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The influence of an external magnetic field on the static shear strain and the effective shear modulus of a
magnetoactive elastomer (MAE) is studied theoretically in the framework of a recently introduced approach
to the single-particle magnetostriction mechanism [V. M. Kalita et al., Phys. Rev. E 93, 062503 (2016)]. The
planar problem of magnetostriction in an MAE with magnetically soft inclusions in the form of a thin disk
(platelet) having the magnetic anisotropy in the plane of this disk is solved analytically. An external magnetic
field acts with torques on magnetic filler particles, creates mechanical stresses in the vicinity of inclusions,
induces shear strain, and increases the effective shear modulus of these composite materials. It is shown that
the largest effect of the magnetic field on the effective shear modulus should be expected in MAEs with soft
elastomer matrices, where the shear modulus of the matrix is less than the magnetic anisotropy constant of
inclusions. It is derived that the effective shear modulus is nonlinearly dependent on the external magnetic field
and approaches the saturation value in magnetic fields exceeding the field of particle anisotropy. It is shown
that model calculations of the effective shear modulus correspond to a phenomenological definition of effective
elastic moduli and magnetoelastic coupling constants. The obtained theoretical results compare well with known
experimental data. Determination of effective elastic coefficients in MAEs and their dependence on magnetic
field is discussed. The concentration dependence of the effective shear modulus at higher filler concentrations
has been estimated using the method of Padé approximants, which predicts that both the absolute and relative
changes of the magnetic-field-dependent effective shear modulus will significantly increase with the growing
concentration of filler particles.
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I. INTRODUCTION

Investigation of magnetoactive elastomers (MAEs) with
µm-sized magnetic inclusions (filler particles) is of consider-
able interest both for industrial applications and fundamental
physics of soft matter [1–6]. Under the influence of a
magnetic field, MAEs exhibit large magnetostriction (MS)
and magnetodeformation which may be several orders of
magnitude larger than the magnetostriction of conventional
magnetic materials [7–12]. The origin of MS in compliant
MAEs is different from MS of solid ferromagnets.

In conventional ferromagnetic materials, MS is a conse-
quence of the occurrence of magnetoelastic stresses upon
magnetization [13–17]. In MAEs, the inherent MS of mag-
netic inclusions can be neglected, because the MS of these
composite materials is much larger than the MS of individual
inclusions [18]. MS in MAEs is caused by the action of the
magnetized particles on the nonmagnetic matrix. Usually, an
elongation of MAE in magnetic fields, which is associated with
interparticle interactions, is investigated [19,20]. For example,
in an MAE, MS can be caused by dipole interactions between
the magnetic particles, which either attract or repel each
other [21–23]. Driven by these forces, filler particles bound
to the polymer network can change their spatial positions;
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the compliant polymer matrix follows them and the sample
becomes deformed [24–26]. However, when averaged over
the sample, the appearance of MS in MAEs is similar to the
MS of conventional ferromagnetic materials.

In this paper, we shall study shear deformations in an MAE
in the presence of a magnetic field. This type of deformation
is associated with the rotation of magnetic particles by a
magnetic field, as shown in [18]. Rotation of a particle
is a consequence of the action of the torque applied to
this particle by a magnetic field. Figuratively speaking, the
magnetic field acts as a “screwdriver” on the particle winding
up the adjacent elastomer matrix. Investigation of this type
of mechanical influence on the MAE by a magnetic field
and the description of the impact of local moments of force
on the values of shear strain and stress is an emerging
statement of the problem in mechanics of composite mate-
rials. Conveyance of torques from magnetic particles to the
polymer matrix and the resulting deformation of a composite
material has been previously considered theoretically for
MAEs [10,11] and ferrogels [27–29] using alternative material
models.

Magnetorheological (MR), or field-stiffening effect, is
the most notable property of MAEs. It can be defined as
the large increase of static or dynamic elastic moduli in
externally applied dc magnetic fields. It has been pointed out
by several authors that MS and MR effects are interrelated,
since their physical origin is the magnetomechanical coupling
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between the constituents of the composite materials (see, e.g.,
[23,30,31] for recent argumentation). Significant theoretical
efforts have been made for disclosing physical mechanisms
behind the magnetomechanical coupling phenomena in MAEs
and gels. Macroscopic theories are based on the continuum-
mechanical representation of both the elastomer matrix and
magnetic inclusions; see, e.g., [9,10,32–36]. Mesoscopic
approaches can account for the granularity and the constitution
of magnetic filler particles as separate things; see, e.g., [37–44].
An overview of currently available theoretical approaches can
be found in Ref. [30]. Alternatively, dynamic properties of
MAEs can be phenomenologically modeled using equivalent
circuits comprising conventional or generalized springs and
dashpots [45–51]. Although significant progress has been
achieved in recent years, a unified and consistent theoretical
description of mechanical behavior of MAEs in magnetic
fields is still not complete. Since the underlying physical
phenomena are rather complex and different physical effects
come simultaneously into play, finding the main physical
reason from the results of a numerical experiment could be a
daunting task leaving room for the development of simplified
physical models.

The elastic properties of MAEs, as well as of any other
composite materials, are characterized by their effective
moduli, whose values depend on the elastic characteristics
of the matrix and inclusions, the shape of the inclusions, and
their volume concentration [52]. The calculation of the elastic
fields in the vicinity of an isolated nonmagnetic inclusion of a
regular shape (cylinder, sphere) is a well-known problem [53].
For the pure shear, local deformations of such inclusions are
anisotropic and have angular dependence with a period of π

rad [53].
Recently, a single-particle mechanism of MS in MAEs

has been considered by us in two dimensions [18]. It was
shown that, in an external magnetic field, a magnetically
soft but mechanically rigid cylindrical inclusion creates in-
homogeneous isotropic local displacements of the elastomer
matrix. Deformation around such a single particle, positioned
in the center of a polar coordinate system, depends on the
distance from the particle and is independent of the polar
angle in the plane of the matrix. Therefore, the resulting
deformation is inhomogeneous but isotropic. For the single-
particle mechanism of MS [18], local deformations of the
elastomer matrix in the vicinity of a magnetic particle differ
from local deformations observed under shear strain in the
vicinity of a nonmagnetic inclusion of the same shape. In
the following it will be considered how a particular type of
local displacement of the elastomer matrix associated with the
single-particle mechanism of MS influences the effective shear
modulus of MAEs [53].

The peculiarity of the description of mechanical defor-
mations in MAEs, as compared to conventional elastomers,
is that the magnetic inclusion has additional degrees of
freedom, which must be taken into account when calculating
the effective characteristics of MAE in an external magnetic
field. As shown in [18], these degrees of freedom are the
directions of the magnetic moment vectors of filler particles
and the orientations of the easy magnetization axes of magnetic
inclusions. A crucial effect of the magnetic anisotropy of filler
particles on the equilibrium structure and magnetization of

ferrogels has been recently investigated in [54] by coarse-
grained molecular dynamics simulations. It has been also
shown that the elastic response of ferrogel systems where
the particles can be chemically cross-linked into the polymer
matrix and the magnetic moments can be fixed to the particles’
axes is strongly influenced by the type of magnetoelastic
coupling [55].

