composed of interacting particles
(capillary monopoles [4], hard spheres [16], Lennard-Jones
particles [17]; see also the discussion in Ref. [6]).

Similarly, for monolayers formed at or close to a fluid
interface, a more realistic description of the mobility matrix
is possible that accounts for the different values of the fluid
viscosity and the particle positioning off the interface [18–20].
Nevertheless, it turns out that the dominant far-field behavior
is given again by the Oseen tensor, but with the viscosity η in
Eq. (7) replaced by the arithmetic mean of the fluid viscosities.1

Therefore, no qualitative change in the large-scale behavior is
expected either.

A. The partial confinement configuration

One can consider the particular case that the single-particle
external potential V depends only on the z coordinate and has
the proper form to force the confinement of the particles within
a sheet about z = 0 of width �c; see Fig. 1. A good example is
a harmonic potential,

V = kBT

(
z

�c

)2

, (11)

which will be developed in detail below. First, however, we
mention some aspects valid beyond this specific form of
the potential. One can address two limiting behaviors. In
the limit �c → ∞ (absence of confinement), one effectively
has V → 0, and the Smoluchowski equation (3) describes
the dynamics when the particles can explore the whole 3D
volume. In the approximated model described by Eqs. (10),
one recovers normal diffusion with the single-particle dif-
fusion coefficient D0. One notices that the approximations
leading to these equations are too simple to capture any
effect by the hydrodynamic interactions that would induce
a renormalization of the value of D0. These appear when

1The Oseen tensor, decaying as 1/x, is associated to a so-
called “Stokeslet” [11]. The corrections thereof can be written as
combinations of “stresslets” and “rotlets” (decaying as 1/x2) and
higher-order terms [19,20].

short-distance effects are taken into account, like in the more
realistic hard-sphere model (see, e.g., Ref. [21]). Alternatively,
these corrections could be incorporated, in the context of a
large-scale, long-time model for the dynamics of the one-
particle density, in the form of an effective density dependence
of the single-particle mobility [22–25], which must then be
interpreted as a rheological parameter.

The situation is different, however, in the other limiting
case, �c → 0, which describes perfect confinement of the
particles to a monolayer in the plane z = 0. We introduce
the in-plane coordinate r = (x,y) such that

x = r + zez, (12)

and let k denote the wave number vector for the 2D Fourier
transform with respect to the in-plane coordinate r. The
probability distribution now has the structure

P ({x}) = P (2D)({r})
N∏

i=1

δ(zi), (13)

in terms of the in-plane projected probability distribution
P (2D)({r}). Furthermore, there is no vertical particle current,
i.e., ez · �i = 0 in the Smoluchowski equation (3), and the
particle distribution in the z direction is always in equilibrium
regardless of the dynamical state of the in-plane distribution.
Therefore, upon integrating the Smoluchowski equation over
the z coordinates of the particles, one arrives at

∂P (2D)

∂t
=

∑
ij

∇ri
· {Mij · [kBT ∇rj

P (2D) + P (2D)∇rj
U int]},

(14)

that is, the Smoluchowski equation for the 2D dynamics
in the plane z = 0, where any reference to the confining
potential has disappeared. However, the mobility matrix
Mij ({r}) still describes a 3D flow (although evaluated at the
plane z = 0), and this dimensional mismatch leads to the
anomalous diffusion. The associated Langevin equation for
the 2D trajectories ri(t) of the particles in the monolayer has
the form

ṙi = 1

8πη

N∑
j=1,j �=i

ri − rj

|ri − rj |3 + ξ i , (15a)

〈ξi,α({r},t)ξj,β({r},t ′)〉 = 2D0[δij δαβ

+ (1 − δij )ωαβ(ri − rj )]δ(t − t ′),

(15b)

when Eq. (5a) is projected onto the monolayer plane with
the approximations (7) and U int = 0. The force term in
Eq. (15a) follows from the observation that ∇rj

· Mij �= 0
since the in-plane component of the 3D ambient flow is
not 2D incompressible in general and leads to a force term
proportional to ∇r · ω(r), which is formally identical to a
Coulombic repulsion, the ultimate cause of the superdiffusive
behavior.
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The corresponding equation for the 2D particle density field
ρ(2D)(r) is

∂ρ(2D)

∂t
= D0∇2

r ρ(2D) − ∇r · (ρ(2D)u), (16a)

u(r) = D0

∫
d2r′ [∇r′ρ(2D)(r′)] · ω(r − r′)

= D0

∫
d2r′ ρ(2D)(r′) ∇r · ω(r − r′). (16b)

Again, any overt signature of the confining potential has
disappeared, and Eq. (16a) describes the dynamical evolution
driven by the in-plane Brownian diffusion and the drag by the
in-plane component u(r) of the ambient flow. However, the
field u(r) is induced by the in-plane particle current, which
is now a relevant source because, unlike in the derivation
of Eq. (10c), ∇r · ω(r) �= 0. As shown in Refs. [4,6], the
linearization of this equation for small perturbations about
a homogeneous in-plane density ρ

(2D)
0 yields a wave number

dependent diffusion coefficient [see Eq. (1)],

D(k)

D0
= 1 + ρ

(2D)
0

k
k

· FT[ω] · k
k

= 1 + 1

Lhydrok
, (17)

where FT[ω] denotes the 2D Fourier transform of the 3D Oseen
tensor and

Lhydro := 4

3πσHρ
(2D)
0

(18)

is a characteristic length scale.

