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Identifying polymer states by machine learning
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The ability of a feed-forward neural network to learn and classify different states of polymer configurations is
systematically explored. Performing numerical experiments, we find that a simple network model can, after
adequate training, recognize multiple structures, including gaslike coil, liquidlike globular, and crystalline
anti-Mackay and Mackay structures. The network can be trained to identify the transition points between various
states, which compare well with those identified by independent specific-heat calculations. Our study demonstrates
that neural networks provide an unconventional tool to study the phase transitions in polymeric systems.
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I. INTRODUCTION

Machine learning is an active research branch of computer
science, which has vastly matured in recent years [1–6]. Ar-
tificial neural networks (NN) are a computational implemen-
tation of machine learning that have demonstrated surprising
capability in recognizing patterns of enormous complexity,
after appropriately trained by human or self-trained through
learning mechanisms [7–13]. Originally motivated by the
desire to establish an algorithmic model of the neuronal
configuration of a mammalian brain, one finds that an artificial
NN with a very simple underlying structure can successfully
perform many complex tasks. For example, simple NN models
have shown transformative success in handwriting and speech
recognition [14–17].

The application of machine learning in computer sim-
ulations of molecular systems has only recently emerged.
Machine learning has been proposed as a method for obtaining
approximate solutions for the equations of density-functional
theory [18], for constructing force fields for molecular dy-
namics [19], for identifying three-dimensional structures in
polymorphic systems [20], and for providing an inexpen-
sive impurity solver for dynamical mean-field theory [21].
More recently, a simple supervised NN was implemented
to classify phases in a two-dimensional (2D) spin model
and to identify critical temperatures between various phases
directly from configurations produced by Monte Carlo (MC)
simulations [22]. This comes on the crest of a wave of work
exploring the hybridization of MC and machine learning [23–
26] and the deeper connections between techniques such as
deep learning to theoretical concepts familiar from statistical
mechanics, such as the renormalization group [27,28].

Here we demonstrate the capability of a standard NN model
in recognizing various configurations produced from MC sim-
ulations of polymer models, identifying disordered, partially
ordered, and ordered states such as coil, liquidlike globular,
and two low-energy crystalline structures. The physical system
we discuss has a long history and hence is used as a typical
example of a classical system displaying phase transitions
that can be conveniently studied by using a hybridization of
conventional simulation and machine-learning techniques.

*jeffchen@uwaterloo.ca

II. THE FEED-FORWARD NEURAL NETWORK

A standard feed-forward NN for supervised learning con-
sists of three layers of neurons or “nodes,” input (i), hidden
(h), and output (o), each containing Ni , Nh, No neurons (see
Fig. 1). These nodes are connected through edges (representing
model weights), forming a fully connected graph between (but
not among) each neuron layer. In a typical image recognition
application, a 2D picture is discretized into Ni pixels and the
values of pixel’s intensity are then fed into the input layer
for either training or testing purposes. The configurations of
a 2D Ising model, where Ni spins have binary values, share
some similarity to the standard image recognition problem, as
each configuration is a “snapshot” of a 2D pattern of pixels.
However, in a simple feed-forward NN, the details of this
dimension and locality are lost as pixels are simply sent into
input nodes as a one-dimensional vector [22].

A simulated, 3D polymer configuration is mathematically
represented by its 3N spatial coordinates of the N connected
monomers. In order to proceed, one must decide how this
information is fed into the NN. One option is to naively
adopt the image recognition idea above by digitizing the
3D space into a grid and assigning a value of “occupied”
or “unoccupied” to a particular grid point, describing the
occupancy of monomers. The entire pattern would then be
used for analysis. Alternatively, here we analyze a polymer
configuration by directly feeding 3N coordinates into Ni =
3N input nodes. Then, to implement supervised learning, the
NN is trained to analyze the relationship between the monomer
position vector and a configurational pattern corresponding to
the “label” in the output layer. In total Nh = 100 neurons are
used and the number of the output nodes, No, is set to 2 or
3 depending on the physical problems described below. As a
technical note, during the training session, we adopted cross
entropy as the cost function and used 50% dropout rate in
determination of the parameters related to the hidden layer,
which is a regularization method to avoid overfitting [29].