In this paper, the effect of magnetic field on the magnitude
of the shear modulus of MAEs with a low concentration of
magnetically anisotropic particles is studied theoretically. An
approach for taking into account the additional degrees of
freedom of magnetic filler particles of the composite and
calculating the effect of the magnetic field on the elastic
moduli is proposed. This procedure allows one to determine
the effect of rotation of magnetic particles and their magnetic
anisotropy axes on the value of the effective shear modulus of
an MAE.

Unlike most other composite engineering materials, mag-
netic and elastic systems in compliant MAEs are strongly
interconnected [56]. Magnetization of an MAE depends on
its deformation, and the deformation depends on the magnetic
state. Calculation of effective elastic characteristics of an
MAE should be performed in conjunction with the calculation
of its effective magnetic characteristics. This requirement
complicates the statement of the problem. The theoretical
solution to the problem requires averaging and is only
attainable with model simplifications. In the present paper, we
will not consider the effect of the demagnetization factor of
inclusions. For this purpose, we have solved a two-dimensional
(plane) problem with particles in the form of thin disks,
whose demagnetization factor vanishes for all magnetic-field
directions in the disk plane. In the case of planar MAE, the
external magnetic field is not distorted and is equal to the
internal field magnetizing the particles.

In the following considerations, the matrix undergoes
plane deformation [57]. This assumption is satisfied if the
requirement of a constant thickness of the sample is imposed
as a boundary condition. The mathematical task of finding
the relationship between the shear deformation and stress
in magnetic fields is simplified and corresponding analytical
solutions can be easily obtained.

The paper is organized as follows. In Sec. II our theoretical
model is presented and the general expression for the energy
of the composite material in a magnetic field is formulated.
The linearized case is solved in Sec. III. Section IV analyzes
the results for the specific case of a magnetomechanically soft
elastomer matrix. Under a magnetomechanically soft matrix
we understand such a matrix where the following condition
is fulfilled: μ/K � 1, where μ is the shear modulus of the
elastomer matrix and K is the magnetic anisotropy constant of
particles. From the point of view of physics the latter condition
means that reorientation of the particle in an external magnetic
field can easily deform the matrix. The condition μ/K � 1 is
feasible and the corresponding estimates have been made in
Ref. [18]. The concept of effective coefficients for composite
magnetoactive materials is addressed in Sec. V, where correct
experimental determination of the effective shear modulus
is substantiated. The results are extensively discussed and
compared with experimental data in Sec. VI. Conclusions are
drawn in the final section.
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FIG. 1. Simple shear test. The engineering shear strain ψ � 1
is measured from the y axis and considered to be positive in the
clockwise direction. The position of a point in the medium is
determined by the radius vector r. A positive shear stress τ >0 is
shown. The material thickness D0 in the direction perpendicular to
the plane of the paper is much smaller than the radius of the inclusion
r0: D0 � r0.

II. ENERGY OF A COMPOSITE MATERIAL UNDER
SHEAR DEFORMATION IN A MAGNETIC FIELD

We shall study the static simple shearing of an MAE
sample (see Fig. 1). This is the type of shear, as shown
in Fig. 1, for which the dynamic shear modulus of MAE
samples is determined in low-frequency (oscillation frequency
f ≈ 1 − 10 Hz) oscillatory shear experiments in the plate-
plate configuration with the fixed gap between the plates;
see, for example, [47,58–61]. In this shear deformation, the
displacement vector u depends only on the y coordinate as
u = yψex , where ψ � 1, and ex is the unit vector along the x

axis. In the polar coordinate system, this vector has two compo-
nents: u = (rψ sin 2ϕ/2)er + r[(−ψ + ψ cos 2ϕ)/2]eϕ . The
first term in the second bracket is independent of the angle ϕ.
Because of this term, all points of the sample and, therefore,
the entire sample, are rotated at an angle ψ/2.

Now, if the sample contains a rigid inclusion (i.e., the
Young’s and shear moduli are much greater than those of the
elastomer matrix and can be considered to be infinitely large)
with circular shape of a radius r0, then, provided that the sample
size is much larger than the inclusion’s radius, it will also rotate
through an angle ψ/2 without changing its shape and size. If
the inclusion has the anisotropy of magnetic properties, then, in
a magnetic field, there will be a torque, acting on the particle as
it rotates during the shear deformation. This moment of force
will lead to a rotation of the particle and create an additional
isotropic [18] deformation around the particle.

The elastomer matrix is considered to be incompressible;
this means that the Poisson’s ratio νM is equal to 0.5. The
thickness of the elastomer matrix and the inclusions D0 is
constant everywhere.

Furthermore, we assume that the inclusion consists of
an ideal, magnetically soft material (this means that its
magnetization mI depends on magnetic-field strength H as
mI (H ) = m(�(H ) − �(−H )), where �(H ) is the Heaviside
function), has a uniaxial magnetic anisotropy in the xy plane,
and that the anisotropy axis is preferable for the direction of the
magnetic moment of the particle. However, there is no loss of

FIG. 2. Orientation of the particle’s anisotropy axis (dashed line),
the magnetic-field vector H, and the magnetic moment vector M in
the coordinate system shown in Fig. 1. The angles are measured from
the y axis and given positive in the clockwise direction. The angles
ϕH , ϕM denote the direction of vectors H and M, respectively. The
angle γ0 specifies the initial direction of the magnetic anisotropy axis
of the particle; γ shows the change in the direction of the particle’s
anisotropy axis after the shear deformation, in which the particle
rotates by the angle ψ/2.

generality in the following calculations, since any dependence
mI (H ) can be easily introduced into the model.

Denote the initial orientation of the particle’s easy axis by
the angle γ0 (see Fig. 2). Under the shear in the zero magnetic
field H = 0, the direction of the particle’s easy axis is equal to
the angle γ0 + ψ/2. If H �= 0, the angle giving the direction
of the particle’s easy axis will be equal to γ0 + γ . Thus the
rotation angle of the particle due to the shear deformation in
the magnetic field is equal to the difference of the above said
angles: γ0 + ψ/2 − (γ0 + γ ) = ψ/2 − γ .

Magnetic energy of the particle and elastic energy of the
surrounding matrix taking into account rotation of the particle
in a magnetic field caused by the single-particle mechanism of
magnetostriction [18] can be written as the following sum:

E = [− 1
2Kcos2(γ0 + γ − ϕM ) − Hm cos (ϕH − ϕM )

+ 2μ(ψ/2 − γ )2
]
V0, (1)

where V0 is the volume of a single particle, m = M/V0 is
the particle’s magnetization, K is the constant of magnetic
anisotropy, H = |H|, μ is the shear modulus of the matrix, ϕH

is the angle determining the direction of the magnetic field (cf.
Fig. 2), and ϕM is the angle determining the direction of the
magnetic moment (M = |M|) of the inclusion. The first term
in (1) describes the energy of the magnetic anisotropy, the
second term stands for the Zeeman energy, and the third term
represents the elastic energy of the matrix taking into account
an additional rotation of the particle due to the influence of the
magnetic field [18].
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If all particles are identical and have the same orientation
of the anisotropy axis, in the case of low concentration, when
the mutual influence of the elastic fields of MAE particles can
be neglected, the volume density of single-particle energy in a
magnetic field can be written as

ε1 = NE

V
= p

[
−1

2
Kcos2(γ0 + γ − ϕM )

−Hm cos (ϕH − ϕM ) + 2μ(ψ/2 − γ )2

]
, (2)

where N is the number of particles in the volume V, and
NV0/V = p is the volume fraction of magnetic particles in
the composite material; in short, it is their concentration.