B. Harmonic confinement: Linear theory

The goal is to investigate the transition from one limiting
case to the other, with emphasis on the quasimonolayer
configuration. For this purpose we address in detail the
linearized theory for Eq. (10) with a harmonic confining
potential; see Eq. (11). The equilibrium state is given by the
Boltzmann distribution,

ρeq(z) = ρ
(2D)
0√
π�c

e−V (z)/kBT , (19)

where ρ
(2D)
0 is the projected 2D number density,

ρ
(2D)
0 =

∫ +∞

−∞
dz ρeq(z). (20)

Any particle distribution can be expressed as

ρ(r,z,t) = ρeq(z)[1 + ε(r,z,t)]. (21)

When the model equation (10) is linearized with respect to
the small perturbation ε one obtains an integro-differential
equation for the evolution of the fluctuations (see Appendix A):

∂ε

∂t
= D0

[
∇2 + ∂2

∂z2

]
ε + 	

D0

dV

dz

[
−D0

∂ε

∂z
+ ez · u

]
,

(22a)

u(r,z,t) = −	

∫
d2r′

∫ +∞

−∞
dz′ ρeq(z′)

dV

dz′ (z′)ε(r′,z′,t)

× ez · ω(r − r′ + (z − z′)ez). (22b)

By introducing the Fourier transform for the in-plane r
dependence and an expansion in Hermite polynomials Hn for
the vertical z dependence, one can write

ε(r,z,t) =
∫

d2k
(2π )2

eik·r
∞∑

n=0

Hn

(
z

�c

)
cn(k,t). (23)

Particularly relevant is the coefficient c0(k,t), that describes the
Fourier transform of the vertically integrated density profile,
which is the 2D density distribution in the partial confinement
limit: ∫ +∞

−∞
dz ρ(r,z,t) = ρ

(2D)
0 [1 + δ0(r,t)], (24a)

with

δ0(r,t) :=
∫

d2k
(2π )2

eik·rc0(k,t). (24b)

The linearized equation (22) then becomes a set of linear
equations for the coefficients cn(k,t) (see Appendix A):

�2
c

D0

dcn(k,t)

dt
= −[(�ck)2 + 2n]cn(k,t) + ψn(k,t)

Lhydrok
, (25a)

ψn(k,t) = − 1

π n! 2n

∞∑
m=0

�nm(�ck)cm(k,t). (25b)

Here Lhydro is given by Eq. (18) and the term ψn encodes the
effect of the (long-ranged part of the) hydrodynamic inter-
actions. The dimensionless coefficients �nm are computed in
Appendix B. Of particular relevance is that they are symmetric
under the exchange of the indices n,m and vanish when they
have different parity. As a consequence, the equations (25)
actually form two uncoupled sets of equations: the set for
cn, n odd, describes particle distributions that are asymmetric
in z and whose evolution is driven both by diffusion and the
net force exerted by the confining potential. Therefore, we
limit ourselves for simplicity to symmetric perturbations in the
following, i.e., ε(r,−z,t) = ε(r,+z,t), so that the net external
force vanishes and we have to consider only the dynamics of
the coefficients cn with n even.

The relatively simple structure of Eqs. (25) describes the
diffusive relaxation of the modes on a time scale controlled by
the length �c, and the coupling mediated by the hydrodynamic
interactions with a strength controlled by the length scale
Lhydro. Two regimes are particularly interesting:

(1) For the very small in-plane scales, �ck � 1 and
Lhydrok � 1, neither the confining potential nor the hydrody-
namic interactions affect the dynamical evolution appreciably:
3D normal diffusion is recovered because the modes evolve
on a time scale ∼1/(D0k

2) while the term ψn is strongly
suppressed [in addition to the 1/(Lhydrok) prefactor, it is
�nm(�ck → ∞) ∼ 1/(�ck); see Appendix B].

(2) For in-plane scales much larger than the thickness of
the quasimonolayer, �ck 
 1, one can recover the scenario
originally studied in Ref. [4], as well as derive the leading
correction for a nonvanishing thickness �c. On the one hand, the
mode c0, associated to the conserved 2D density distribution, is
a slow variable, with a characteristic time scale vanishing when
�ck → 0. On the other hand, the modes cn�2 relax on the fast
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time scale ∼2nD0/�
2
c , signaling the onset of the Boltzmann

distribution in the vertical direction. Therefore, the effective
dynamics of c0 on the slow time scale can be computed approx-
imately by an adiabatic elimination of the fast modes from its
equation: the modes cn�2 decay to their stationary value at fixed
c0 and get “enslaved” to the dynamical evolution of the latter.
This procedure is detailed in Appendix C; the final result is

dc0

dt
= −k2D(k)c0, (26a)

D(k)

D0
− 1 ≈ 1

Lhydrok
−

√
8

π

�c

Lhydro
− 1

2

(
�c

Lhydro

)2

, (26b)

where D(k) is derived from an expansion in the small
parameter �ck. Therefore, the hydrodynamic interactions give
rise to anomalous diffusion for the large in-plane scales
satisfying Lhydrok 
 1, in agreement with Eq. (17) for the
case �c = 0. In addition, there is a finite renormalization of
the diffusion coefficient D0 for finite values of �c, but this
effect will be hardly observable: it is quantitatively relevant
only when Lhydro is of the order of �c, in which case it
will be Lhydrok ∼ �ck 
 1, and the anomalous-diffusion effect
dominates anyway.

