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Effects of disorder and chain stiffening on the elasticity of flexible polymer networks
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We examine how the distribution of contour lengths and the high-stretch stiffening of individual chain segments
affect the macroscopic shear modulus of flexible polymer gels, using a two-dimensional numerical model in which
polymer segments form a triangular network and disorder is introduced by varying their contour lengths. We
show that, in the relevant parameter range: (i) the nonaffine contribution to the shear modulus is negligible, i.e.,
the Born approximation is satisfactory, and (ii) the shear modulus is dominated by the contribution originating
from equilibrium chain tensions. Moreover, mechanical equilibration at the nodes induces specific correlations
between the end-to-end distances and contour lengths of chain segments, which must be properly accounted for
to construct reasonable estimates of chain pressure and shear modulus.
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I. INTRODUCTION

In the last decades, a lot of attention has been dedicated
to understanding how the macroscopic elasticity of polymer
hydrogels is controlled by the properties of single polymer
strands and by network disorder. Most of these studies [1–3]
have focused on the case of filamentous networks, in which
the constitutive polymers have persistence lengths �p larger
that the network mesh size ξ—which is relevant to many
biopolymers. They have shown, in particular, that large chain
stiffnesses give rise to spectacular mechanical responses, such
as prestress-induced stiffening or softening, negative normal
stress, etc. Few works [4,5], however, have addressed recently
the case—which is relevant to many hydrogels, such as gelatin
or synthetic polymer gels—where the persistence length �p

of polymer strands lies in an intermediate range between the
monomer size a and the mesh size ξ .

The elasticity of such “flexible polymer networks” is
usually treated in the framework of the classical theory of
rubber elasticity, which suggests that their shear modulus
is ∼kBT /ξ 3 [in three dimensions (3D)]. This expression is
often used in practice to estimate network mesh sizes from
measurements of the shear modulus, but only arises from
approximate scaling arguments [6], or from a mean-field
theory [7] where the end-to-end distances of chain segments
are supposed to follow the same Gaussian statistics as if they
were independent. This assumption overlooks the fact that
chains fluctuate around a state of mechanical equilibrium; as
we shall see, it amounts to a very stringent ansatz about the
correlations between end-to-end and contour lengths.

In this paper, we study in detail how the distribution of con-
tour lengths and the high-stretch stiffening of individual chain
segments affect the macroscopic shear modulus. We address
these issues by using a two-dimensional (2D) numerical model
of gel, in which disorder is introduced by varying the contour
lengths of polymer strands that form a triangular network. The
model takes into account the existence of excluded volume
effects à la Flory [8] and is tested for different expressions
of the single-chain response to large extensions. The shear
modulus of such a system can be decomposed into a sum of
three terms:

G = −P ch + C + Gna, (1)

which are respectively the opposite of the chain pressure P ch,
the “elastic constant” C, and the nonaffine term Gna. Even
though the respective importance of these three terms depends
on disorder strength and swelling level as well as on the
importance of stretch-stiffening, we show that, in the range of
parameter values relevant for the usual flexible gels, these three
contributions are ordered according to the following hierarchy:
−P ch � C � Gna. Namely, the nonaffine contribution to the
shear modulus is small enough for the Born approximation
G � −P ch + C to provide, for all practical purposes, a very
satisfactory estimate of the shear modulus. The elastic constant
C contributes at most a fraction of G less than typically
15%–20% and is all the weaker that the persistence length
is small. The chain-pressure term is always dominant, but
its value depends on both the distribution of chain segment
stiffnesses and on the accommodation of elastic disorder by
mechanical equilibration. This hierarchy of the contributions is
specific to flexible polymer gels, in contrast with semiflexible
or rigid polymer networks.

II. MODEL

We choose to specialize to 2D networks with a fixed,
triangular topology, as illustrated in Fig. 1. The nodes represent
permanent cross-links and the bonds flexible polymer strands
that rotate freely at the nodes. The number of monomers on
the strand connecting nodes i and j is denoted Nij .

A. System free energy

We define the system free energy as F = F ch + FFl, where
the two terms account, respectively, for the elastic free energy
of individual strands in an ideal solvent, and for excluded
volume effects. More precisely, the “chain free energy” reads

F ch =
∑
{ij}

Fij (rij ), (2)

where the sum runs over all strands {ij}, with rij being the
distance between nodes i and j , and the subscript ij in Fij

accounts for its dependence on Nij . Excluded volume effects
are modeled by constructing an analog of the Flory mean-
field approximation [6,8] (in 2D) at the scale of each triangle.
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FIG. 1. Mechanically equilibrated disordered network configu-
rations for the FJ chain model, using the bimodal distributions
B100,30 (left) and B100,50 (right) of the Nij , with parameters �p = 7a,
1 − 2χ = 2 × 10−2, ξ = 30a. Short and long chains are drawn in
light and dark blue, respectively.

Namely, the free energy per unit area associated with each
triangle {ijk} is supposed to be proportional to the square
of the local average monomer concentration in that triangle,
which we write as

cijk = 1

2

Nij + Njk + Nik

Aijk

, (3)

with Aijk being the triangle area. The total “Flory free energy”
in the system is thus

FFl = kBT

2
(1 − 2χ )a2

∑
{ijk}

c2
ijkAijk ≡

∑
{ijk}

Fijk(Aijk), (4)

where the sum runs over all triangles, and χ is the 2D Flory
parameter.

Now we need to specify the expression of the elastic free
energy Fij of individual chains that enters Eq. (2). We consider
that the persistence length �p is small compared with the
average mesh size. So long as the end-to-end distance rij of any
strand is much smaller than its contour length aNij , elasticity
is purely entropic, and we can use for Fij the standard Gaussian
expression [9]

F G
ij (rij ) = kBT

2a�p

r2
ij

Nij

. (5)

It is well known, however, that this expression is insufficient
at high stretch, i.e., when xij = rij /(aNij ) approaches unity.