To write down the expression for the full energy of an MAE
under shear deformation in a magnetic field, the expression (2)
should be supplemented by the energy contribution from the
shear deformation, [Geff(0)ψ2]/2, and the term τψ that takes
into account the shear stress. Thus the final expression for the
energy density of a composite with low particle concentration,
which includes the magnetic energy of particles, the elastic
energy of the matrix caused by particles’ rotations in a
magnetic field, and the elastic energy of the sheared sample
under shear stress, takes the form

ε = p
[− 1

2Kcos2(γ0 + γ − ϕM ) − Hm cos(ϕH − ϕM )

+ 2μ(ψ/2 − γ 2)
] + 1

2Geff(0)ψ2 − τψ, (3)

where Geff(0) is the effective shear modulus in the absence of
external magnetic field H = 0 [53,62,63]; τψ is the work per
unit volume, done by an external force to create the shear strain
ψ . The term 1

2Geff(0)ψ2 is the shear strain energy density of
the sample with inclusions and τ is the external shear stress
(see Sec. V below).

Note that the direction of the magnetic field with respect
to the anisotropy axis of the particles and the y axis can be
arbitrary. Therefore, expression (3) contains finite values for
the angles of the magnetic-field direction and for the angular
orientation of the anisotropy axes. The inclination of the
magnetic moments of the particles, caused by the magnetic
field, can be arbitrarily large and its value is not limited.
However, the deformation induced by magnetic particles
should not be large. This is a typical situation for conventional
magnetic materials, where magnetoelasticity causes very small
deformations in comparison to those observable in MAEs. In
contrast to the crystalline magnetic materials, the elastomer
matrix surrounding the magnetic particles can be highly
elastic. The resulting rotation of particles in a magnetic
field and the induced sample shearing can be large as well.
Therefore, in calculations for MAEs with the highly elastic
matrix, we controlled the field values and the parameters of the
problem in such a way that the resulting deformation remains
small.

Thus, for a system of identical particles with the same
direction of anisotropy axes, the values of deformation and the
angles can be found by minimizing the energy density (3):

∂ε

∂ϕM

= p[−K cos (γ0 + γ − ϕM ) sin (γ0 + γ − ϕM )

−Hm sin (ϕH − ϕM )] = 0, (4)

∂ε

∂γ
= p[K cos (γ0 + γ − ϕM ) sin (γ0 + γ − ϕM )

− 4μ(ψ/2 − γ )] = 0, (5)

∂ε

∂ψ
= p2μ(ψ/2 − γ ) + Geff(0)ψ − τ = 0. (6)

Equation (4) is obtained by differentiating the energy over
the deviation angle of the magnetic moment vector. In (4), the
torque caused by the external field on the magnetic moment
of the particle is equal to the torque acting on the magnetic
moment vector by the anisotropy field HA = K/m, which in
the case of the easy-axis anisotropy is directed along the easy
magnetization axis of the particle. Equation (5) corresponds
to the mechanical equilibrium condition of the particle. It
is obtained by differentiation over the rotation angle of the
particle. In (5), the torque acting on the particle due to
its magnetic moment is equal to the torque caused by the
matrix surrounding the particle. Equation (6) is obtained by
differentiation over the shear strain. From Equation (6) it
follows that the magnitude of the shear stress is equal to the
sum of the contributions caused by the shear deformation and
an additional contribution to the strain created in the matrix by
the rotation of particles in a magnetic field.

The following expression can be derived from (4)–(6):

τ = Geff(0)ψ − 1
2pHm sin (ϕH − ϕM ). (7)

From (7) it can be concluded that the torque acting on the
magnetic moment vector of a particle results in an additional
contribution to the stress.

III. LINEARIZED PROBLEM

A. Linearization

Because the system of equations (4)–(6) is nonlinear, it
is interesting to consider its solution when all the angles in
the expression for the energy (3) are small. We also assume
in this section that in the initial state τ = 0, H = 0, and the
angle γ0 �= 0. This means that we consider an MAE filled
with particles which have the same direction of the anisotropy
axis and this axis is not perpendicular to the direction of the
applied shear stress (i.e., the x axis; see Fig. 1). For generality,
we assume that the magnetic field can be tilted with respect to
the y axis. In this case, the expression for the energy density
is simplified and can be written as

e = p
{− 1

2K[1 − (ϕM − γ − γ0)2]

−Hm
[
1 − 1

2 (ϕH − ϕM )2
] + 2μ(γ − ψ/2)2

}
+ 1

2Geff(0)ψ2 − τψ. (8)

Equations of state for the MAE are now linearized:

K(ϕM − γ − γ0) − Hm(ϕH − ϕM ) = 0, (9)

−K(ϕM − γ − γ0) + 4μ
(
γ − 1

2ψ
) = 0, (10)

p
[−2μ

(
γ − 1

2ψ
)] + Geff(0)ψ − τ = 0. (11)
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From the equations of state we get an expression for the
shear strain ψ , which can be written as

τ =
[
Geff(0) + μp

Hm/K

(1 + Hm/K)(1 + 4μ/K) − 1

]
ψ

− 2pμ
ϕH − γ0

(1 + Hm/K)(1 + 4μ/K) − 1

Hm

K
. (12)

When H = 0, Eq. (12) meets the definition of the effective
modulus of the composite material in the absence of a magnetic
field: Geff(0) = τ/ψ .

The product (ϕH − γ0)Hm in (12) is equal to the mag-
nitude of the vector product of the magnetization and the
magnetic-field strength, where (ϕH − γ0)m is the component
of the magnetization vector in the direction orthogonal to
the magnetic-field vector. The right side of Eq. (12) has two
contributions. The first contribution is proportional to the strain
ψ and independent of the direction of the magnetic field H.
The second term on the right side of (12) includes angle ϕH ;
i.e., this term depends on the direction of the magnetic field.
At the same time, there are situations when the signs of τ

and ϕH may be either the same (e.g.,τ,ϕH > 0) or different
(e.g., τ > 0, ϕH < 0). This, in turn, leads to asymmetry. In the
first case, the shear stress τ and the additional stress created
by the action of the magnetic field add to and reinforce each
other, contributing to the shear strain. In the second case, these
stresses counteract each other, reducing the shear strain. This
asymmetry of the influence of the oblique magnetic field and
the shear is related to the fact that the magnetic field itself is
capable of producing shear deformation.

