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A binary mixture of superparamagnetic colloidal particles is confined between glass plates such that the large
particles become fixed and provide a two-dimensional disordered matrix for the still mobile small particles, which
form a fluid. By varying fluid and matrix area fractions and tuning the interactions between the superparamagnetic
particles via an external magnetic field, different regions of the state diagram are explored. The mobile particles
exhibit delocalized dynamics at small matrix area fractions and localized motion at high matrix area fractions, and
the localization transition is rounded by the soft interactions [T. O. E. Skinner et al., Phys. Rev. Lett. 111, 128301
(2013)]. Expanding on previous work, we find the dynamics of the tracers to be strongly heterogeneous and show
that molecular dynamics simulations of an ideal gas confined in a fixed matrix exhibit similar behavior. The
simulations show how these soft interactions make the dynamics more heterogeneous compared to the disordered
Lorentz gas and lead to strong non-Gaussian fluctuations.
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I. INTRODUCTION

Slow relaxation phenomena are often linked to the appear-
ance of a diverging length scale. While for the arrest of particles
in glass-forming fluids the relevance of a divergent length scale
is a highly controversial issue [1,2], the existence of such a
length scale is obvious if the slowing down of the relaxation
dynamics is associated with an underlying continuous phase
transition [3], such as, e.g., the critical point of a liquid-gas
transition [4] or a percolation transition [5,6]. A paradigm for
slow relaxation in combination with a percolation transition is
the Lorentz gas where a single tracer particle moves through
the free volume provided by an disordered matrix of obstacles
[7]. If the density of obstacles is sufficiently high the tracer does
not find any percolating path through the system and is thus
localized in a finite volume. At the percolation transition of the
free volume, where the tracer particle exhibits a localization
transition from a delocalized to a localized state, the tracer
particle probes the fractal structure of the free volume. This is
associated with an anomalous diffusion dynamics, as reflected
in a sublinear growth of the mean-squared displacement
(MSD). Generalizations of the Lorentz model, for instance
with many interacting particles, soft interaction potentials, or
correlated matrix structures, have been investigated in both
simulation [8–13] and theory [14–16].

The original classical Lorentz-gas model [17,18] assumes
Newtonian dynamics for the tracer particle and a hard-sphere
potential for its interaction with the obstacles. Here, the
“energy barriers” that the tracer sees when it travels through
the arrangement of obstacles are infinitely high. However, in a
modified model with soft interactions between the tracer and
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the obstacles this is no longer the case and the effective barrier
height provided by the obstacles depends on the energy of the
tracer particle. Thus, for a given obstacle configuration, the
effective free volume that the tracer can explore is strongly
correlated with its energy. As shown in a series of molecular
dynamics (MD) simulations [19], in an ideal gas of tracer
particles in a random arrangement of soft obstacles each
particle sees a different percolation transition of the free
volume according to the kinetic energy that has been assigned
initially to each of the tracer particles. As a consequence,
quantities like the self-diffusion coefficient, which have to be
averaged over all particles, do not show the singular behavior
expected at the localization transition. Instead, all quantities
exhibit nonuniversal behavior: the transition is rounded. Only
if a special average over tracer particles with the same energy
is performed, a sharp transition as in the hard-sphere Lorentz
gas is recovered. These results suggest that the rounding of the
transition is a generic feature of realistic, soft systems.

The heterogeneous structure of the matrix leads to het-
erogeneous or non-Gaussian dynamics, as exemplified by the
anomalous diffusion at the localization transition and other
signatures such as a large non-Gaussian parameter [20,21].
The non-Gaussian parameter is often used to characterize
dynamical heterogeneities [22,23] and in the Lorentz model
has a weak divergence at the localization transition [24–27].
In a soft system, in which each particle sees a different
matrix structure according to its energy, it can be expected
that the dynamics are even more heterogeneous. However, the
connection between this rounding of the transition in a soft
heterogeneous medium and its dynamical heterogeneities has
not been explored, yet.

Recently, we have presented an experimental realization
of a two-dimensional (2D) Lorentz-gas-like system [28]. It
consists of a binary mixture of superparamagnetic colloidal
particles confined between two glass plates such that the
larger colloidal particles are immobilized and the smaller

2470-0045/2017/95(3)/032602(14) 032602-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevLett.111.128301
https://doi.org/10.1103/PhysRevLett.111.128301
https://doi.org/10.1103/PhysRevLett.111.128301
https://doi.org/10.1103/PhysRevLett.111.128301
https://doi.org/10.1103/PhysRevE.95.032602


SIMON K. SCHNYDER et al. PHYSICAL REVIEW E 95, 032602 (2017)

FIG. 1. (a) Schematic of the experiment, a binary system of small and large particles confined between two glass slides (particle diameters
to scale). The large particles support the top slide. The magnetic field B tunes the effective interaction between the particles. (b) Mean-squared
displacement for the fluid particles in a very dilute 2D cell. A dashed line indicating diffusive behavior, δr2(t) ∼ t , is shown as a guide to the
eye. (c) State diagram for the effective area fractions of the fluid (�F ) vs the matrix particles (�M ). (d) Snapshot of the system at state point
L1P6 in a quadrant of size 214 × 171 μm.

particles can move through the matrix formed by the larger
ones. In this experiment, the effective size of the particles
is varied by exposing the particles to an external magnetic
field that induces magnetic dipoles in the particles, leading
to a repulsive r−3 interaction between them (here r is the
distance between two particles). By varying the strength of the
external magnetic field, the effective density of the matrix is
changed while the structure of the matrix remains unaffected.
We have demonstrated that the tracer particles, i.e., the smaller
particles, exhibit a transition from a delocalized state at low
effective matrix densities to a localized state at high matrix
densities [28]. This transition is rounded because the energy
of the Brownian particles is a fluctuating quantity and, due to
the soft r−3 interaction with the obstacles, the barriers seen by
the tracers are not infinitely high as for hard interactions.