III. IDENTIFYING POLYMER STRUCTURES

A. Polymer states

Two polymer models are used here, both consisting of
N = 102 connected monomers interacting through a typical
short-range hard-core repulsion and a slightly longer-range
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FIG. 1. Sketch of a fully connected feed-forward artificial neural
network. The circles represent neuron nodes connected layer by layer
via various weight and activation parameters.

attraction. One of the polymer models is known to exhibit
four different states, illustrated in Fig. 2, separated by phase
transitions of finite-size characteristics [30–32]. Within the
first model, the bonded monomers interact with each other by
a spring potential, identical to the one used in the Gaussian
model (GSM) with a Kuhn length a [33]. Two nonbonded
monomers interact with each other by a square-well potential:
Below a square distance of 0.81a2 the monomers repel through
the excluded-volume interaction, and between 0.81a2 and
2a2 the monomers experience an attraction of magnitude −ε.
Within the second model, the bonded monomers are modeled
by a particular implementation of the finitely extensible non-
linear elastic (FENE) model, and the monomers interact with
each other in the form of the Lennard-Jones (LJ) potential with
a potential well depth of −ε. The selection of FENE and LJ
functions exactly matches those used in Ref. [32]. In this paper
we refer to the first model as GSM and to the second as FENE
for simplicity. More details are defined in Appendixes A and B.

FIG. 2. Typical configurations of a polymer in (a) coil, (b)
globular, (c) anti-Mackay, and (d) Mackay states as the temperature
is lowered. The N = 102 monomers are represented by blue spheres,
except for those in the last two plots. At the liquidlike globular
state, the monomer positions are disordered, shown in (e). Both
anti-Mackay and Mackay states are crystalline and differ from each
other by the monomer stacking symmetries, demonstrated by the red
(dark gray) and yellow (light gray) spheres in (f) and (g).

B. Coil-to-globule transition

Monte Carlo simulations which incorporate the Boltzmann
weight were used for GSM to produce 5 × 103 independent
configurations at every specified temperature kBT /ε where
kB is the Boltzmann constant. Assessing the data shown in
Fig. 3(a) for both reduced mean–square radius of gyration,
S2 ≡ 〈R2

g〉/a2, and mean-square deviation of the total energy
from its average (which is proportional to the specific heat),
C̃ ≡ [〈E2

int〉 − 〈Eint〉2]/N2ε2, we observe that a coil- (C)
to-globule (G) phase transition takes place at kBT /ε ≈ 2.0,
corresponding to the location of the peak in C̃.

To demonstrate the capability of NN in recognizing C
and G, we performed three numerical experiments. First, 3 ×
103 polymer configurations (specified by the coordinates of
monomers after setting a = 1) at every specified temperature
within the ranges [0.5,1.5] and [2.5,3.5] were selected as
training sets for the G and C states, respectively. The two
normalized output neurons were designated as the G and C
labels, which during training were assigned to have values
ν = 1 for the corresponding state and ν = 0 otherwise. No
other information or estimators typical of MC simulations,
such as S2 or C̃, were used in the training. Once the NN
was adequately trained and all NN parameters were fixed, we
input 500 new configurations at every temperature in the range
[0.5,5.5], which were not used in the training session, as the
testing set. The averaged test values of the two output neurons,
ν, are plotted in Fig. 3(b), forming two curves behind the filled
and open squares. These curves cross each other, identifying
a C-to-G transition at kBT /ε = 2.03, in agreement with the
location of the C̃ peak, regardless of the fact that the NN
model was trained in temperature ranges farther away from
the transition point.

The C and G states have distinguishably different dimen-
sions, represented by S2. To show that NN is not simply
recognizing C and G from their different overall sizes, in
our second experiment we normalized all coordinates of
the training and testing sets by a factor 1/S. On average,
the polymer configurations now have the same normalized
radius of gyration (=1) across the entire studied temperature
range. The network was then trained in a similar manner
described above, with the normalized coordinates. The quality
of output neurons to indicate the C and G states for the
testing data is equally good as in the previous case, shown in
Fig. 3(c).