B. Shear deformation induced by a tilted field

For a system of particles with anisotropy axes perpendicular
to the direction of shear stress γ0 = 0 and being in a tilted
magnetic field (ϕH �= 0), the value of shear strain in the
absence of stress τ = 0 is given by

ψ = 2μKpHmϕH

4μKGeff(0) + Hm[Geff(0)(K + 4μ) + Kpμ]
. (13)

From (13) it is seen that in weak (H→0) fields the
shear value linearly depends on the field magnitude and it
reaches saturation in strong magnetic fields H→�. Note that
Eq. (13) is nonlinear with respect to p. However, since it is
a consequence of Eq. (12) linear dependence of τ on p is
preserved.

According to (13), the maximum shear strain induced by
a tilted field is achieved in an MAE if μ � K . In this case,
the easy magnetization axes of the particles are oriented along
the magnetic field γ = ϕH and the limiting value of the field-
induced shear deformation is equal to

ψ(H → ∞) = 2μ

Geff(0) + pμ
pϕH ≈ 2pϕH . (14)

Therefore the limiting value of the shear deformation
induced by a magnetic field in the MAE with K � μ is
comparable with the magnitude of the inclination angle of
the magnetic field. The magnitude of such a shear deformation
is many times greater than the amount of shear induced in the
conventional ferromagnetic materials [18].

For MAEs with the small anisotropy constant of particles
K � Geff(0), the magnitude of shear strain in the limit of
a strong tilted field H → ∞ is significantly weakened in
comparison to (14):

ψH (H → ∞) = K

2Geff(0)
pϕH . (15)

Thus the torque created by the magnetic field induces a
shear strain in the absence of an external shear stress. The
sign of this shear deformation depends on the direction of the
applied field.

C. Shearing in the field orthogonal to the direction of stress
(ϕH = γ0 = 0)

A magnetic field, which is perpendicular to the direction
of the external stress (i.e., parallel to the y axis in Fig. 1),
is not capable of inducing the shear strain. Thus, when
ϕH = 0, γ0 = 0, and the strain vanishes, τ = 0, the vectors
of the particle’s magnetic moment and the magnetic field
are collinear. Therefore, when ϕH = γ0 = 0 and τ = 0, a
perpendicular magnetic field does not generate torque, does
not rotate the particle, and does not deform the sample.

However, with ϕH = γ0 = 0, the magnetic field will have
significance, if stress τ �= 0 is applied to the sample. Under the
influence of stress a shear deformation of the sample ψ �= 0
must occur. In this case, the easy magnetization axes will not
be directed along the y axis (see Figs. 1 and 2) and there will be
torques acting on the particles by virtue of the magnetic field.
This torque, creating its additional contribution to the stress
τ , will affect the amount of the sample’s shear by reducing
its value and, respectively, increasing the value of the shear
modulus.

Indeed, from (12) we obtain the expression

τ = Geff(0)

{
1 + HmKμ

Geff(0)[4μK + Hm(K + 4μ)]
p

}
ψ.

(16)

The effective shear modulus of an MAE in an external
magnetic field H �= 0 can be defined as a proportionality factor
between the shear strain and stress, so that Ge(H ) = τ/ψ :

Geff(H ) = Geff(0)

{
1 + HmKμ

Geff(0)[4μK + Hm(K + 4μ)]
p

}
.

(17)

Equation (17) describes the change in the effective shear
modulus of the MAE under the influence of a magnetic field
directed along the anisotropy axis of the particles, and the
applied shear stress, which is perpendicular to the magnetic
field.

From (12) it is seen that in weak (H→0) fields, the
magnetic-field contribution to the effective shear modulus
is proportional to H . The magnitude of this additional
contribution saturates in large (H → ∞) fields. For the case
K � μ, we obtain in the large-field limit H → ∞ that

Geff(H → ∞) = Geff(0) + pμ. (18)

From (18) it follows that in the saturation limit the
magnetic-field contribution to the effective modulus depends
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on the concentration of the particles and the elasticity of the
matrix.

IV. LIMITING CASES OF MAEs WITH A
MAGNETOMECHANICALLY SOFT MATRIX

Consider some specific cases for the magnetization of the
particles possessing strong magnetic anisotropy and located in
a compliant matrix. In cases where there is a limiting mag-
netization (this means that the magnetic moment is directed
either along the anisotropy axis or along the external magnetic
field), the description of shearing behavior is simplified due to
a reduction of the number of degrees of freedom [the number of
varying variables in the expression for the energy density (3)].

A. Highly anisotropic particles

Let, as in Sec. II, the axis of the magnetic anisotropy of the
particles deviate from the direction of the y axis by an angle γ0

(cf. Figs. 1 and 2). Furthermore, let the magnetic anisotropy
of the particles be so large and the matrix mechanically so
soft that the condition K/μ � 1 is fulfilled. Estimates of the
ratio K/μ have been made in [18]. In such an MAE, the
magnetic moment vector of the particle can be with difficulty
deflected from the anisotropy axis and it is much easier to rotate
the particle. Therefore, the vector of the particle’s magnetic
moment is always directed along the anisotropy axis of the
particle: ϕM = γ0 + γ . When this equality of the angles is
fulfilled, the expression for the energy density (3) is simplified
and takes the form

ε = p{−Hm cos [ϕH − (γ0 + γ )] + 2μ(ψ/2 − γ )2}
+ 1

2Geff(0)ψ2 − τψ. (19)

For particles oriented perpendicular to the direction of the
shear stress γ0 = 0, we obtain from (19) in the linear case that

ψ = τ (4μ + Hm) + 2μpHmϕH

4μGeff(0) + Hm[Geff(0) + pμ]
. (20)

It can be easily seen that the expression (20) coincides with
(12) if K → ∞. Therefore, the limiting values for the shear
magnitude and the shear modulus obtained with the help of
(20) will coincide with the values (15) and (18) in saturating
magnetic field.

B. Highly anisotropic particles in saturating magnetic fields

Consider the behavior of the MEA comprising the particles
with a large magnetic anisotropy and a soft matrix μ � K

in a saturating magnetic field. In a strong magnetic field
H � μ/m, which in this case may be less than the anisotropy
field H < HA = K/m, magnetic moments of particles and
anisotropy axes of particles will be oriented along the field:
ϕH = ϕM and ϕH = γ0 + γ . Therefore, the rotation angle of
the particle’s magnetization axis will be equal to the difference
γ = ϕH − γ0. In this case, the energy density is of the form

ε = p{2μ[ψ/2 − (ϕH − γ0)]2} + 1
2Geff(0)ψ2 − τψ. (21)

Minimizing (21) with respect to ψ , we obtain

ψ(H → ∞) = τ + 2μp(ϕH − γ0)

[Geff(0) + pμ]
. (22)

Equation (22) coincides with the formula (14) for the case
γ0 = 0 and τ = 0. Thus the energy density (21) with a smaller
number of degrees of freedom gives the result corresponding
to the exact solution for the assumed conditions of large
anisotropy, softness of the matrix, and the saturating magnetic
field.