Here, we discuss generic features of the structure and
dynamics in heterogeneous media by comparing the results
of colloidal experiments and MD simulations. First, we
qualitatively characterize the tracer dynamics by calculating
the single-particle probability distributions and discuss the
structure of the matrix and fluid particles in terms of the partial
pair distribution functions. We then show that around the
transition from a delocalized to a localized state, the dynamics
of the tracer particles in both simulation and experiment
exhibit strong dynamic heterogeneities that are associated with
strong non-Gaussian fluctuations. To this end, we provide a
detailed analysis of simulation and experiment in terms of
the self-part of the intermediate scattering function (SISF),
Fs(q,t) [4], the mean-quartic displacement (MQD), δr4(t)
[29], and the non-Gaussian parameter (NGP), α2(t) [20,21],
thereby extending upon our previous work [28]. We find that
a large fraction of particles can already be localized while
the MSD still appears diffusive. While this heterogeneity is
typical for the Lorentz gas, we find it to be enhanced when the
artificial constraint of assigning the same energy to all particles
in the simulation is removed. As a consequence, the rounded
delocalized-to-localized transition of the tracer particles is
associated with a strong increase of α2(t) on rather small and

intermediate time scales, whereas the α2 of the Lorentz gas
indicates only small deviations from Gaussian behavior. This
strong increase of α2(t) is found in the experiment as well.

II. COLLOIDAL MODEL SYSTEM

The experimental system, as first introduced in [28], con-
sists of a binary mixture of monodisperse superparamagnetic
polystyrene spheres (Microparticles GmbH) of diameters
σ 0

F = 3.9 μm (index F for fluid) and σ 0
M = 4.95 μm (M for

matrix), respectively, dispersed in water. The particles contain
carboxyl surface groups that dissociate in water creating a
short-range screened Coulombic repulsion, where the Debye
screening length is negligibly short compared to the particle
diameters. Their superparamagnetic properties stem from the
iron oxide nanoparticles distributed throughout their polymer
matrix and a magnetic dipole will be induced parallel to an
externally applied magnetic field.

The binary colloidal suspension is confined between two
glass slides to make a 2D sample cell. The large particles
act as spacers to support the upper slide and form a fixed
matrix, leaving the small particles—the fluid—free to move
between them [30–33]; see Fig. 1(a). To ensure that the small
particles always stay in the plane, the height of the 2D sample
cell, h, must be less than h ≈ 1.447σ 0

F [34]. The size ratio of
the small to the large particles used in the binary mixture is
selected accordingly and equals 0.787. For the preparation
of the sample cell, the lower and upper glass slides (Sail
76 × 25 × 1.2 mm and Menzel-Glaser 15 × 15 × 0.15 mm,
respectively) are rinsed in distilled water, twice with absolute
ethanol, and then dried with an air gun. 1.11 μl of the required
concentration of colloidal suspension is placed in the center of
the large glass slide to create a 15 mm × 15 mm × 4.95 μm
internal sample volume. The small glass slide is placed on top
of the solution and a 10 g weight pressure is applied to aid the
liquid spread to the edges of the top slide. The edges of the
sample cell are sealed with glue (Norland no. 82) and cured

032602-2



DYNAMIC HETEROGENEITIES AND NON-GAUSSIAN . . . PHYSICAL REVIEW E 95, 032602 (2017)

under a UV lamp. The cells typically last for 2 days before
starting to dry out.

After cell manufacture, the system is equilibrated for 30
min. The external magnetic field is set to the required value
and the sample allowed to equilibrate for a further 20 min.
Using optical video microscopy stacks of 8-bit 1280 × 1024
pixel images of an area of size 428 μm × 342 μm are taken
at 0.5 Hz for 1 h (lines 0 and 1) and 1 Hz for 1.4 h (line 2). A
typical microscopy image of the system is shown in Fig. 1(d).
The colloidal particles are located by standard particle tracking
routines [35] and the drift in the colloidal particle positions
was negligible (see Appendix A 1). To improve statistics, each
image is divided into quadrants. Each quadrant is analyzed
separately and mapped onto the hard sphere state diagram.
These data points are then binned according to their position
on the state diagram to create points averaged over several
similar matrix configurations and fluid particle densities.

During the preparation of the samples some small fluid
particles become stuck to the walls of the sample cell and
effectively act as matrix particles. To account for this, we
apply a simple and robust protocol to reclassify the struck fluid
particles as matrix particles; see Appendix A for a detailed
discussion. The fraction of fluid particles that are reclassified
is on average 18.6% for line 0, 9.1% for line 1, and 12.3% for
line 2. Importantly, this fraction is independent of the magnetic
field, as expected and required for fixed matrix particles. We
also confirmed that our results do not depend on the exact
definition of the reclassification protocol and are qualitatively
unaffected by the reclassification. Finally, we note that this
fraction is different for all three lines, which may be related
to the fact that they are all separately prepared sample cells
at different compositions, i.e., different number of matrix and
fluid particles.

The repulsive pair potential, UF,M (r), of the super-
paramagnetic colloidal particles is controlled via an external
magnetic field B:

UF,M (r) = μ0χ
2
F,MB2/(4πr3),

where r is the distance between two particles, μ0 is the per-
meability of free space, and χF,M the magnetic susceptibility
of the fluid or matrix particles. As the magnetic interactions
dominate the pair potential, we determine the effective packing
fractions of the colloidal particles in the presence of an
external magnetic field by calculating the effective hard sphere
particle diameter σF,M using the Barker-Henderson approach
[4,36,37],

σF,M = σ 0
F,M +

∫ ∞

σ 0
F,M

(1 − e−βUF,M (r))dr,

where σ 0
F,M are the hard sphere diameters of the colloids and

β = 1/kBT . If the magnetic field is switched off, B = 0,
σF,M reduces to the diameter of the colloids σ 0

F,M , which
corresponds to the lowest state point along each line. Hence
manipulation of both the number densities nF and nM of the
colloidal particles, and the effective hard sphere diameters via
the external magnetic fields allows different regions of the
state diagram to be explored; see Fig. 1(c). We prepared three
different samples with different number densities for the matrix
and fluid particles, and thus investigated the system along three

lines, labeled as lines 0, 1, and 2 in the state diagram. The nth
state point of line x is labeled as “LxPn.” At the lowest point
along each line the external field is not yet switched on and thus
it is given by the hard sphere area fractions of the matrix �0

M

and the fluid particles �0
F . By switching on and increasing the

magnetic field the effective area fractions are increased. The
size ratio of the fluid to the matrix diameter stays constant at
0.787, yielding linear paths in the state diagram.