In conclusion, the crossover from 3D normal diffusion to
2D anomalous diffusion occurs smoothly as one shifts the
attention from the smallest to the largest scales, with the two
length scales �c (width of the confining potential) and Lhydro

(onset of anomalous diffusion) controlling this transition. Our
detailed analysis above for the case �c 
 Lhydro reveals the
following hierarchy of dynamical regimes in wave number:

(I) Bulk (3D) normal diffusion

if L−1
hydro 
 �−1

c 
 k

(II) In-plane (2D) normal diffusion

if L−1
hydro 
 k 
 �−1

c

(III) In-plane (2D) anomalous diffusion

if k 
 L−1
hydro 
 �−1

c

Alternatively, one gets the following scenario in terms of the
length scale r of observation: at the smallest scales (r 
 �c 

Lhydro) the particle distribution diffuses normally inside the
quasimonolayer (regime I); when observed at the intermediate
scales (�c 
 r 
 Lhydro), the particle distribution already
appears as a perfect monolayer and diffuses normally in
the monolayer plane (regime II); and at the largest scales
(�c 
 Lhydro 
 r), the monolayer diffusion is anomalously
fast (regime III).

III. NUMERICAL CALCULATIONS

A. Setup and numerical methods

To further illustrate and complement the results of linear
theory for the harmonic confining potential, we performed
truncated Stokesian dynamics (tSD) simulations, on the one
hand, and solved numerically the density evolution equation
(DEE) (10), on the other hand. In both cases the particles were
modeled as spheres of diameter σH = 20 μm, and the fluid
was taken at room temperature (T = 25 ◦C) with the viscosity
of water η = 10−3 N s/m2.

The initial particle distribution was constructed as the
superposition

ρ(x) = ρeq(z) + �ρ(r,z), (27)

where the background density ρeq(z) is given by Eq. (19),
which is modified by the radially symmetric overdensity
�ρ(r,z). For the latter, we investigated two cases:

(1) A planar overdensity which is equilibrated in the z

direction but is constant and nonzero on a disk of radius R in
the x-y plane,

�ρ(r,z) = ρeq(z) A0 �(R − r) . (28)

With this setup we will exemplify the behavior in regimes
II and III defined above.

(2) A narrow and isotropic peak of width lG = �c/10 which
is centered at (r,z) = (0,0),

�ρ(r,z) = ρG exp

(
− r2 + z2

l2
G

)
, (29)

with the choice ρG = (A0/
√

π )(ρ(2D)
0 R2/l3

G), so that the
number of particles in the overdensity is the same as in the
planar one (28). This case will allow us to address the behavior
in regime I defined above.

For case (1) we have obtained results from both tSD
simulations and the solution of the DEE, while case (2) has
been investigated with the DEE only.

The tSD simulations solve the evolution of a collection
of N particles whose dynamics is given by the Langevin
equations (5). No direct interaction is considered, U int = 0,
and the mobility matrix is approximated as in Eq. (7) with the
pairwise hydrodynamic interaction given by the Rotne-Prager-
Yamakawa tensor [26],

ωRPY(x) =
{

ω(x) + σ 3
H

16x3

(
I − 3xx

x2

)
, (x > σH),(

1 − 9x
16σH

)
I + 3x

16σH

xx
x2 , (x < σH).

(30)

This tensor is regular at x = 0 and positive definite and
therefore better suited for particle-based simulations than the
Oseen tensor ω(x) [see Eq. (9)]. Beyond the dilute limit, a
system of particles which do not interact directly (i.e., ideal-gas
behavior) but do it hydrodynamically [i.e., with a nonvanishing
hydrodynamic radius σH in Eq. (30)] can be realized physically
by means of “hairy” particles consisting of a small solid core
and a broad polymeric shell around it [6,27].

The tSD simulations consisted of N = 1036 spherical
particles. They were performed in a simulation box of
extension L = 2000 μm in the x-y plane with periodic
boundary conditions while unbounded in the z direction
since the confinement by the harmonic potential effectively
imposes a vanishing particle current at infinity. The initial
overdensity in Eq. (28) was simulated with Ndisk = 188
particles distributed uniformly within a circular patch of radius
R = 100 μm and according to the equilibrium profile ρeq(z)
in the vertical direction. The remaining Nb = 848 particles
were distributed similarly but over the whole planar extension
of the system. Thus, the effective 2D background density
is ρ

(2D)
0 = Nb/L

2 = 2.12 × 10−4 μm−2, corresponding to a
packing fraction well in the dilute limit, (π/4)σ 2

H ρ
(2D)
0 ≈ 0.07.
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FIG. 2. Schematic side view of the setup of the initial planar
overdensity over the equilibrated background. The overdensity
corresponds to the background density uniformly “compressed” to
a disk of radius R.