V. EFFECTIVE COEFFICIENTS IN MAGNETOACTIVE
COMPOSITE MATERIALS

The relationship between the mechanical stresses on the
specimen (components of stress tensor 〈σ 〉) and the deforma-
tions of the MAE sample (components of strain tensor 〈ε〉) can
be written phenomenologically. 〈· · · 〉 denotes averaging over
the entire volume [53,64,65]. Averaged characteristics corre-
spond to the certain effective medium that is considered to be
homogeneous with the averaged properties the same as those
of the composite material. If a composite material is replaced
by such an effective medium, it will behave in the same way
as the original material with respect to external influences.

The phenomenological approach was used in [66] for
crystalline ferromagnetic materials. Besides the terms being
symmetric with respect to the indices, the elastic stresses in
the MAE will also include magnetoelastic coupling caused by
the effect of rotation of inclusions in the matrix caused by the
torque from an external magnetic field. Given that the torque
is proportional to the vector product of the magnetization and
the magnetic-field strength, the magnetoelastic additional term
in the expression for the stress will contain components of an
antisymmetric tensor. As a result, we arrive at the following
expression for the stress:

〈σik〉 = Ceff
iklm

〈εlm〉 + Aeff
iklm

〈ml〉〈mk〉
+Beff

iklm
(〈ml〉〈Hm〉 − 〈mm〉〈Hl〉), (23)

where Ceff
iklm are effective elastic constants, Aeff

iklm
and Beff

iklm

are effective magnetoelastic coupling coefficients, 〈ml〉 and
〈mk〉 are projections of the average magnetization vectors,
and 〈Hl〉 and 〈Hm〉 are projections of the magnetic-field
vector H = 〈H〉, in which the sample is placed. The first
magnetoelastic contribution to the stresses (23) is symmetric
with respect to the components of the average magnetization,
and the second contribution is expressed through the antisym-
metric tensor comprising the projections of the magnetic-field
strength. Expression (23) is written in the approximation of
the smallest exponents with respect to 〈Hl〉, 〈ml〉, and 〈εlm〉.
Note that in the linear approximation with respect to 〈ε〉,
the coefficients Ceff

iklm may depend on magnetic field H. In
the case of a strongly nonlinear MAE, expansion (23) must
contain higher-order terms in the power series and take into
account the possibility of the formation in MAE structures,
such as particle chain aggregates. General considerations of the
interactions between electric, magnetic, and elastic subsystems
in nonlinear disordered micropolar media in the framework of
phenomenological elastomagnetoelectrostatics can be found,
e.g., in Ref. [67].

Obviously, the physical approximations made in (23) are
satisfied for MAEs with the low particle concentration p � 1.
The approximation made in the formulation of the third term in
(23) is also fulfilled if the local additional field is proportional
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to the average magnetization, what may occur if the particles
obey a spatial order in their arrangement [68].

If MAE filler particles have magnetic anisotropy and the
particle concentration is low, the third term in (23) may
exceed the second term. In this case, for an MAE with the
low concentration of ferromagnetic inclusions, the following
relation is valid for the shearing experiment of Fig. 1:

〈τ (ψ �= 0,H)〉 = Geff(H)ψ + Beff(〈mn〉〈Ht 〉 − 〈mt 〉〈Hn〉),
(24)

where Geff is the effective shear modulus and Beff is the
effective magnetoelastic coupling constant, both depending
on H. The index t indicates projection of the vector along
the shear stress, and n denotes projection of the vector in the
perpendicular direction. In (24), it is taken into account that
both components of the magnetic field 〈Ht 〉 and 〈Hn〉 create
a torque on the inclusions, if the magnetization vector is not
collinear to H. The expression (24) completely corresponds to
the relationship between shear stress and strain in MAEs at
small (H→0) values of the field, obtained from our model.

From (24) we have that for an MAE with a linearly
deformable matrix and single-particle mechanism of MS,
the magnetic field in the absence of shear strain ψ = 0 and
〈H〉 �= 0 induces the shear stress

〈τ (ψ = 0,H)〉 = Beff(〈mn〉〈Ht 〉 − 〈mt 〉〈Hn〉). (25)

From Eqs. (24) and (25) we obtain that the effective shear
modulus is determined from the following relationship:

Geff(H) = τ (ψ �= 0,H) − τ (ψ = 0,H)

ψ
. (26)

Definition of the effective shear modulus (26) is rather
general and does not contain the restrictions of the phe-
nomenological description (23), which is confirmed by the
calculations of our model. This definition is important for the
most common deformation experiment of MAEs, as shown in
Fig. 1. It allows one to properly take into account the resulting
additional magnetoelastic stresses. Otherwise, the result of the
experimental data processing may be corrupted. Furthermore,
the relation (26) shows how to calculate the effective modulus
in the above described model in a tilted (ϕH �= 0) magnetic
field or in the case γ0 �= 0 (see Sec. VI B below).

In MAEs, all effective coefficients may have significant
dependences both on the applied magnetic field (see, e.g.,
Figs. 5 and 6) and on the strain amplitude [69,70]. The
definition of (26) can be generalized to other elastic effective
coefficients of MAEs by writing the following matrix equation:

Ceff(〈ε〉,〈H〉)〈ε〉 = 〈σ 〉(〈ε〉 �= 0,〈H〉) − 〈σ 〉(〈ε〉 = 0,〈H〉).
(27)

Expression (27) allows one to take into account the
influence of 〈H〉 and 〈ε〉 on the value of the effective elastic
moduli in MAEs.

VI. RESULTS AND DISCUSSION

A. Shearing and effective shear modulus for ϕH = 0 and γ0 = 0

Field dependencies of the shear strain ψ obtained by solving
Eqs. (4)–(6) are shown in Fig. 3. They are plotted for ϕH = 0

and γ0 = 0. In this and the following figures of Sec. VI, the field
is normalized as h = H/HA, where the ratio HA = K/m is the
magnetic anisotropy field of the inclusion. In the calculations,
the concentration p = 0.1 is considered to be much less than
the percolation threshold of composites pc ≈ 0.5. If p = 0.1, it
can be assumed that the effects of elastic interaction between
the particles are negligible and the linear approximation is
valid. In the absence of a magnetic field at low concentrations,
the effective modulus of the composite for a planar elasticity
problem with the shear deformation in the direction transverse
to the axis of the particles and inclusions of a cylindrical shape,
as shown in Fig. 1, is described by the approximate expression
Geff(0) = μ(1 + 2 λ+2μ

λ+3μ
p), where λ and μ are Lamé constants

of the matrix [53,63]. It should be noted that the Poisson’s
ratio of the elastomer matrix νM is equal to 0.5, from which
it follows that Geff(0) = μ(1 + 2p). The curves in Fig. 3(a)
are obtained for the shear stress τ = 0.001μ and different
ratios of the anisotropy constant and the shear modulus of
the matrix. The graphs show that the increasing magnetic
field counteracts shearing and all the curves decline with the
increasing magnetic field. It turns out that the effect of the
magnetic field on the magnitude of the shear strain is linear
in weak fields and saturates in strong fields. The greatest
manifestation of the magnetic field on the magnitude of the
shear strain is observed for the magnetomechanically soft
matrix.