While these numerical experiments were performed by
using the configurational data generated from GSM, we placed
the network into the ultimate test in the third numerical
experiment. This time, the NN parameters determined in the
second experiment were retained and we asked the network
to recognize the configurations generated from the FENE
model, in which completely different potential functions were
used than in the square-well GSM. Furthermore, instead of
producing the configurations from the canonical ensemble
where kBT /ε is used as the system parameter, we generated
configurations from the Wang-Landau (WL) algorithm for
microcanonical ensembles, in which the total (reduced) energy
per particle e = E/Nε is directly used as the system parameter.
At each e value illustrated in Fig. 3(d), 1 × 103 independent
FENE configurations, normalized by their corresponding S,
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FIG. 3. (a) Reduced mean-square radius of gyration (plus symbols in the left scale) and specific heat (circles in the right scale) as functions
of the reduced temperature kBT /ε, determined from the MC simulations of GSM for N = 102; (b) the NN outputs of test-recognizing
independent GSM configurations; (c) the NN outputs of test-recognizing independent, normalized GSM configurations; and (d) the NN outputs
of test-recognizing normalized FENE configurations. The filled and open squares represent the mean ν values output from the globular and
coil neurons, respectively. The circles in plot (d) represent the specific-heat-like γ (right scale) determined for the FENE model from a WL
MC simulation. Error bars associated with all squares are smaller than the symbol size.

were sent to the GSM-trained network for testing. The two
recognition curves produced from the output neurons, shown
in the figure as the underlying curves behind filled and
open squares, predicate a C-to-G transition at e = −1.8. This
prediction can be independently verified by examining the γ (e)
curve, which is a specific-heat-type measurement in reduced
units defined in the microcanonical ensemble [32]. The data
points represented by circles in Fig. 3(d) were calculated based
on the density of states determined from the WL algorithm;
it shows a peak at the same location as the one successfully
predicted by GSM-trained NN.

C. Low-energy polymer states

It is well known that the FENE model exhibits three
different states in the low-energy region, globule, anti-Mackey
(aM), and Mackey (M), reported by careful MC studies
utilizing the WL algorithm which uses e as the system
parameter [31,32]. One could convert all languages to a
low-temperature description but here we keep the low-energy
description. These three structures have subtle structural dif-
ferences which cannot be distinguished by direct visualization
in Figs. 2(b), 2(c), and 2(d). In particular, the crystalline aM
and M differ only slightly from each other by the way that
monomers are stacked [Figs. 2(f) and 2(g)].

As a final numerical experiment, we challenge the NN
to recognize these three states, using three neuron nodes in
the output layer, each assigned to recognize G, aM, and M
separately. The network was trained with FENE configurations
in the energy range e = [−4.3,−4.16], [−4.7,−4.5], and
[−4.9,−4.8], where the G, aM, and M structures, respectively,
can be clearly defined. The training data contained 3 × 103

configurations at every energy bin.
After the network was adequately trained, it was tasked to

recognize an independent set of test data covering the entire

energy range in Fig. 4. Over 103 configuration samples were
used at every energy bin for this purpose. The mean ν values of
the test output, from the G, aM, and M nodes, are represented
in Fig. 4 by filled squares, open diamonds, and filled diamonds.
The intersections of the interpolated curves predict that G-to-
aM and aM-to-M transitions take place at e = −4.40 and e =
−4.74, respectively. These NN predicted transition points can
be confirmed by an examination of γ , independently calculated
from the WL MC simulations. From the γ peaks in the plot,
we determine that the G-to-aM and aM-to-M transition points
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FIG. 4. Mean NN outputs ν (square for globule, open diamonds
for anti-Mackay, and filled diamonds for Mackay) from the test
samples, after the network is trained to recognizing these states in
regimes where they are stable. In the background, the reduced specific
heatlike γ (circles in the right scale) was independently produced
from the MC simulations. Error bars are smaller than the symbol
size.
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are at e = −4.40 ± 0.03 and e = −4.74 ± 0.03, respectively,
which agree with those from the NN predictions.

D. In search of a phase transition

The above numerical experiments demonstrated the NN’s
versatility in recognizing polymer configurations and the
usefulness of NN in determination of the transition points.
There are two essential questions we have not adequately
addressed. How does the NN predicted location of the
transition depend on the range of used training data? Would
the network mistakenly identify a phase transition for a system
where a certain physical property smoothly crosses over from
relatively large to small values without going through a real
phase transition?

To answer the first question we return to the GSM MC
data over a wide range of the reduced temperature, [0.5,3.5].
We conducted a series of 18 independent training sessions,
each assigned a different training temperature range, away
from the C-to-G transition point. The first session treated MC
configurations produced from the system at two temperature
values, one on the extreme left and the other extreme right,
where the C-to-G transition sits in the middle. In the subse-
quent sessions the training temperature ranges expanded from
the extreme left to the center and extreme right to the center,
incrementally. These trained networks were then put into test
by inputting independent configurations over the extended
[0.5,5.5] range. The mean output ν values from the C and
G nodes are illustrated in Fig. 5(a) for a few selected sessions.
As the training range expands the NN-predicted transition
temperature converges to a fixed point; the final converging
temperature agrees with the one determined by the MC C̃ peak,
2.03. This study suggests that the approximate location of the
transition temperature can be already estimated by using early
training ranges far away from the transition point and that the
more precise determination can be achieved by progressively
adding configurations closer to the transition point. The
procedure actually reveals a mechanism of finding a phase
transition point, without a priori knowledge of its existence,
by taking two small training ranges as the starting point and
proposing a phase transition point somewhere in between.