This gives A0 = Ndisk/(πR2ρ
(2D)
0 ) = 28.2 in Eq. (28), which

represents a large perturbation presumably beyond the scope of
the linearized theory. The characteristic length scale of anoma-
lous diffusion (18) associated to this initial configuration was
Lhydro = 100 μm.

The density evolution equation (DEE) (10) is a nonlinear
integro-differential equation owing to the hydrodynamic term.
We have solved it using an Euler forward scheme for the
time evolution. The right-hand side of Eq. (10a) was evaluated
with Fourier transforms. In the x-y plane, radial symmetry
was assumed and the corresponding Fourier transforms could
be evaluated on an equidistant grid for ln r using Fast Hankel
Transforms. In the z direction, we used a fast Fourier transform
on an equidistant grid. The box size in the z direction was
chosen Lz = 40.96 R. Since the system is periodic in the z

direction through the use of the fast Fourier transform, the
results for density profiles in radial direction in the x-y plane
are affected by periodic images for r � Lz.

For later use, we have expressed the thickness of the
quasimonolayer �c in terms of a dimensionless confinement
parameter

α =
√

2�c

σH
. (31)

B. Results: Diffusion of a planar overdensity

The setup for the planar overdensity given by Eqs. (27)
and (28) is shown in Fig. 2. This case is a straightforward
extension of the planar overdensity investigated earlier in strict
2D confinement [4] and focuses on the effect of the finite width
of the confining potential in the z direction upon the dynamics
in the x-y plane.

We investigated the range of values 1.25 � α � 10 for the
confinement parameter, corresponding to widths �c between
20 μm and 140 μm, i.e., for the smallest width the system is
close to a monolayer and for the largest width the z extension
of the initial overdensity is about as large as the extension
in the plane. Of basic interest is the time evolution of the z-
averaged relative overdensity δ0(r,t), which corresponds to the
inverse Fourier transform of the mode c0(k,t) [see Eqs. (24)].
The scales in our setup satisfy �c � R,Lhydro, so it can be
conjectured that the expansion of Sec. II B in Hermite modes
is particularly well suited and fast converging for the density
evolution on scales r � R,Lhydro.

In Fig. 3, DEE solutions for δ0(r,t) are shown for parameters
α = 2.5, 5, and 10 at two different times t/t0 = 0.0212 and

10-4

10-3

10-2

10-1

100

101

102

0.2 0.5 1.0 2.0 3.0 5.0 10.0

δ 0

r / R

t = 0.0

0.0212

0.212

~r-3

α increasing

FIG. 3. The z-averaged relative overdensity δ0(r,t) from the DEE
solution, evaluated as a function of r at two different times for
different values of the confinement parameter: α = 2.5, 5, and 10,
as indicated in the plot. Thick lines show the case of strict 2D
confinement [Eqs. (16)] as a reference. The initial overdensity is
smoothed at the edge of the disk to avoid numerical artefacts. The
time unit is given by 1/(D0ρ

(2D)
0 ).

0.212 together with the starting configuration. [The time unit
t0 = 1/(D0ρ

(2D)
0 ) corresponds to the characteristic Brownian

diffusion time at which particles in the plane reach their next
neighbor in the background configuration.] As a reference,
the relative overdensity in the case of strict 2D confinement
(for the same two times, respectively) is shown: The profile
decays monotonously in space and shows the instantaneous
onset of the 1/r3 tail characterizing anomalous diffusion. The
tail grows in magnitude with time. For a finite thickness of
the quasimonolayer, the spatial density profiles show the same
asymptotic, anomalous decay, which, however, sets in only at
radial distances larger than a critical one. This critical distance
also grows with the confinement parameter α. This finding has
a very straightforward interpretation: Only at distances beyond
this critical distance the z-confined overdensity appears to
be effectively 2D and anomalously decaying. This is in full
accordance with the behavior in regime III characterized by
the singularity ∝ 1/k in the diffusion coefficient [see Eq. (17)]
derived in the linearized theory.

For radial distances smaller than the critical one we enter
regime II. The diffusion of the disklike overdensity at small
r/R < 2 becomes slower with increasing width of the confin-
ing potential. At intermediate r/R ≈ 3 a dip in the overdensity
is formed before the profile approaches the anomalous tail for
large r . This dip is a consequence of the finite thickness of the
quasimonolayer because it is absent in simulations with strict
2D confinement, regardless of the initial extension of the planar
overdensity. For the largest width investigated (α = 10), the
overdensity becomes actually negative (i.e., there is a relative
depletion) in the dip region. We illustrate this with a time series
of overdensity profiles for α = 10 in Fig. 4 which magnifies the
dip region; the overdensity is negative for 1.6 < r/R < 2.8.
We observe that the diffusive motion of the edge of the disk
becomes slower with increasing α; however, it always triggers
a hydrodynamic outbound flow at large distances, responsible
for the anomalous diffusion and the 1/r3 tail (regime III).
This mechanism drags particles away from the disk edge at a
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FIG. 4. The z-averaged relative overdensity in the dip region for
increasing times and α = 10.0 obtained from the DEE solution.
A depletion zone with negative overdensity first develops between
1.6 < r/R < 2.8 and disappears for later times.

faster rate than they can be replenished by normal diffusion
from the disk (regime II), thus developing an initial depletion
zone right at the outer edge of the disk, which becomes more
conspicuous for larger values of α. Interestingly, this means
that the 2D effective Green’s function for the diffusive spread
of the overdensity is no longer greater than 0 everywhere
(whereas in strict 2D confinement it is).