Figure 3(b) shows dependences of the shear strain ψ(ϕH )
obtained for different tilt angles ϕH of the magnetic field H.
The graphs are calculated in the absence of shear stress τ = 0 at
different values of the field and the shear modulus of the matrix.
Straight lines on Fig. 4 were obtained by solving the system
of equations (9)–(11) for the linear problem, while the curved
lines (dash-dotted curves) correspond to the exact solutions of
Eqs. (4)–(6). It is seen that the linear approximation provides a
reasonable solution for a sufficiently broad range of tilt angles.
Notable deviations between the solutions occur at larger tilt
angles of the magnetic field, where the approximate solution
overestimates the magnitude of induced shear strain.

In particular, it is interesting to consider the case of a rigid
matrix [the lowest dash-dotted curve in Fig. 3(b)]. From this
curve, it is seen that for ϕH → π/2 the shear strain vanishes.
This is due to the fact that in a rigid matrix the particle
practically does not rotate and only the particle’s magnetization
vector undergoes rotation under the influence of the magnetic
field. When there is no shearing and rotation of particles in
a rigid matrix, then for ϕH = π/2 in the field which is equal
to or greater than the anisotropy field, the angle ϕM → π/2
(cf. [66]).

Now let us analyze the influence of magnetic field on the
shear modulus for the case ϕH = 0 and γ0 = 0. In such an
orientation of the magnetic field and the anisotropy axis of the
inclusion, there is no shear strain induced by the magnetic field
and the value of the shear modulus can be determined from the
ratio τ/ψ = Geff(H,ϕH = 0,γ0 = 0). Using Eqs. (4)–(6), we
obtained the shear strains for τ = 0.001μ, and consequently
calculated the field dependence of the shear modulus for
H �= 0. Figure 4 shows the dependence of the normalized
shear modulus geff(H ) = Geff(H )/Geff(0). In Fig. 4(a), the
graphs for the normalized shear modulus are obtained for
different ratios of the shear modulus of the matrix and the
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FIG. 3. (a) Dependence of the induced shear strain on the magnitude of the normalized magnetic field h in the presence of the shear strain
τ = 0.001μ with ϕH = 0, γ0 = 0 and different values ofµ/K. (b) Dependences of the induced shear strain on the inclination angle ϕH of vector H
in the absence of the shear stress τ = 0 for different values of the external magnetic field and the elastic shear modulus of the matrix: Straight lines
were obtained by solving the system of equations (9)–(11) for the linear problem, while the dash-dotted curves correspond to the exact solutions
of Eqs. (4)–(6).

magnetic anisotropy constant of the inclusion. It is seen that
the saturation effect of the shear strain in the magnetic field
is accompanied by the saturation of the shear modulus. The
dependencies show that the influence of the magnetic field
on the effective shear modulus is more pronounced for the
magnetomechanically soft matrix when μ/K � 1.

To illustrate the effect of the elastic properties of the matrix
on the magnetic-field enhancement of the shear modulus,
the dependencies of the effective shear modulus on the ratio
μ/K of the shear modulus of the matrix and the anisotropy
constant have been plotted in Fig. 4(b) for different constant
magnetic fields at ϕH = 0, γ0 = 0, and τ = 0.001μ. It can
be observed that the value of the normalized shear modulus
with the increasing matrix rigidity μ/K � 1 tends to unity.
For small μ/K � 1, that is, for the magnetomechanically
soft matrix, the effect of magnetic field on the effective
shear modulus is the largest and geff is equal to its limiting
(saturated) value of 1.083. Recall that in Figs. 3 and 4, p is
equal to 0.1.

In Figs. 3 and 4, the effect of the magnetic field on the
effective shear modulus has been analyzed for ϕH = 0 and
γ0 = 0. However, the tilted field induces a shear strain even
in the absence of shear stress. Therefore, in a tilted magnetic
field, determination of the effective shear modulus requires
further discussion.

B. Determination of the effective shear modulus
for ϕH �= 0 and γ0 �= 0

To determine the effective shear modulus in a tilted
magnetic field, we first calculate τ (ψ �= 0,H �= 0) and τ (ψ =
0,H �= 0) using Eqs. (4)–(6) and then apply the relationship
(26). Figure 5 shows the dependences of the normalized
effective shear modulus geff(ϕH ) on the tilt angle ϕH of the
magnetic field, whose magnitude is kept constant |H| = const.
All dependences are plotted for μ/K = 1 and γ0 = 0.

From Fig. 5 it is seen that the effective shear modulus
depends nonlinearly on the magnetic-field direction. The

FIG. 4. Dependences of the normalized shear modulus geff obtained for τ = 0.001μ at ϕH = 0 and γ0 = 0. (a) Variation of the normalized
magnetic field h with different values of μ/K . (b) Variation of the ratio μ/K with different constant magnetic fields.
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FIG. 5. Dependences of the normalized effective shear modulus
geff (ϕH ) on the tilt angle ϕH of the external magnetic field for μ/K =
1, γo = 0 and different values of the normalized magnetic field h.
The straight horizontal lines are received from the solution to the
linearized problem using Eqs. (9)–(11). Notice that several curves
are obtained for the low shear strain ψ = 0.001 and compared with
curves for the large shear strain ψ = 0.1. Notice that curves for
the low shear strain for ψ = 0.001 appear symmetric with respect
to ϕH and the maximum of curves for ψ = 0.1 is shifted towards
positive ϕH .

magnitude of the nonlinearity geff(ϕH ) (deviations from
straight lines in Fig. 5), was negligible. Note that, in the
calculation of geff(ϕH ), the matrix deforms in a linear fashion,
as is implied in (3) and (6). This nonlinearity arises from
the influence of the magnetic anisotropy. In real MAEs, an
alternative to such nonlinearity can be a loss of coupling
between the matrix and the particles at significant particle
rotations, which are inevitable in soft matrices for large
inclination angles of the external field.

Several curves are obtained for the low shear strain value
ψ = 0.001. If the shear strain is finite (i.e., the larger value ψ =
0.1 is assumed), an asymmetry is observed in the dependence
geff(ϕH ). The maximum of the dependence geff(ϕH ) shifts
away from the point ϕH = 0. This shift will be positive if
ψ > 0 and it will be negative if ψ < 0. This leads to the
conclusion that when ψ > 0 the MAE system in a magnetic
field is less rigid for inclinations of the magnetic field in
the opposite direction ϕH < 0 and vice versa. In MAEs,
the transition from elastic to plastic deformation is usually
observed at strain ψ well above 0.1. For comparison, the elastic
deformation range of the tensile strain from 0 to 0.47 has been
reported in Ref. [71].

The magnitude of the normalized effective shear modulus
geff(γ0) depends nonlinearly on the initial orientation angle γ0

of the axes of anisotropy inclusion particles. Figure 6 shows the
dependences geff(γ0) obtained for different constant magnetic
fields and ϕH = 0.

As can be seen from Fig. 6, there is a weakly expressed
nonlinear dependence of the effective shear modulus of the
initial orientation of the anisotropy axes of filler particles.
For finite values of shear strain dependence, geff(γ0) is not
symmetrical with respect to the sign change of γ0.