The strength of this experiment lies in the fact that we
are able to control the effective area fractions of the colloids
without changing the matrix configuration. In this way, we
can efficiently measure the tracer dynamics at a range of
different effective matrix and fluid area fractions in the same
sample. This approach allows us to achieve high matrix area
fractions where the matrix still has a random character, a
crucial property for a model system for random media. In
our analysis of the tracer dynamics, we will focus on the state
points along lines 1 and 2. The dynamics along line 0 is very
similar to that along line 1, and the data for line 0 are shown
in Appendix B. The experimental data are averaged over up to
four independent matrix configurations by imaging different
parts of each sample.

In order to make sure that the dynamics of the colloids under
confinement are well controlled, we prepared a system at a
very low matrix packing fraction, with just enough particles
to act as spacers, and containing a very low fluid particle
concentration. With the 2D trajectory of any tracer particle
designated as �r(t), its mean-squared displacement (MSD) is
defined by δr2(t) = 〈[�r(t) − �r(0)]2〉, with 〈〉 representing an
average over different matrix configurations, i.e., multiple
quadrants, employing multiple time origins, and averaging
over all mobile particles. At such low packing fractions,
the MSD is expected to exhibit diffusion over all times,
δr2(t) ∼ D0t , with D0 being the self-diffusion coefficient at
infinite dilution, which is confirmed in Fig. 1(b). This indicates
that the fluid particles are completely free to diffuse within the
2D cells. Note that diffusion is well defined in 2D systems with
obstacles [38] and that the effect of hydrodynamic interactions
in this system is currently not well understood, though we
expect them not to play a major role at long times [39].

III. SIMULATION

In order to interpret the experiment, a molecular dynamics
(MD) simulation of a comparable two-dimensional system was
performed. Note that we are aiming to reveal qualitative and
generic features of the localization dynamics across two quite
different systems, rather than achieving quantitative agreement
between experiment and simulation.

The fixed matrix in the simulation is generated from
snapshots of an equilibrated polydisperse liquid of disks
interacting with the Weeks-Chandler-Andersen potential [40].
The pair potential between particles is given by

Vαβ(r) =
{

4εαβ

[(( σαβ

r

)12 − ( σαβ

r

)6) + 1
4

]
, r < rcut,

0, r � rcut,
(1)

with a cutoff of rcut = 21/6σαβ . The diameters of the matrix
particles are sampled from an interval in order to avoid crystal-
lization, i.e., σα = (0.85 + 0.3α/N )σM for α ∈ 1, . . . ,N . The
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diameters of the N particles are additive, i.e., for each matrix
particle pair with indices α and β, the interaction diameter is
σαβ = (σα + σβ)/2. The unit of length is thus given by σM . The
unit of energy is given by the energy scale for the matrix-matrix
interaction εMM ≡ εM . The numerical stability of the simula-
tion is considerably improved by making the potential contin-
uous at the cutoff. This is achieved by multiplying Vαβ(r) with
a smoothing function 
(r) = (r − rcut)4/[h4 + (r − rcut)4]
with width h = 0.005 σM . As a consequence, we do not
observe any problems with energy drift in microcanonical
simulations. The particles are equilibrated with a simplified
Andersen thermostat [41] at temperature kBT = εM , where
the particle velocities are randomly drawn every 100 time
steps from the Maxwell distribution with thermal velocity
vth = (kBT /m)1/2. The unit of time is thus given by the
Lennard-Jones time t0 = σM/vth = [m(σM )2/εM ]1/2. We in-
tegrate Newton’s equations of motion for the particles with the
velocity-Verlet algorithm [42] using a numerical time step of
�t = 7.2 × 10−4t0.

We considered square-shaped systems containing N =
500, 1000, 2000, 4000, and 16000 particles, and employed
periodic boundary conditions. To allow for sufficient averaging
over different matrix configurations, we generated 100 statis-
tically independent configurations for each case. These were
equilibrated at the number density n = N/L2 = 0.278/σ 2

M ,
were fixed and subsequently uniformly rescaled to number
density n = 0.625/σ 2

M , and thus correspond to the system
sizes L/σM = 28.28, 40, 80, and 160. Varying the system
size L allows us to keep finite size effects under control.

Into the matrix structures, we insert a gas of tracer particles
which do not interact with each other. The interaction of the
tracers with the matrix is given by the WCA potential of
Eq. (1) with parameters εαβ = 0.1εM and σαβ = (σM + σF )/2.
Note that the polydispersity of the matrix particles is neglected
here, as it was only used to avoid crystallization of the matrix
configurations. The diameter σF of the tracer particles acts
as the control parameter and is used to change the area
inaccessible to the tracer particles without changing the matrix
structure, equivalent to modifying the magnetic field in the
experiment.

The tracer particles are inserted and equilibrated also with
the simplified Andersen thermostat. Since the particles are
noninteracting, the equilibration times can be quite short with
run times of typically 103t0. For the microcanonical production
runs we considered two cases. In the one case—the confined
ideal gas—the production run is carried out directly after
the equilibration, and the particles naturally have a broad
distribution of energies. But the systems are first brought to
the same average energy by rescaling all tracer velocities in
each system with one constant, leaving the relative distribution
of energies unmodified. In the other case—the single-energy
case—we enforce that all tracers have exactly the same energy.
This is achieved by determining the average tracer energy at
the end of the equilibration run, and reinserting the particles
at random places, provided that their potential energy at that
position is lower than the average energy and assigning the
rest of the energy as kinetic energy. After that, microcanonical
simulation runs are started for both cases with run times of up to
about 2 × 105t0. The single-energy case was shown to exhibit
the universal critical behavior of the Lorentz gas with the

transition occurring at the critical diameter σ c
F ≈ 0.43, while

the confined-ideal-gas case shows strong rounding [19,28].

IV. RESULTS AND DISCUSSION

In our previous work [28], we used MD simulations to
demonstrate that the experiment exhibits a delocalization-
localization transition similar to the Lorentz gas, but that in
contrast to the latter, the transition is rounded due to the
soft interactions between the particles. Here, we revisit the
experiment and the simulations, and analyze the structure of
both the matrix and mobile component, as well as investigate
the strongly heterogeneous single-particle dynamics. With
our analysis of the intermediate scattering function we get
additional insights into the rounding of the localization
transition, expanding on and complementing our previous
work. We will focus our discussion on lines 1 and 2, while
the data for line 0, which are very similar to those for line 1,
are shown in Appendix B.