The initial planar overdensity is equilibrated in the z

direction, and thus only the zeroth Hermite mode c0(k,t)
is present. The dynamics, however, leads to a distortion of
the Gaussian z dependence and to the appearance of higher
Hermite modes c2(k,t),c4(k,t), . . .. These initially grow in
time, and their strength reaches a maximum at a time t ∼
�2

c/D0 and then decays in time. Overall, these higher modes
are always much smaller than the leading, zeroth mode.

Next we compare DEE solutions to results from tSD
simulations. For a small value α = 1.25 we show in Fig. 5

10-3

10-2

10-1

100

101
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r / R

t = 0.0

t = 0.060

t = 0.182
3D tSD
2D limit

3D DEE
3D BD

FIG. 5. Density profiles (integrated in z direction) obtained from
3D tSD simulations and 3D DEE solutions for the confinement
parameter α = 1.25. The tSD data points were obtained from
averaging over 150 000 simulation runs. For comparison we show
the profiles of Brownian dynamics simulations [3D BD, u = 0 in
Eq. (10a)] at time t = 0.06 and the profiles from the numerical
solution of Eqs. (16) (2D limit) at time t = 0.182.
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3D DEE

FIG. 6. The same as Fig. 5 but for the confinement parameter
α = 5.0.

DEE solutions and tSD results for the planar overdensity at two
times and compare them to the limit of strict 2D confinement
and to the limit of 3D Brownian diffusion. This value of α

corresponds to a monolayer of thickness ≈ σH = 20 μm. We
observe that the temporal decay of the overdensity profile
is qualitatively as in the strict 2D case, but the build-up
of the anomalous tail is slower for intermediate r/R. At
large distances (r/R > 5), the results from tSD and the DEE
solutions (both 2D and 3D) coincide. In both cases, the
diffusion of the edge of the disklike overdensity proceeds more
slowly as compared to the strict 2D case, but still faster than
Brownian dynamics.

We increase the width to α = 5 (the width of the confining
potential is about 3.5σH = 70 μm). The tSD profiles clearly
confirm the dip which we discussed above for the DEE
solutions; see Fig. 6. DEE and tSD profiles agree at large
distances, whereas for intermediate r/R the evolution of
the profile appears to proceed more slowly in simulations,
a fact that may be attributed to the rather small box used
in simulations. However, the main features of the evolution
are captured by both methods alike. These main features are
the deviations from the case of strict 2D confinement in the
depletion zone as well as the onset of anomalous diffusion at
larger distances (regime III).

C. Results: Diffusion of a narrow peak

The setup for the peaklike overdensity given by Eqs. (27)
and (29) is shown in Fig. 7. The width of the confining potential
was set to �c ≈ 140 μm (α = 10), so that lG = �c/10 =
14 μm. For lG → 0, the time evolution corresponds to the
decay of a δ peak in the nonlinear DEE (10) (corresponding
to a Green’s function for a linear DEE). This case allows us
to study the transition from presumably normal diffusion at
small lateral distances (regime I) to anomalous diffusion at
larger distances and longer times (regime III). In regime I, we
are especially interested in the effect of hydrodynamics in the
confined system on smaller length scales; therefore, we have
compared the case with hydrodynamic interactions to the 3D,
purely Brownian case [u = 0 in Eq. (10a)].

Figure 8(a) shows the time evolution of the overdensity
peak in the z direction, i.e., �ρ(0,z,t), and Fig. 8(b) shows
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FIG. 7. Schematic side view of the setup of an initial narrow,
isotropic peak over the equilibrated background. The number of
particles in the peak is chosen to be the same as the one in the
planar overdensity of Sec. III B.

the evolution in the r direction, i.e., �ρ(r,0,t). The initially
isotropic Gaussian profile roughly stays Gaussian also at
later times but becomes anisotropic. Even though the initial
peak is not affected by the confinement, we observe that in
the presence of hydrodynamic interactions the peak diffuses
faster in the lateral r direction than without them (Brownian
case), but slower in the vertical z direction. This happens
already at small times, when the system is still far from being
equilibrated in the z direction. It can be understood through
particle number conservation and the 3D incompressibility
constraint (∇x · u = 0) that a faster diffusion in the r direction
must be accompanied with a slower diffusion in the z direction:
according to Eq. (10c), the vertically directed confinement
force induces a compressing flow in the z direction and,
consequently, an expanding in-plane flow in the r direction.

To elucidate the origin of the faster r diffusion of the blob,
we compared the solution to the diffusion of the same peak
but without background density. Interestingly, the r diffusion
is the same for length scales r/�c � 1 (i.e., the background
density does not influence it). Only for r/�c � 1 there is a
qualitative difference: we observe the anomalous tail in the
spatial profile during the decay of the peak on top of the finite
background, whereas it is absent in the decay of the peak with
no background. As a conclusion, the moderate discrepancy
between lateral and vertical diffusion of the peak (an increase
of anisotropy) is a hydrodynamic effect in regime I, occurring
on scales smaller than the width of confinement.