The observed asymmetry (see Figs. 5 and 6) was not
expected by us. However, we identified it because of the

FIG. 6. Dependences of the normalized effective shear modulus
geff (γ0) on the angle γ0 for the fixed ratio μ/K = 1, ϕH = 0, and
different values of the normalized magnetic field h. The straight
horizontal lines are received from the solution to the linearized
problem using Eqs. (9)–(11). Notice that several curves are obtained
for the low shear strain ψ = 0.001 and compared with curves for
the large shear strain ψ = 0.1. Notice that curves for the low shear
strain ψ = 0.001 appear symmetric with respect to γ0 = 0 and the
maximum of curves for ψ = 0.1 is shifted towards negative γ0.

adequate definition of the effective shear modulus (27). This
asymmetry has a physical cause. For a tilted field (ϕH �= 0),
the value of the additional stress created by the magnetic field
is different, if the magnetic field has a component directed
towards the external shear stress, or against it.

This is a manifestation of a nonlinear behavior of the MAE
in a magnetic field. This peculiar effect and variation of geff

with γ0 or ϕH can be observed only for relatively hard matrices
with µ/K � 1.

C. Сomparison with experiment and critical behavior

Our simplified model described in the preceding sections
refers to a particular realization of the composite material
which has not been realized in the experiment yet and might be
challenging to achieve in practice. However, it should be noted
that necessary technological prerequisites for realization of the
thin-film MAEs with embedded cylindrical platelets already
exist [72,73]. The simple shear testing of a thin-film sample
can probably be replaced by a pure shear test method [74]. In
the case of tangential stress of incompressible materials, the
divergence between simple and pure shear is to be expected at
deformations exceeding 30% [75].

In the experiment, the thickness of the MAE film can be
controlled by sandwiching it between two parallel plates at the
fixed distance. One could suggest first to shear the sample and
then constrain it from both sides by two parallel plates. These
two parallel plates should not be glued onto the rigid surface
because this will destroy boundary conditions on the xy surface
of the sample. The rigid surface should be lubricated (e.g., by a
silicone oil) to allow slipping of the sample over it. Realization
of such an experimental setup would allow one to establish the
accuracy of the approximation of plane deformation.

The primary goal of investigating such a theoretical model
is that we can identify physical parameters influencing physical
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effects in more realistic materials. Let us consider as an
example the experimental data of Ref. [76] for the shear storage
modulus measured as a function of the magnetic flux density
B in the range between 0 and 700 mT at a fixed oscillation
frequency f of 10 Hz and for different volume fractions of
ferromagnetic (iron) filler particles p. This experimental set
of data was also taken as the reference in previous theoretical
works, e.g., [44]. We are interested in the data for the low
concentration of filler particles p = 0.1 and isotropic samples.
Similarly to our model, the shear storages modulus grows
with the increasing magnetic field and indicates saturation
in large magnetic fields B > 400 mT (cf. Figs. 1 and 3
of [76]). This behavior is well known as the MR effect.
It has been shown previously in numerous works that the
MR effect can be explained by dipolar interactions between
ferromagnetic filler particles. May there be a contribution from
the single-particle magnetostriction to the observed MR effect?
Our model predicts that the maximum contribution from the
single-particle magnetostriction to the shear modulus is of the
order of magnitude �Gmax = �G(B → ∞) ∼ pG(B = 0),
where �G(B) = G(B) − G(0). It is seen from Fig. 1 of [76]
that, for small iron particles (mean particle size about 5 µm),
�Gmax/G(0) ≈ 1.6−1.7, while for large iron particles (mean
particle size about 40 µm), �Gmax/G(0) ≈ 1.3 (cf. Fig. 3
[76]). It can be concluded that the experimentally observed
magnetic-field-induced changes of the shear modulus can have
a contribution from the single-particle mechanism due to the
following two reasons:

(1) Maximum relative magnetic-field-induced changes of
the shear modulus in Ref. [76] and in the present paper are of
the same order of magnitude;

(2) Dependences of the field-induced shear modulus on the
applied magnetic field in Ref. [76] and in the present paper are
qualitatively similar.

The origin of this contribution can be shape deviations
of filler particles from the perfect sphere (e.g., ellipsoidal
or irregular shape). Indeed, the scanning electron microscope
photographs of MAE samples presented in Fig. 4 of Ref. [76]
do leave such an impression. The MR effect observed at high
concentrations (p ≈ 0.3) of iron particles was of several orders
of magnitude higher �Gmax/G(0) ≈ 102. In analogy to MR
fluids [77], this effect is commonly attributed to rearrange-
ment of filler particles into chainlike aggregates along the
magnetic-field lines due to magnetic forces acting between
them [1,24,78,79]. This simplified physical picture for high
concentrations of magnetizable particles has been recently
questioned in Ref. [80], where numerical simulations showed
that formation of elongated structures becomes impossible due
to purely geometrical constraints.

Calculation of the influence of magnetic field on the
effective shear modulus of the MAE was performed in the
single-particle approximation, where both elastic and magnetic
interactions between the particles can be neglected. Note that
in spite of the low concentration of particles, they should not
be regarded as solitary because the mechanical deformation is
self-consistent. The term 2pμ(ψ/2 − γ )2 in the energy density
(3) is responsible for the interparticle interaction. It yields
that the relationship between the parameters of the problem
(particle’s rotation γ and shear strain ψ) is described by
their product −pμψγ . Due to this term, rotation of particles

depends on the shearing, and the shearing depends on the
rotation of the particles. Indeed, in Eq. (5) for the torques,
the angle of the particles’ rotation depends on the shearing.
In Equation (6) for the stresses, we have that the shear strain
depends on the rotation of the particles. Thus, when particles
are rotated, there is an interaction between them, which is
transmitted via the elastic subsystem.

Accordingly, the expression for the effective modulus
(12) includes only the first degree of concentration. It is
well known, both experimentally and theoretically, that the
effective properties (for a variety of physical situations), when
approaching the concentration of the percolation threshold,
are strongly increasing functions and behave like the order
parameter in the theory of phase transitions [81,82].

Despite the simplicity of the approach used, it is possible
to estimate how the concentration dependence of the effective
elastic modulus of MAE will behave at higher concentrations.
To do this, we resort to the method of Padé approximants
[65,82]. We write the concentration dependence of the effec-
tive modulus, which is a first-order polynomial, as the ratio of
two polynomials.