A. Histograms

Because we are able to track the full trajectories of the
colloidal particles, we can directly calculate the probability
density p(�r) of finding a single particle at position �r . To this
end, we compute the histogram of all positions of the particle
centers over the duration of the experiment on a grid where
each bin corresponds to one pixel on the camera sensor, i.e.,
�A = (0.34 μm)2, and normalizing the distribution such that
the integral over a whole quadrant is unity. The distributions,
shown in Fig. 2, give a good qualitative feel for the structure
of the available free area and the dynamics of the tracer
particles in the system and how it is modified when crossing
the localization transition in the system. The obstacles are
clearly visible as circular areas to which the fluid particles are
excluded. At L1P1, where the magnetic field is switched off,
the quadrant shown in Fig. 2(a) clearly shows a percolating
path from the top center to the bottom right. At high magnetic
fields, the motion of the fluid particles becomes severely
constrained; see L1P6 in Fig. 2(b) where the same quadrant
as in (a) is shown. The particles explore their surroundings,
but on the time scales available to the experiment travel not
much farther than their own diameter. This is not only due to
the constriction of the matrix but also due to competition for
free space between the mobile particles. However, the areas
explored by the tracers are still connected in many cases,
and large clusters of connected free area are found in the
whole quadrant. It is probable that there is no percolating path
present in the system and thus the sample is likely localized.
Still, the MSD in this system becomes diffusive at long times
[28], which is an indicator for the rounding of the localization
transition. The systems along line 2 are all strongly localized,
regardless of the strength of the magnetic field; see Figs. 2(c)
and 2(d).

For qualitative comparison, we calculated analogous his-
tograms for the simulation of the confined ideal gas; see
Fig. 3. The length scales are comparable, i.e., the obstacles
are depicted at comparable size. At very small diameters, e.g.,
σF = 0.2 in Fig. 3, the available area is highly connected,
a situation that is not encountered in the experiment. The
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FIG. 2. Experiment: single-particle probability distributions from 2D histograms of all particle positions in a quadrant measured for state
points (a) L1P1, (b) L1P6, (c) L2P1, and (d) L2P6. The distributions are normalized such that the total probability of the whole quadrant is
unity. The size of the particles is indicated by the red circles under the scale bars in each plot, and the size of the hard-core excluded area for
centers of mobile particles is indicated in (a) by the blue circle under the scale bar.

histogram at σF = 0.45 in Fig. 3 represents the situation close
to the percolation point, where clusters of free area still span
nearly the whole system. This is qualitatively comparable to
the situation of L1P1 and L1P6. Highly dense systems contain
only clusters of a linear extent of a few particle diameters; see
σF = 0.7 in Fig. 3. This situation is comparable to L2P1 and
L2P4. While in certain ways the experiments and simulations
are comparable, it is clear that it is extremely difficult to
perform the experiments for long enough as to allow for the
particles to sample the full available free area close to the
critical point, a limitation that the simulations do not have.

B. Matrix and fluid structure

In Ref. [28], we characterized the structure of the matrix
via the static structure factor and demonstrated that the matrix
remains unchanged along each line, even at large magnetic

fields B. It is revealing to also study the structure of the fluid,
and as we have access to the trajectories of the particles in the
sample, we can fully quantify the structural correlations in the
system by calculating the partial radial distribution functions,
gαβ(r) [4],

gαβ(r) = A

2πr

1

fαβ

〈
Nα∑
i=1

Nβ∑
j=1,
=i

δ(r − | �rj − �ri |)
〉
,

(2)

with fαβ =
{
Nα(Nα − 1) for α = β,

NαNβ for α 
= β.

Here, α,β ∈ [F,M], Nα is the number of particles in com-
ponent α, �ri and �rj are the positions of particles i and j

of components α and β, and A is the area of the system or
quadrant that is being evaluated.

FIG. 3. Simulation: single-particle probability distributions from 2D histograms in the confined ideal gas case. Shown are square sections
of length 20σM and the histograms are normalized such that the total probability integrated over the shown section is unity.
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FIG. 4. Experiment: partial radial distribution functions, for the (a) matrix-matrix interaction gMM (r), (b) fluid-fluid interaction gFF (r),
and (c) fluid-matrix interaction gMF (r) for each state point along line 1 and line 2. Line 2 is shifted by 2 in each plot.

In the experiment, the matrix-matrix component of the
radial distribution function, gMM (r), for line 1, see Fig. 4(a),
only exhibits a maximum for particles at contact, demonstrat-
ing that the matrix particles are nearly spatially uncorrelated.
We note that gMM (r) is different from that of an equilibrium
fluid of hard disks at the same packing fraction [43], which
is inherent to the way in which the sample cell and hence
the matrix configuration is prepared (see Sec. II). We observe
a small prepeak at r ≈ 0.9σ 0

M , which probably comes from
stuck small particles being reclassified as matrix particles.
The smallness of this peak demonstrates that this is only
a very small effect. The function stays unchanged as the
magnetic field is modified, demonstrating that the matrix
particles really are fixed. In contrast, the fluid structure as
characterized by gFF (r) is strongly modified by the presence of
the magnetic field; see Fig. 4(b). At zero magnetic field at L1P1
many particles are in contact, as demonstrated by the single
maximum of gFF (r) at r = σ 0

F . With increasing magnetic
field, the particles are driven further apart and the maximum
decreases in amplitude. At the same time, another maximum
appears and gradually shifts to larger r , in agreement with
the growth of the effective diameter of the particles. Also,
multiple smaller minima and maxima develop, indicating
that the particles become more structurally correlated. At
L1P6 a small peak remains at the original position of the
maximum (σ 0

F ), which indicates a small portion of fluid
particles cannot move away from each other even though
the repulsive interaction is quite strong. The matrix-fluid
radial distribution function gMF (r) behaves quite similarly to
gFF (r).