IV. SUMMARY AND CONCLUSIONS

We have investigated the effect of the hydrodynamic
interactions on the collective diffusion of a dilute colloidal
suspension when the particles (having a finite hydrodynamic
radius) are confined in the vertical direction by a potential of
width �c in order to build a quasimonolayer. Hydrodynamic
interactions have been approximated by the far-field limit at
the two-body level, appropriate for dilute suspensions. The
diffusion equation becomes a nonlinear, integro-differential
equation in this case. We have investigated collective diffusion
using (1) linearized theory, (2) numerical solutions of the
diffusion equation, and (3) truncated Stokesian dynamics
simulations. The analysis of the linearized theory allows the
identification of three regimes: on scales much larger than
the width of confinement �c and the characteristic length
Lhydro, the collective diffusion in the monolayer is always
anomalous. For scales below Lhydro, the density evolution
follows 2D normal diffusion, and for scales below �c, the
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FIG. 8. Diffusion of an initial Gaussian overdensity with lG/�c =
1/10 with and without hydrodynamic interactions (HI). The hor-
izontal axis corresponds to the squared distance from the origin,
the vertical axis corresponds to the logarithm of the dimensionless
overdensity profile �3

c�ρ. A Gaussian profile corresponds to a straight
line. (a) Profile for r = 0 in the z direction at four different times.
The asymptotic equilibrium profile (19) is shown by the black line.
(b) Profile for z = 0 in the r direction at the same four times.

3D normal diffusion is recovered. We have confirmed by
numerical solutions and simulations that indeed, at lateral
distances r much larger than the width �c, the spatial decay
of density fluctuations shows instantaneously the signature
(∝ r−3) of anomalous diffusion characteristic for a perfect
2D monolayer. The numerical approach also allowed the
investigation of the transition from 3D to 2D diffusion: at small
distances r ∼ �c one already observes how the hydrodynamic
interactions induce faster diffusion in lateral direction but
slower in vertical direction. Other peculiar effects also induced
by the hydrodynamic interactions, such as the generation of
regions of noticeable particle depletion, were observed.

In a recent publication, Panzuela et al. [17] address
precisely the same problem of the 3D → 2D crossover
in the diffusive dynamics of a monolayer. The numerical
simulations presented in Ref. [17] are used to measure the
in-plane intermediate scattering function of the equilibrium
density fluctuations, rather than the decay of macroscopic
density profiles, as we have done in this work. Nevertheless,
the conclusions agree in both works, which thus represent
complementary numerical confirmations of the phenomenol-
ogy associated to anomalous diffusion in monolayers. For
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completeness, the detailed relationship between the approach
in this work and that in Ref. [17] is discussed in Appendix D.

Our results have far-reaching consequences for the col-
lective diffusion behavior of confined systems in an infinite
(or half-infinite medium). These systems encompass bulk
colloidal suspensions in an external, sheetlike potential, or
colloids and surfactants at fluid interfaces. Whenever lateral
distances larger than the confinement width are considered,
the collective diffusion must be considered anomalously fast.
Experiments on colloidal monolayers indicate a hydrod-
ynamic-induced enhancement of collective diffusion [1]. A
clear experimental signal for the 1/k divergence of the
collective diffusion coefficient can be found in Ref. [8],
which is the only experimental work we are aware of. The
analysis presented in this work is intended to provide the
theoretical framework for the analysis of the 3D → 2D
crossover in possible future experimental realizations of the
quasimonolayer configuration.

It is to be noted that, in many experimental realizations, the
relevant configuration is a monolayer in a curved interface,
e.g., that of a fluid droplet. Therefore, the extension of
the analysis to this case is desirable, with the goal of
addressing the effect of curvature on the anomalous diffusion
phenomenology. It may be expected that the scenario discussed
here is recovered on length scales much smaller than the typical
radius of curvature; the general problem is more involved and
requires a detailed study.
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APPENDIX A: LINEARIZED EQUATIONS

Equation (10a) can be rewritten as

∂ρ

∂t
= −∇x · j, j := −D0∇xρ − ρ(u − 	∇xV ). (A1)

The equilibrium solution given by Eq. (19) implies ueq = 0
[after integrating by parts in Eq. (10c)] and

jeq = −D0∇x�eq − 	�eq∇xV = 0. (A2)

Therefore, the substitution of Eq. (21) gives

j = �eq[−D0∇xε + (1 + ε)u], (A3)

which leads to the following dynamical equation for ε after
using Eq. (A2) and the incompressibility constraint ∇x · u = 0:

∂ε

∂t
= D0∇2

xε − u · ∇xε − 	

D0
(∇xV ) · [D0∇xε − (1 + ε)u].

The linearization of this equation around the unperturbed
solution ε = 0 follows easily when accounting for the fact
that u is already of linear order in ε because ueq = 0. In
this manner, Eq. (22a) is obtained, while Eq. (22b) is simply
the already linear Eq. (10c). In particular, for the harmonic
confining potential (11) the linearized equation for ε takes the

form

∂ε

∂t
= D0

[
∇2 + ∂2

∂z2

]
ε − 2z

�2
c

[
D0

∂ε

∂z
− ez · u

]
. (A4)

The expansion (23) can be inverted as

cn(k,t) =
∫

d2r e−ik·r
∫ +∞

−∞

dz

�c

e−(z/�c)2

√
π n! 2n

×Hn

(
z

�c

)
ε(r,z,t), (A5)

and Eq. (25a) is obtained from Eq. (A4) by using that the
Hermite polynomials satisfy

d2Hn(ζ )

dζ 2
− 2ζ

dHn(ζ )

dζ
+ 2nHn(ζ ) = 0.