Already in one of the pioneering papers on MAEs it has
been noted that “absolute MR effect in isotropic MR rubbers
increases exponentially with increasing iron concentration”
[83]. If the concentration of inclusions is increasing, the
effective shear modulus goes theoretically to infinity when
concentration p approaches particular value pc. The latter
statement is valid even in the absence of an external magnetic
field. The method of Padé approximants allows one to
estimate the growth rate of effective modulus even if the
linear approximation with respect to concentration p is only
available. In the simplest case, the Padé approximant (the ratio
of two polynomials) can be represented as const × (pc − p)−1.
Refinement of such a choice would be possible in the
framework of a theory taking into account higher-order terms
with respect to concentration p (p2,p3, etc.). Then, according
to (17), taking into account that Geff(0) = μ(1 + 2p), we have

Geff
Pade(H ) = μ

[
4μ + h(K + 4μ)

8μ + h(3K + 8μ)

]
(pc − p)−1, (28)

where

pc = 4μ + h(K + 4μ)

8μ + h(3K + 8μ)
. (29)

For p � 1, the expression Geff
Pade(H ) is simplified, as it

should be, into (17).
As follows from (29), in high magnetic fields (H � HA), pc

is reduced from 1
2 for K � μ to 1

3 for μ � K . Formula (28)
predicts that the magnitude of the magnetic-field-dependent
effective shear modulus will grow strongly and nonlinearly
with the increasing particle concentration p, which is indeed
observed in the experiment. For H → 0, parameter pc is
the well-known percolation threshold, which is somewhat
modified in an external magnetic field. Equation (28) should
be considered only for p < pc.

Figure 7 shows the dependences of the relative
magnetic-field-induced change of the shear modulus,
MRE = [Geff(H ) − Geff(0)]/Geff(0), on the concentration of
filler particles p calculated using Eqs. (28) and (29). It is seen
that this relative MR effect (MRE) grows strongly and with
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FIG. 7. Dependences of the relative magnetic-field-induced
change of the shear modulus, MRE = [Geff (H ) − Geff (0)]/Geff (0),
on the concentration of filler particles p for different ratios of µ/K
and different normalized magnetic fields h.

increasing concentration p. This result qualitatively agrees
with previous experiments on MAEs [84].

In a large magnetic field H = 10HA, MRE is more pro-
nounced for magnetomechanically softer matrices (compare
curves in Fig. 7 with different values of µ/K). At a fixed value
of µ/K, the relative change of the shear modulus is increasing
with the increasing magnetic-field strength H (compare curves
in Fig. 7 with different values of H/HA). Notice the scale on
the vertical axis of Fig. 7. The maximum numbers are about
two orders larger than the maximum concentration p ≈ 0.3.
This is the result of using the method of Padé approximants.
There will be no such strong growth of MRE within the linear
approximation with respect to p (17).

VII. CONCLUSION

In this paper, we have studied the effect of the single-particle
magnetostriction mechanism on the effective shear modulus of
an MAE with a low concentration of ferromagnetic inclusions.
The planar (two-dimensional) problem with the inclusions in
the form of a disk (platelet) with the axial magnetic anisotropy
in the plane of the disk has been solved. It has been shown that
any deviation of the magnetic moment of the particle from the
easy magnetization axis is accompanied by an enhancement
of the effective shear modulus. In particular, the effect of a
magnetic field on the effective shear modulus is strongly pro-
nounced in MAEs with a magnetomechanically soft matrix, in
which the shear modulus of the matrix is much smaller than the
magnetic anisotropy constant. In our model, we were able to
demonstrate how the torque of the magnetic field acting on the
noncollinear magnetic moment of the particle creates a shear
stress. In the phenomenological description, the total torque
acting on the particles is determined by the vector product of
the particle magnetization in the magnetic-field strength and it
corresponds to the antisymmetric tensor of the components of
these vectors. It is also shown that the effective shear modulus
has a strong nonlinear dependence of the external magnetic
field characterized by a saturation effect in high magnetic
fields much larger than the magnetic anisotropy field. The
experimentally observed magnetic-field-induced increase of
the shear modulus at low filler concentrations p < 0.1 can have
a significant contribution from the proposed single-particle
mechanism. The concentration dependence of the effective
shear modulus of MAE at higher filler concentrations has
been estimated using the method of Padé approximants, which
predicts that the magnitude of the magnetic-field-dependent
effective shear modulus will significantly grow both absolutely
and relatively with the increasing particle concentration p.
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[55] P. Creemer, H. Löwen, and A. M. Menzel, Phys. Chem. Chem.

Phys. 18, 26670 (2016).
[56] R.W. Ogden and A. Dorfmann, in Constitutive Models for

Rubber IV, edited by P.-E. Austrell and L. Kari (A. A. Balkema
Publishers, Leiden, 2005), p. 531.

[57] L. D. Landau, L. P. Pitaevskii, A. M. Kosevich, and E. M.
Lifshitz, Theory of Elasticity, 3rd ed., Course of Theoretical
Physics Vol. 7 (Elsevier, Oxford, UK, 1986).

[58] H. Sahin, X. Wang, and F. Gordaninejad, J. Intell. Mater. Syst.
Struct. 20, 2215 (2009).

[59] J. Yang, X. Gong, H. Deng, L. Qin, and S. Xuan, Smart Mater.
Struct. 21, 125015 (2012).

[60] X. Dong, N. Ma, M. Qi, J. Li, R. Chen, and J. Ou, Smart Mater.
Struct. 21, 075014 (2012).

[61] I. A. Belyaeva, E. Yu. Kramarenko, G. V. Stepanov, V. V.
Sorokin, D. Stadler, and M. Shamonin, Soft Matter 12, 2901
(2016).

[62] Z. Hashin, J. Appl. Mech. 50, 481 (1983).
[63] R. M. Christensen, Mechanics of Composite Materials (Wiley,

New York, 1979).
[64] V. A. Buryachenko, Micromechanics of Heterogeneous Materi-

als (Springer Verlag, New York, 2007).
[65] A. A. Snarskii, I. V. Bezsudnov, V. A. Sevryukov, A.

Morozovskiy, and J. Malinsky, Transport Processes in Macro-
scopically Disordered Media. From Mean Field Theory to
Percolation (Springer Verlag, New York, 2016).

[66] L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrody-
namics of Continuous Media, 2nd ed., Course of Theoretical
Physics Vol. 8 (Elsevier, Oxford, UK, 1984).

[67] A. F. Kabychenkov and F. V. Lisiovskii, J. Exp. Theor. Phys.
123, 254 (2016).

[68] E. Z. Melikhov and R. M. Farzetdinova, J. Exp. Theor. Phys.
122, 1038 (2016).

[69] H. An, S. J. Picken, and E. Mendes, Polymer 53, 4164 (2012).
[70] V. V. Sorokin, E. Ecker, G. V. Stepanov, M. Shamonin, G. J.

Monkman, E. Y. Kramarenko, and A. R. Khokhlov, Soft Matter
10, 8765 (2014).

[71] L. Ge, X. Gong, Y. Wang, and S. Xuan, Compos. Science
Technol. 135, 92 (2016).

[72] M. M. Ruiz, M. C. Marchi, O. E. Perez, G. E. Jorge, M. Fascio,
N. D’Accorso, and R. M. Negri, J. Polym. Sci., Part B: Polym.
Phys. 53, 574 (2015).

[73] V. Iannotti, G. Ausanio, L. Lanotte, and L. Lanotte, eXPRESS
Polym. Lett. 10, 65 (2016).

[74] G. Schubert and P. Harrison, Polym. Test. 42, 122 (2015).
[75] D. C. Moreira and L. C. S. Nunes, Polym. Test. 32, 240 (2013).
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