Line 2 differs from line 1 by having considerably larger
number densities for both fluid and matrix particles. Con-
sequently, the spatial correlations frozen in the matrix are
stronger in line 2 as compared to line 1 and lead to a series of
maxima and minima beside the main maximum of particles
being at contact; see Fig. 4(a). Still, the matrix is fairly
disordered with the extrema not being very pronounced. As
for line 1, gMM (r) is independent of the magnetic field. In
contrast to line 1, the fluid pair correlation function g

FF
(r) is

not significantly affected by the magnetic field. This indicates

that the particles are already so strongly confined by the
matrix that increasing the repulsion between particles does not
significantly change their relative positions. The maximum
of gFF (r) is near the hard-sphere diameter of the particles,
indicating that many fluid particles are at contact, fully
occupying the free area inside the matrix and not leaving much
room to move around. Finally, similar to line 1, the matrix-fluid
radial distribution function gMF (r) behaves quite similarly to
gFF (r).

The data demonstrates the level of control we have over
the structure of the system in the experiment. By varying the
magnetic field, we can strongly influence the structure of the
fluid, at least in the case of line 1 where the matrix density is
moderate. The ability to calculate the partial pair correlation
functions from the full trajectories of the colloidal particles
demonstrates the strength of the colloidal model experiment,
as the same would be very difficult to achieve in atomic
systems or in analogous 3D colloidal systems with tunable
interactions.

In the simulation, the chosen matrix structure, see Fig. 5(a),
is roughly comparable to the one found along line 1 in the
experiment [Fig. 4(a)]. Both are gaslike in structure with
the experiment having a sharper peak. The main difference
of the simulation to the experiment is that the simulated
tracer particles do not interact with each other. This leads
to considerably different structural correlations in the fluid;
see Fig. 5(b). In contrast to the experiments, see Fig. 4(b), the
particles are allowed to overlap, as indicated by the maximum
of gFF (r) at r = 0. As the particles become bigger, available
space becomes increasingly rare, and the probability of tracers
overlapping grows. Notably, the single-energy and confined-
ideal-gas cases show very similar structural correlations. The
matrix-fluid particle pair correlation function gMF (r) is also
similar for both cases; see Fig. 5(c). The function exhibits a
maximum at r = (σM + σF )/2, indicating that many tracers
are at contact with matrix particles. The maximum of gMF in
the confined ideal gas exhibits a less steep left shoulder due
to the broad distribution of effective diameters in the system.
As the size of the tracers increases, that maximum becomes
sharper but stays at the same position. This is different from
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FIG. 5. Simulation: partial radial distribution functions, for the (a) matrix-matrix interaction gMM (r), (b) fluid-fluid interaction gFF (r),
and the fluid-matrix interaction gMF (r) for the single-energy and confined-ideal-gas cases [the latter data is shifted upwards by 5 in (b) and
by 1 in (c)].

line 1 in the experiment and is again a result of the lack of
interaction between the tracers.

C. Dynamics

1. Self-intermediate scattering function

The self-part of the intermediate scattering function (SISF)
for the mobile particles is defined as

Fs(q,t) = 1

NF

〈
NF∑
j=1

exp{i �q · [ �rj (t) − �rj (0)]}
〉
, (3)

with the 2D wave vector �q. Since the system is statistically
isotropic, the SISF is invariant under the rotation of the
direction of the wave vector and only depends on its magnitude,
the wave number q = |�q|. The SISF gives the full proba-
bilistic information in Markovian systems and can be directly
measured in scattering experiments. The SISF at any given q

describes the relaxation of density fluctuations on length scales
1/q over time. Its long-time limit fs(q) = limt→∞ Fs(q,t) is
known as the nonergodicity parameter or the Lamb-Mößbauer
factor, and is a measure of the fraction of particles that are
localized on a length scale 1/q. Even though the self-part
of the van Hove function discussed in Ref. [28] contains
the same information, it is of merit to study the SISF as
well, since it is more sensitive to localized particles than
both the van Hove function and its second moment, the
mean-squared displacement, δr2(t), which are more sensitive
to highly mobile particles.

In the experiment, the SISF can be computed directly from
the particle trajectories using Eq. (3) and we observe from
Fig. 6 that the SISF approximately has the same shape for all
measured state points. The SISF decays in a single relaxation
step onto a finite long-time limit fs(q), which increases with
density, i.e., L1P1 → L1P6 and L2P1 → L2P4, and with larger
length scales, i.e., smaller q. Note that this is qualitatively
different from the two-step relaxation found in ideal glass
formers [44,45]. Even at the low densities of L1P1, fluid
particles are trapped in voids created by the matrix, rendering

the dynamics nonergodic and preventing the SISF from
decaying fully. For comparison, the SISF of the simulations
are shown in Fig. 7. Qualitatively, the single-energy and the
confined ideal gas cases are similar to each other. There is a
single relaxation step onto a finite plateau which increases with
increasing density, i.e., increasing σF , and larger length scales,
i.e., smaller q. The main difference between the single-energy
and confined ideal gas cases can be found in the short-time
behavior around t/t0 = O(1), where the single-energy case
resolves the first collision of the tracers, while this is averaged
out in the confined-ideal-gas case. Apart from that, only the
magnitude of the long-time limits is different in the two cases.
In extremely dilute systems, e.g., σF = 0.2, the long-time limit
is nearly 0, indicating that only a small fraction of particles
is localized. At larger diameters, e.g., σF = 0.45 and 0.7 in
Figs. 7(b) and 7(c), the long-time limits are finite, and the
SISF of experiment and the confined-ideal-gas case in the
simulation become qualitatively similar.

To quantify the proportion of localized particles in the
experiment, we approximately determined fs(q) as the value
of Fs(q,t) at t ≈ 3300 s (indicated by the vertical dashed lines
in Fig. 7) for all points along both line 1 and 2; see Fig. 8(a).
Note that this simply corresponds to the longest accessible time
scale in the experimental data. The fs(q) for the simulations,
shown in Fig. 8(b), are easy to obtain as the simulations have
shorter relaxation time scales. Qualitatively, the fs(q) of the
experiment and simulations exhibit similar dependence on q.
The fs(q) of line 1 of the experiment is similar to the fs(q) of
the simulation for small σF and the fs(q) of line 2 corresponds
to that of the simulations at large σF . In all experimental state
points fs(q) is finite, showing that even at the lowest densities
along each line there are subsets of particles that are localized,
similar to the Lorentz model. Importantly, the SISF and fs(q)
of both experiment and simulation look qualitatively the same
on both sides of the transition.