To answer the second question, we conduct a numerical
experiment on a NN with GSM MC data in the reduced
temperature range [2.5,5.5]. Within this coil region, both S2

and average energy (not shown) have significant variations.
We enforcedly train the NN so the two output neuron nodes
mistakenly regard configurations in the range [2.5,3.5] as in
phase-1 and [4.5,5.5] as in phase-2. We then test the network
with independent configurations over the entire [2.5,5.5]
range. The results of the output nodes are plotted in Fig. 5(b).
Each node vaguely recognizes the configurations as “phase-1”
or “phase-2,” with a mean ν value hovering around 0.5 in high
uncertainties. No clear signals, such as those determined above
for true phase transitions, exist.

IV. SUMMARY

We described the training of neural networks to recognize
diversely and subtly different polymer states produced from
Monte Carlo simulations. One advantage of this approach is
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FIG. 5. (a) Average NN output ν from the globule and coil
neurons on the testing configurations for NN models trained in various
temperature ranges and (b) average NN output ν from “phase-1”
(squares) and “phase-2” nodes (circles) on the test configurations
in the temperature range [2.5,5.5] for NN models trained by using
low- and high-temperature samples. The inset in plot (a) is the
NN-predicted transition temperature as a function of the training
temperature range used. Error bars in (a) are smaller than the symbol
size. The plus, cross, and square symbols represent the mean ν from
the two output neurons on test samples, of NN models initially trained
in the temperature range, Range = 0.00,0.53, and 1.20, respectively.
The circles in (a) represent the same data in Fig. 3(a). The temperature
range in (b) contains no actual phase-transition point.

directly sending the configuration data represented by molec-
ular coordinates to a NN, without defining order parameters
or calculating the heat capacity; these are conventionally used
in computer simulations to rigorously determine a transition
point. In particular, in the low-energy regime, a simulated
system often encounters potential-energy traps which need
to be treated by using a non-Boltzmann weight. Taking the
Wang-Landau algorithm as an example, the calculation of the
heat capacity in the extremely low-energy regime requires
high numerical precision of the computed density of states,
which is achievable but requires extensive computations. The
NN process describe here, on the other hand, does not require
such precision, as long as independent configurations used for
supervised training are produced by a numerical simulation.

The example used here is a classical molecular system
displaying gas-, liquid-, and crystal-like structures at various
energies. We demonstrated that NN can classify both first-
(globule to anti-Mackay) and second-order (coil-to-globule
and anti-MacKay-to-Mackay) transitions. The direct use of
molecular coordinates as input into the NN underlies the
robustness and simplicity of our approach and suggests that
other simulation tools, such as molecular dynamics, could
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be used as well. The outcome of this work provides a
compelling reason to incorporate machine-learning techniques
into molecular simulations more generally, as a powerful
hybridized computational tool for the future study of polymeric
systems.
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APPENDIX A: GAUSSIAN-CHAIN MODEL WITH A
SQUARE-WELL POTENTIAL

In the paper, the first model we used is a polymer made of
monomers that are connected by spring potentials. The reduced
bonded Hamiltonian of the polymer is

βEbond = 3

2a2

N−1∑
i=1

(ri − ri+1)2, (A1)

where β = 1/kBT is the Boltzmann factor. The system
interaction potential energy is

Eint = 1

2

∑
ij

U (|rij |), (A2)

where rij is the distance vector between monomer i and
monomer j . The pairwise interaction potential has the form

U (r) =
⎧⎨
⎩

∞ if 0 � r2 < (0.9a)2,

−ε if (0.9a)2 � r2 � 2a2,

0 otherwise.
(A3)

We refer to this model as GSM in the text.