The function ψn(k,t) appearing in Eq. (25a) is given as

ψn(k,t) := �cLhydro k

D0

∫
d2r e−ik·r

×
∫ +∞

−∞

dz

�c

2(z/�c)e−(z/�c)2

√
π n! 2n

Hn

(
z

�c

)
ez · u(r,z,t),

(A6)

and is computed in Appendix B.

APPENDIX B: CALCULATION OF THE
COEFFICIENTS �nm

In order to compute ψn defined by Eq. (A6), one first
calculates ez · u given by Eq. (22b) with the harmonic
potential (11) (for the purpose of this appendix, the explicit
time dependence will be dropped from the notation):

ez · u(r,z) = −2D0�cρ
(2D)
0√

π

∫
d2r′

�2
c

∫ +∞

−∞

dz′

�c

z′

�c

× e−(z′/�c)2
ε(r′,z′) ezez : ω[r − r′ + ez(z − z′)].

This expression can be evaluated by inserting the 3D Fourier
transform of the Oseen tensor [11],

ω(r + ezz) = 3πσH

∫
d2k

(2π )2

∫ +∞

−∞

dkz

2π

eik·r+ikzz

k2 + k2
z

×
[
I − (k + ezkz)(k + ezkz)

k2 + k2
z

]
,

and using that

∫ +∞

−∞

dkz

2π

eikz(z−z′)(
k2 + k2

z

)2 = 1

4k3
e−k|z−z′ |(1 + k|z − z′|),
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so that the integrals over kz and r′ can be carried out, which
results in

ez · u(r,z) = − 2D0√
π�cLhydro

∫
d2k

(2π )2

eik·r

k

×
∞∑

m=0

cm(k)
∫ +∞

−∞

dz′

�c

z′

�c
e−(z′/�c)2

×Hm

(
z′

�c

)
e−k|z−z′ |(1 + k|z − z′|),

after using the definition (18) and the expansion (23). There-
fore, when this expression is inserted in Eq. (A6), one obtains
Eq. (25b) with the coefficients

�nm(q) := 4
∫ +∞

−∞
dζ

∫ +∞

−∞
dζ ′ ζ ζ ′e−(ζ 2+ζ ′2)

×Hn(ζ )Hm(ζ ′) e−q|ζ−ζ ′ |(1 + q|ζ − ζ ′|), (B1)

in terms of the dimensionless quantities

ζ := z

�c
, q := �ck.

It is manifest that �nm(q) is symmetric in the indices.
Furthermore, a change of variables ζ → −ζ, ζ ′ → −ζ ′ in the
integrals shows that �nm(q) vanishes if n and m have different
parity. It is possible to simplify Eq. (B1) and eventually express
it in terms of the error function. We are mainly interested,
however, in the asymptotic behaviors in the limits q � 1 and
q 
 1, and this can be derived directly from Eq. (B1).

When q → ∞, one can evaluate Eq. (B1) using Laplace’s
formula [28], because the integral is dominated by the value of
the integrand near ζ − ζ ′ = 0. Introducing the new variables
μ = ζ + ζ ′, σ = ζ − ζ ′, one can write

�nm(q) = 1

2

∫ +∞

−∞
dσ e−q|σ |(1 + q|σ |)e−σ 2/2

×
∫ +∞

−∞
dμ e−μ2/2(μ2 − σ 2)

×Hn

(
μ + σ

2

)
Hm

(
μ − σ

2

)
.

As q → ∞, this expression can be approximated as

�nm(q) ∼ 1

2

∫ +∞

−∞
dσ e−q|σ |(1 + q|σ |)

×
∫ +∞

−∞
dμ e−μ2/2μ2Hn

(μ

2

)
Hm

(μ

2

)
from which one concludes that �nm(q) ∼ 1/q.

In the opposite limit q → 0, one can Taylor-expand the
integrand in Eq. (B1) because |e−qs(1 + qs)| � 1 for s � 0,
and thus the integral converges uniformly in q. One has

e−q|ζ−ζ ′ |(1 + q|ζ − ζ ′|) = 1 − 1
2q2(ζ 2 + ζ ′2 − 2ζ ζ ′) + o(q3).

When this expression is substituted in Eq. (B1), the two
integrals factorize. They can be computed explicitly by
expressing the powers of ζ and ζ ′ in terms of the Hermite

polynomials and using the associated orthonormality relations:∫ +∞

−∞
ds e−s2

Ha(s)Hb(s) = √
π a! 2a δa,b.