From the simulations we can further conclude that the
dynamics is more heterogeneous in the confined ideal gas
than in the single energy case, i.e., the Lorentz gas. This is
inferred from the fact that the fs(q) at the same σF is larger
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FIG. 6. Experiment: self-part of the intermediate scattering func-
tion Fs(q,t) for the fluid particles for a range of wave numbers q

relating to state points (a) L1P1, (b) L1P6, (c) L2P1, and (d) L2P6
(in colors), as well as the corresponding Gaussian approximations
(in gray). A measure of the nonergodicity parameter is obtained with
fs(q) ≈ Fs(q,t ≈ 3300s), indicated by the dotted line, and shown in
Fig. 8.

in the confined ideal gas case, indicating a larger fraction of
particles is localized, while, at the same time, the MSD of the
confined ideal gas grows faster at long times than that of the
single energy case (see Fig. 2(b) in Ref. [28]), indicative of
more highly mobile particles. This increase in heterogeneous
dynamics in the confined ideal gas case as compared to the

FIG. 7. Simulation: self-part of the intermediate scattering func-
tion Fs(q,t) in the simulation for the single-energy case (colored
dashed lines) and the confined ideal gas case (colored solid lines) for
particle diameters (a) σF = 0.2, (b) 0.45, and (c) 0.7, as well as the
corresponding Gaussian approximations (in gray).

single energy case is a trivial consequence of the broad energy
distribution of the particles.

2. Gaussian approximation

Next, we analyze the cumulants of the SISF, since this
exposes dynamical heterogeneities more clearly. The SISF can
be expressed via a cumulant expansion for small wave numbers
as [7]

Fs(q,t) = exp

[
−q2δr2(t)

4
+ 1

2
α2(t)

(
q2δr2(t)

4

)2

+ · · ·
]
,

with the non-Gaussian parameter (NGP), α2(t), relating the
MSD, δr2(t), and the mean-quartic displacement (MQD),
δr4(t), to each other [29]:

α2(t) = 1

2

δr4(t)

[δr2(t)]2
− 1.

The cumulants δrn(t) are defined as

δrn(t) = 〈[�r(t) − �r(0)]n〉 =
∫

|�r|nP (�r,t) ddr, (4)

with the self–van Hove function P (r,t) being the one-particle
density autocorrelation function in space and time, and the
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FIG. 8. (a) Long-time limit of the SISF fs(q) of the experiment
along lines 1 and 2 in semilogarithmic presentation. (b) Long-time
limit of the SISF fs(q) in the simulation for the single-energy (dashed)
and ideal-gas case (solid).

inverse Fourier transform of the SISF,

P (�r,t) = 1

NF

〈
NF∑
j=1

δ(�r − [�r(t) − �r(0)])

〉
.

The odd-numbered cumulants vanish due to the rotational
symmetry of the system.

If the system exhibits diffusion, the SISF is Gaussian at all
times and can be directly related to the MSD as follows:

Fs(q,t) = exp

(
−q2δr2(t)

4

)
, (5)

which is known as the Gaussian approximation [4]. This
approximation is valid for many systems, e.g., for the diffusive
motion of hard spheres [46], or for harmonic oscillators [47],
and α2(t) is either exactly or close to 0 in these cases.
The failure of the Gaussian approximation indicates, for
instance, the presence of correlated motion, localization of
particles on many different length scales, or the presence
of multiple relaxation times, and is a strong indication of
dynamical heterogeneity in the system [48–50], which is often
quantified using the NGP. In the Lorentz model the Gaussian
approximation fails as well [51], in particular at the critical
point and α2(t) never decays to 0, but instead exhibits a
divergence [27]. This is a result of the particles being confined
in a fractal structure and leads to its extended subdiffusion.

We find that the Gaussian approximation provides a good
description of the SISF of all experimental and simulation

data at short times; see Figs. 6 and 7. At long times it
typically fails to capture the long relaxation times and the
plateau heights. If the system becomes extremely localized,
however, the Gaussian approximation matches the SISF more
closely again, as illustrated in 6(d) for the experimental data
at L2P4. Here, the particles mostly vibrate in small cages
created by both matrix and neighboring fluid particles and
the dynamics then effectively approaches the idealization of
localization in harmonic potentials. As a consequence, the
Gaussian approximation is found to be least successful close to
the localization transition, as expected for the Lorentz model.

3. Mean quartic displacement

In the Lorentz model the mean-quartic displacement is
expected to grow as δr4(t) ∼ t2 at long times in the delocalized
state, corresponding to regular diffusion, and becomes constant
in the localized state. Close to the transition, it is expected
to grow as δr4(t) ∼ t4/z̃ with exponent z̃ ≈ 2.955 in two
dimensions [24]. The experimental data exhibit a transition
from delocalized dynamics at L1P1 to localized dynamics at
L2P4, with subdiffusive growth of the MQD at L1P6 and
L2P1. The growth of the MQD at L1P6 at large times seems
very loosely compatible with the Lorentz-model power law
at the transition, but at closer inspection has a lower effective
exponent. The simulation in the single-energy case is in full
agreement with the Lorentz-model scenario, see Fig. 9(b),
making the transition from delocalized to localized dynamics
and exhibiting extended power-law growth at the critical point
at σF = 0.43 with the expected exponent. This shows once
more that the single-energy case falls in the same universality
class as the Lorentz model. The MQD for confined ideal gas
shows strong rounding similar to the MSD [28]: the MQD
exhibits the transition from delocalized to localized behavior
but the transition is smoothed due to the averaging over
a wide range of particle energies, which results in a wide
range of effective exponents rather than the critical asymptote.
Strikingly, at σF = 0.6, the MQD of the confined ideal gas
initially follows the corresponding curve of the single-energy
case, indicating localization of most particles, but at long
times becomes dominated by the contributions of a few highly
mobile, delocalized particles. This leads to subdiffusion over
many orders of magnitude in time with an effective exponent
smaller than the critical one—similar to what is observed for
the MQD in the experiment at L1P6—before crossing over to
∼t2 at long times in the simulation. Note that we do not reach
this time scale in the experiment. All of this is characteristic
of the rounding of the localization transition.