APPENDIX B: FENE MODEL WITH A LJ INTERACTION

In the text, we used the second polymer model which has
a system energy E as the sum of the bonded and interaction
energies. The former is described by

Ebond =
N−1∑
i=1

EFENE(|ri − ri+1|), (B1)

where EFENE is a particular realization of the FENE model,

EFENE(r) = −20εR2 ln[1 − (r − r0)/R)2], (B2)

in which r is the distance between two connected monomers,
R = 0.3b controls the bond-length variations, and r0 = 0.7b.
The interaction potential energy formally follows (A2) but the
two-body interaction is replaced by a truncated Lennard-Jones
potential,

U (r) =
{
ULJ(r) − ULJ(rc) if 0 � r < rc

0 otherwise,
(B3)

-1.0

-0.5

0.0

γ(
e)

-5.0 -4.5
e=E/Nε

2

3

4

5

6

β(
e)

-2.5 -2.0 -1.5
e=E/Nε

0.2

0.4

0.6

0.8

1.0

β(
e)

-5

0

γ(
e)

(a) (b)

FIG. 6. Inverse temperature β(e) [red (dark gray) in the left scale]
and its derivative γ (e) [light blue, (light gray) in the right scale] as
functions of reduced energy per monomer e = E/Nε, in (a) low- and
(b) midlow-energy regimes. The peaks in the heat-capacity-like γ (e)
separate different polymer phases: coil, globule, anti-Mackay, and
Mackey (from high- to low-e regimes). The FENE model was used
in Wang-Landau Monteo Carlo simulations to produce this figure.

where rc = 2.5σ . The Lennard-Jones potential has the stan-
dard form,

U (r) = 4ε

[(σ

r

)12
−

(σ

r

)6
]
, (B4)

where σ = 2−1/6r0 and ε measures the potential-well depth
(which is adjusted by the value at the truncation point).

The inverse temperature β(e) and its derivative γ (e) defined
in a microcanonical ensemble are shown in Fig. 6, produced
from Monte Carlo simulations following the Wang-Landau
algorithm [34,35]. The left panel is similar to Fig. 1 in
Ref. [32], but shifts in both e and vertical directions are
noticeable. These shifts do not affect the physics we discuss
in this paper. The current parametrization exactly follows the
description in Ref. [32], except for the length scale b included
here for accounting purposes; it is unknown where these shifts
come from.

APPENDIX C: MC SIMULATION WITH THE
BOLTZMANN WEIGHT

Configurations and measurements used in
Figs. 3(a), 3(b), 3(c), and 5 in the text were produced
from MC runs in which the Boltzmann weight
W = exp(−βEbond − βEint), where the two potential
energies are expressed in Eqs. (A1) and (A2), were used.
Every MC step (MCS) contains N repeated MC trial moves
of locally displaced monomers. For every specified kBT /ε,
107 MCS was used in the initial equilibration and 5 × 103

configurations were recorded in a production run comprised
of 2 × 108 MCS, taken with a lapse of 4 × 104 MCS. The
mean-square radius of gyration is defined by:

〈
R2

g

〉 =
〈

1

N

N∑
i=1

(ri − rc.m.)
2

〉
, (C1)

032504-5



QIANSHI WEI, ROGER G. MELKO, AND JEFF Z. Y. CHEN PHYSICAL REVIEW E 95, 032504 (2017)

where rc.m. is the center of mass of a polymer. The reduced
specific heat is defined by:

C̃ = (〈
E2

int

〉 − 〈Eint〉2
)
/ε2. (C2)

In both cases, the MC average 〈. . .〉 was performed in the
production run.

APPENDIX D: MC SIMULATION WITH THE
WANG-LANDAU ALGORITHM

Using the Wang-Landau algorithm, we determined the
density of states of the FENE model, which was used for
the calculation of β(e) and γ (e) (both defined and discussed
in Ref. [32]) in Fig. 3(d), Fig. 4 in the text, and Fig. 1 in
Appendix B, over a wide range of energy space by conducting

two series of simulations, one covering e = [−5,−4] and
the other [−3,2]. In total, 30 energy bins were used in each
simulation. We used the procedure described in Refs. [34,35],
with a final modification-factor ffinal = exp(2−29) to produce
high-precision data. One small revision is made to the original
procedure; when the inverse density of states is used as the
MC transition weight, linear interpolations are introduced to
connect the logarithmic values of the density of states at the
centers of adjacent energy bins; this is in contrast to the original
histogram-type weight scheme.

Configurations used in these figures were produced from a
production run consisting of 109 MCS, in which the inverse
density of states was used as the MC transition weight.
Approximately 5 × 103 configurations were recorded at every
energy bin.
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