For the particular case that both indices n,m are even, one
obtains

�00 ∼ πq2 −
√

8π q3 + o(q4), (B2a)

�20 ∼ 4πq2 + o(q3), (B2b)

�22 ∼ 16πq2 + o(q3), (B2c)

�nm ∼ o(q3) if n � 4 or m � 4. (B2d)

APPENDIX C: ADIABATIC ELIMINATION OF
THE FAST MODES

We introduce the short-hand notations q := �ck, λ :=
Lhydrok, and τ := D0t/�

2
c , and define the infinite-dimensional

column vector c := (c2 c4 . . . )†, so that the dynamical equa-
tions (25) for n � 2 can be rewritten in compact form as2

π n! 2n λ
dcn

dτ
= −(B · c + c0s)n (n � 2),

in terms of the symmetric matrix

B := diag[π n! 2n λ (q2 + 2n)] + (�mn),

and the column vector s := (�20 �40 . . . )†. The “adiabatic
enslaving” of these fast modes (notice that B does not vanish
as q → 0 provided λ �= 0) gives the relationship

dc
dτ

= 0 ⇒ censlaved = −c0 B−1 · s.

Inserting it into the dynamical equation for the slow mode c0

[Eqs. (25)] yields

dc0

dτ
≈ −

[
q2 + �00(q)

πλ

]
c0 − 1

πλ
s · censlaved,

which becomes the linear Eq. (26a) with the diffusion
coefficient

D(k)

D0
− 1 ≈ 1

πλq2
[�00(q) − s · B−1 · s]. (C1)

For consistency with the assumption of “adiabatic enslaving”,
this expression is meaningful only in the limit q → 0. From
Eqs. (B2) and

s =

⎛
⎜⎝

4πq2 + o(q3)
o(q3)

...

⎞
⎟⎠,

B−1 = 1

2πλ
diag

(
1

n! 2n n

)
+ o

(q

λ

)2
,

2To avoid a cumbersome notation, we ignore the fact that n

and m represent even numbers, but the indices of the components
of vectors and matrices must be natural numbers. This should
not create ambiguity because the simplicity of the expressions is
self-explanatory.
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one gets for Eq. (C1) the expression

D(k)

D0
− 1 ≈ 1

λ
−

√
8

π

q

λ
− q2

2λ2
+ o

(
q2

λ
,
q6

λ2

)
,

which is Eq. (26b). The criterion for not retaining higher order
terms in this expansion is that they lead to positive powers of
k in Eq. (26b). This ultimate goal is also the reason for the
careful bookkeeping in powers of both q and λ when deriving
the expansion.

APPENDIX D: COMPARISON WITH REF. [17]

Panzuela et al. [17] obtain a theoretical result for the short-
time collective diffusion coefficient D(short)(k) by studying the
decay of in-plane equilibrium density fluctuations, i.e., the
intermediate scattering function

F (k,t) = 〈ρ̂(k,t)ρ̂∗(k,0)〉, (D1)

where 〈. . . 〉 denotes the average over the equilibrium distribu-
tion in the initial state, and ρ̂ is the microscopic density field.
The theoretical analysis assumes a dilute system and focuses
on the short-time regime, i.e., times t → 0 so that the colloidal
particles are displaced by an amount much smaller than the
mean interparticle separation. In such a case, one assumes

F (k,t) = F (k,0) exp[−k2D(short)(k)t] (t → 0),

with the definition

D(short)(k) := − 1

k2

[
1

F (k,t)

∂F (k,t)

∂t

]
t=0

.

The theoretical model we have devised concerns the time
evolution of the average density ρ = 〈ρ̂〉, see Eq. (6). Nev-
ertheless, the same result can be obtained for the short-time
dynamics starting with our linearized equations for the time
evolution of a density fluctuation [Eqs. (22)]. In terms of the
projected average 2D density [see Eqs. (24)],

ρ(2D)(k,t) = ρ
(2D)
0 c0(k,t) (k �= 0),

one can define the short-time diffusion coefficient as

D(short)(k) := − 1

k2

[
1

ρ(2D)(k,t)

∂ρ(2D)(k,t)

∂t

]
t=0

.

Use of Eqs. (25) gives the expression

D(short)(k)

D0
− 1 = 1

πLhydrok

∞∑
m=0

�0m(�ck)

(�ck)2

cm(k,0)

c0(k,0)
.

This is not a well-defined system-characteristic quantity due
to the dependence on the specific initial conditions cm(k,0).
However, one can restrict the consideration to initial perturba-
tions with cm = c0δm,0, as is actually done in Eq. (D1) when
performing the average over equilibrium configurations, for
which the different modes cm are uncorrelated: in such case,
after evaluating �00 (see Appendix B), one obtains

D(short)(k)

D0
− 1

= 1

πLhydrok

�00(�ck)

(�ck)2

= 1

Lhydrok

{
[1 + (�ck)2]e

(�ck)2

2 erfc

(
�ck√

2

)
−

√
2

π
�ck

}
,

(D2)

in terms of the complementary error function erfc(q). This
result coincides exactly with Ref. [17, Eq. (18)], with the
notation �c = √

2 δ [17, Eq. (1)] and Lhydro = 2a/3φ [17,
Eq. (20)]. It should be compared with Eq. (C1) derived
in the opposite, long-time limit. Both coefficients agree on
the dominant, anomalous-diffusion behavior at large scales.
Expression (D2) is not restricted to the small q limit, but
at the price of choosing a certain set of initial conditions
ad hoc. Equation (C1), on the contrary, is valid only in the
limit q → 0, but it incorporates naturally the irrelevance of
the initial conditions through the “adiabatic enslaving.”
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