4. Non-Gaussian parameter

The non-Gaussian parameter (NGP), α2(t), is very sensitive
to dynamical heterogeneities [22,23]. In the experiment, the
NGP on the delocalized side of the transition, i.e., along line 1,
grows from nearly zero, characteristic of regular diffusion at
short time scales, to values around 2 at long times for both state
points L1P1 and L1P6; see Fig. 10(a). On the time scale of
the experiment, these NGPs do not decay, clearly showing that
the dynamics remains non-Gaussian and heterogeneous. Note
that this is qualitatively different from typical glassy dynamics,
where the NGP goes through a maximum at intermediate times
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FIG. 9. Mean-quartic displacement δr4(t) for experiment (a) and
simulation (b) as a function of time. In the simulation, single-energy
case (dashed lines) and confined-ideal-gas case (solid lines) are
shown. The straight gray lines ∼t2 and ∼t4/ẑ with ẑ ≈ 2.955 serve as
a guide to the eye.

and decays to zero at long times [13]. Along line 2 of the
experiment, i.e., on the localized side of the transition, the NGP
is already close to unity at early times for both L2P1 and L2P4.
While L2P4 remains relatively constant but finite, the NGP for
L2P1—which is close to the localization transition—grows
strongly with time.

To interpret the behavior of the NGP in the experiment,
we now discuss the NGP in the simulation. First we consider
the single energy case, which reproduces the Lorentz model
[24–27]. In this case, the NGP parameter exhibits critical diver-
gence at the localization transition, σF = 0.43; see Fig. 10(b).
Indeed, the exponent is nearly indistinguishable from the
expected critical exponent of ≈0.0361 in two dimensions [24].
The small deviation from the asymptote at long times is most
likely due to lacking statistics although we cannot fully rule out
small finite size effects, which have been shown to particularly
affect the NGP [27]. However, the experiment and the single
energy case clearly exhibit very different behavior and the
critical divergence of the Lorentz model is so small that it
cannot explain the experimental data.

Therefore, we now consider the NGP of the confined ideal
gas, which is shown in Fig. 10(c). In this case, the NGP grows
monotonically to long time values that are generally larger
than those found in the single-energy case (note the different
scales of the axes). Close to the rounded localization transition,
0.45 � σF � 0.7, the NGP exhibits very strong growth, far

FIG. 10. Non-Gaussian parameter α2(t) for the experiment (a),
and for the simulation in the (b) single-energy and (c) confined-ideal-
gas cases.

exceeding those of the single-energy case. Strikingly, the
confined ideal gas shows qualitatively similar behavior to
the experiment, while being very different from the Lorentz
model scenario seen in the single energy case. Importantly, this
indicates that the observed heterogeneous and non-Gaussian
dynamics in the experiment are not due to critical dynamics,
but are a direct result of the rounding of the localization
transition. In other words, the divergence of the NGP in the
confined ideal gas is different from the weak critical divergence
of the NGP in the Lorentz model. Because the NGP is not very
sensitive to the critical dynamics, it exposes the non-Gaussian
dynamics that occurs in the experiment and the confined ideal
gas due to the rounding of the localization transition.

V. CONCLUSION

We have studied the dynamics of a quasi-two-dimensional
colloidal fluid confined in a strongly heterogeneous matrix.
The experiment exhibits a rounded localization-delocalization
transition, in which the critical point is seemingly avoided.
We have shown that the dynamics in the experiment is
strongly non-Gaussian and by comparing the experiment to
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molecular dynamics simulations of a confined ideal gas,
we have demonstrated that the strongly heterogeneous and
non-Gaussian dynamics is a result of the rounding of the
localization transition. In addition, we have characterized the
structure of the confining matrix and fluid particles in terms of
the partial pair distribution functions.

The anomalous dynamics close to the transition has been
analyzed with a particular focus on dynamical heterogeneities,
by consideration of the self-part of the intermediate scatter-
ing function, the mean-quartic displacement, and the non-
Gaussian parameter. The self-intermediate scattering functions
decay in one step to their long-time limit, similar to the
Lorentz gas, but different from typical glassy behavior. A
large fraction of particles can be already localized while the
mean-squared displacement, discussed in Ref. [28], is still
diffusive. Although this heterogeneity is typical for the Lorentz
gas—which is reproduced in our simulations when all the
particles are assigned the same energy—we have found that
the heterogeneity is significantly enhanced when this energy
constraint is removed and a confined ideal gas is considered.
Strikingly, this leads to a strong increase of the non-Gaussian
parameter close to the rounded localization transition, as also
found in the experiments, which is different from the weak
divergence predicted for the Lorentz gas. The comparison
between the experiment and the simulations show how the soft
interactions make the dynamics more heterogenous compared
to the Lorentz gas and lead to strong non-Gaussian fluctuations.
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APPENDIX A: RECLASSIFICATION
OF STUCK FLUID PARTICLES

During the preparation of the samples some small fluid
particles become stuck to the walls of the sample cell. In order
to define a simple and robust criterion for the reclassification
of struck fluid particles as matrix particles we will first
characterize the matrix dynamics, described in Appendix A 1
and then discuss the reclassification protocol in detail in
Appendix A 2.

1. Matrix dynamics

First, we calculate the mean-squared displacement (MSD),
δr2(t) = 〈[�r(t) − �r(0)]2〉 of the matrix particle �r(t); see Fig. 11
along the three lines. In the case of line 0, the MSD stays below
0.1μm2, while for lines 1 and 2 it remains around 0.01 μm2.
For comparison, the MSD of the fluid particles is also shown
in Fig. 11, which is at least one to two orders of magnitude
larger.

Next, we measure for each matrix particle the maximum
distance r∗ = maxt (|�r(t) − �r(0)|) the particle travels away
from its position at t = 0 over the whole duration of the

−
−
−
−
−

(
)

)

FIG. 11. Experiment: mean-squared displacement δr2(t) for the
matrix particles at all state points (color), the center of mass of the
matrix particles (red), and the fluid particles at the lowest and highest
state points (gray) along line 0 (a), line 1 (b), and line 2 (c).

experiment and calculated a histogram of this data, p(r∗);
see Figs. 12(a), 12(c), and 12(e). The histograms peak around
0.3 μm for line 0 and 0.1 μm for lines 1 and 2, corresponding
to about 6% and 2% of the diameter of the matrix particles,
respectively. Virtually none (<0.3%) of the matrix particles
move further than 1 μm away from its initial position during
the experiment, confirming that the matrix particles are well
fixed.

Finally, we note that there is no drift in the colloidal particle
positions as is evident from the negligibly small MSD of the
center of mass of the matrix particles; see Fig. 11.

FIG. 12. Experiment: histograms of the maximum distance r∗

that each particle travels away from its initial position at t = 0 over
the whole duration of the experiment for both the matrix and fluid
particles along line 0 (a) and (b), line 1 (c) and (d), and line 2 (e) and
(f). The reclassification cutoff distance r∗

rc is marked by vertical line
in the histograms of the fluid particles.
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TABLE I. Experiment: the cutoff distance r∗
rc for each line along

with the fraction of fluid particles that were reclassified as matrix
particles for all state points (P1, P2, . . .) along each line.

Line r∗
rc (μm) P1 P2 P3 P4 P5 P6

Line 0 1.30 19.0% 19.8% 19.3% 16.6% 18.5%
Line 1 1.00 8.7% 9.3% 9.2% 8.6% 9.0% 10.0%
Line 2 0.45 10.4% 12.4% 12.0% 14.2%

2. Reclassification protocol

To identify stuck fluid particles, we now measure r∗ for
the fluid particles and the corresponding histograms for each
line are shown in Figs. 12(b), 12(d), and 12(f). We find that for
each line, the histogram p(r∗) exhibits a peak at short distances
that stays roughly the same for all state points along that line,
indicating stuck fluid particles. Conversely, the histograms at
larger distances, which correspond to the mobile fluid particles,
are strongly dependent on the magnetic field, especially along
lines 0 and 1, where the fluid particles are still delocalized
(they are localized along line 2).

Next, we define a cutoff distance r∗
rc to separate the stuck

fluid particles from the mobile ones: fluid particles that move
less than r∗

rc are considered stuck and are reclassified as matrix
particles. We set r∗

rc to be as close as possible to the magnetic
field-independent peak at short distances; the cutoff distances

FIG. 13. Experiment: single-particle probability distributions
from all small particle positions in a quadrant measured for state
points (a) L0P1 and (b) L0P5. Normalized so that the total probability
is unity. The size of the colloidal particles is indicated as red circles
and the size of the hard-core excluded area for centers of mobile
particles is indicated in (a) as blue circle.

are r∗
rc = 1.3 μm for line 0, 1.0 μm for line 1, and 0.45 μm

for line 2, and are also shown in Figs. 12(b), 12(d), and
12(f). Consistently, these cutoff distances are comparable to
the maximum distances that the fixed matrix particles can
travel. We also note that the cutoff distances are different for
all three lines, which may be related to the fact that they are
all separately prepared sample cells at different compositions,
i.e., different number of matrix and fluid particles. With the
chosen cutoffs, the fraction of reclassified fluid particles is
on average 18.6% ± 1.1% for line 0, 9.1% ± 0.5% for line 1,
and 12.3% ± 1.4% for line 2; see Table I for the fractions for
each state point. Importantly, this fraction is independent of
the magnetic field, as expected and required for fixed matrix
particles.

Finally, we analyzed our data with and without reclassifica-
tion and observed that the results are qualitatively unaffected,
which confirms that our results are robust and do not depend
on the exact definition of the reclassification protocol.

APPENDIX B: DATA FOR LINE 0

For completeness, we here present the data for line 0, see
Fig. 1(c) in the main text for the state diagram, and discuss its
similarity to the data of line 1.

FIG. 14. Experiment: partial radial distribution functions:
(a) for the matrix-matrix interaction gMM (r), (b) fluid-fluid interaction
gFF (r), and (c) fluid-matrix interaction gMF (r) for each state point
along line 0.
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FIG. 15. Experiment: self-part of the intermediate scattering
function Fs(q,t) for the fluid particles for a range of wave numbers q

relating to state points (a) L0P1 and (b) L0P5 (in colors), as well as the
corresponding Gaussian approximations (in gray). A measure of the
nonergodicity parameter is obtained with fs(q) ≈ Fs(q,t ≈ 3300s),
indicated by the dotted line, and shown in (c).

1. Histograms

First, we show the single-particle probability density
distributions of state points L0P1 and L0P5 in Fig. 13, which
are very similar to the distributions of state points L1P1 and
L1P6; see Figs. 2(a) and 2(b), respectively. The main difference
is that the area available to the fluid particles is larger in line
0, since the area fraction of the matrix particles is lower than
that for line 1.

2. Matrix and fluid structure

Next, the partial radial distribution functions, gMM (r),
gFF (r), and gMF (r), for all state points along line 0 are shown

FIG. 16. Experiment: (a) mean-squared displacement δr2(t) for
the state point along line 0. The straight gray lines indicate ∼t and
∼t2/z with z ≈ 3.036 and serve as a guide to the eye. (b) Mean-quartic
displacement δr4(t) for the state points along line 0. The straight gray
lines indicate ∼t2 and ∼t4/ẑ with ẑ ≈ 2.955 and serve as guide to
the eye. (c) The corresponding non-Gaussian parameter α2(t) for the
state point along line 0.

in Fig. 14. Again, they are very similar to the corresponding
data of line 1; see Fig. 4. We note that due to the reclassification
procedure the largest peak in the partial radial distribution
function of the matrix particles, gMM (r), along line 0 stems
from reclassified stuck fluid particles. This does not present
problems for the analysis of the system, since the only
requirement to be classified as a matrix particle is that it is
fixed and thus that the gMM (r) is independent of the magnetic
field, which is clearly confirmed by the data.

3. Dynamics

Finally, we present the dynamical data for the state points
along line 0. In Figs. 15(a) and 15(b) we show the self-part of
the intermediate scattering functions, Fs(q,t), of state points
L0P1 and L0P5 for a range of q values and in Fig. 15(c)
the estimate of its long-time limit is shown. Both the Fs(q,t)
and the long-time limits are almost indistinguishable from
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those of state points L1P1 and L1P6; see Figs. 6(a), 6(b), and
8(a). Therefore, the interpretation of the data along line 1 also
applies to line 0.

Next, we present the MSD for all state points along line 0 in
Fig. 16(a), as well as the mean-quartic displacement (MQD) in
Fig. 16(b) and the non-Gaussian parameter in Fig. 16(c). Note

that the MSDs of the state points along lines 1 and 2 are shown
in Fig. 2(a) of [28]. All three parameters, the MSD, MQD, and
non-Gaussian parameter, along line 0 are very similar to those
of line 1 and no notable differences are observed, which thus
further confirms that the dynamics along line 0 is very akin to
that along line 1.
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