A standard model for the large stretch response is the freely
jointed chain [9], for which the relation between elongation
and applied force is provided, in 3D, by a Langevin function.
Although the associated free energy does not possess an
explicit analytic expression, a satisfactory approximation is
provided by the Cohen expression [10], which interpolates
between the small stretch (x � 1), Gaussian, and the nearly
taut (x → 1) limits. In Appendix A we derive the analogous
expression for a 2D freely jointed chain containing aNij /(2�p)
Kuhn segments; it reads

F FJ
ij (rij ) = kBT

aNij

2�p

w

(
rij

aNij

)
, (6)

with

w(x) = 1
2 [x2 − ln(1 − x2)]. (7)

As needed, F FJ reduces to the Gaussian expression in the limit
x � 1.

It is known that the logarithmic growth of the freely jointed
chain free energy underestimates the hardening of the single-
chain response at high stretch levels. This effect certainly
becomes all the more important that the persistence length
increases and, in the limit of high stiffnesses, the worm-like
chain (WLC) model provides a much better description of the
stretch-force relation. To tackle the problem of intermediate
persistence lengths, Blundell and Terentjev [11] proposed
an expression for the single-chain response that interpolates
between the Gaussian and the WLC models. This provides a
third model for the elastic free energy:1

F BT
ij (rij ) = kBT

2π�p

aNij

(
1 − x2

ij

) + kBT
aNij

2�p

1

1 − x2
ij

, (8)

with xij = rij /(aNij ).
In the following, we probe the linear and nonlinear elastic

response of networks by using these three expressions for the
single-chain free energy.

B. Units and parameter ranges

We use parameter values in ranges that are reasonable for
the thoroughly investigated hydrogels of gelatin, for which
the monomer size a � 3 Å, persistence length �p � 7a, and
1 − 2χ � 2 × 10−2 [12]. Typical mesh sizes ξ lie in the 10 nm
range, i.e., ∼30a. A rough evaluation of the average number of
monomers per strand is N ∼ ξ 2/(2a�p), on the order of 100.

When presenting numerical data, the monomer size a and
kBT are taken as units of length and energy.

C. Network disorder

To construct a triangular network, the node points are
initially placed on a Bravais lattice with vectors (ξ,0) and
(ξ/2,

√
3ξ/2), in a biperiodic cell of extension (ξMx,

√
3

ξMy/2), with Mx and My integers. There are Nnode = MxMy

nodes for a cell area A = √
3ξ 2MxMy/2, i.e., an average areal

density of nodes ρ = 2/(ξ 2
√

3). The number of strands is
N ch = 3Nnode and the number of triangles N� = 2Nnode.

The network topology being fixed, disorder is introduced
via the values of the monomer numbers Nij , which we take
to be random and uncorrelated variables. For the sake of
simplicity, and to facilitate the qualitative analysis of disorder
effects, we assume their distribution BN,�(Nij ) to be bimodal:

BN,�(Nij ) = 1

2
if Nij = N ± �

= 0 otherwise. (9)

For any realization of the set {Nij }, mechanical equilibrium
is then found by minimizing the total free energy of the system,
which results in a distorted network. This is illustrated in Fig. 1,
which displays two mechanically equilibrated configurations
with the bimodal disorder defined by B100,30 and B100,50.

1To ensure that F BT
ij matches F G

ij in the Na/�p � 1, x � 1 limit,
our definition of the persistence length differs by a factor of 4/π from
that of Blundell and Terentjev.
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III. ELASTIC NETWORK RESPONSE

A. Affine vs nonaffine contributions

To compute elastic constants, we rely on the general
formalism developed in Ref. [13] for the elastic response of
disordered solids. Its main lines are briefly summarized as
follows:

Let us consider some initial (reference) state about which
we compute the elastic response. The externally imposed
macroscopic deformation about this initial state is specified
via the strain tensor �. In the initial state, � = 1 and the
nodes assume equilibrium positions denoted ri(� = 1). Under
deformation, an arbitrary configuration of the system is defined
by the macroscopic strain � and the node positions {ri}. For

any ri , we define its zero strain antecedent as r̊ i ≡ �−1 · ri .
Clearly r̊ i ≡ ri in the initial configuration, where � = 1.

The Born approximation of affine deformation amounts to
assuming that node positions vary with � as ri = � · r̊ i(1)
with fixed antecedents that coincide with the initial node
positions. To separate the affine and nonaffine contributions
to the elastic response, it is convenient to write formally the
total free energy F({ri},�) of the deformed system in terms of

the antecedents r̊ i = �−1 · ri of the (a priori arbitrary) node
positions. This is realized by writing

F({ri},�) = F({� · r̊ i},�) ≡ F̊({r̊ i},�), (10)

which defines F̊ .
We are interested in the static elastic response, which

entails that, under loading, the system remains at mechanical
equilibrium, i.e., that the force on each node vanishes at all
times:

f
i
= −∂F

∂ri

= −∂F̊
∂r̊i

· �−1 = 0. (11)

We denote by ri(�) the node positions at mechanical equi-
librium under strain �. In a disordered system, as � varies,
the ri(�) follow trajectories that, in general, are not affine.

It means that their antecedents r̊ i(�) ≡ �−1 · ri(�) are not
fixed but vary with �. Their trajectories are specified by
differentiating, with respect to each component �αβ of the
strain tensor, the condition

∂F̊
∂r̊i

= 0, (12)

which is an immediate consequence of Eq. (11). In the limit
� → 1, we obtain

Hij · ∂r̊j

∂�κχ

∣∣∣∣
�→1

= i,κχ (13)

(note that we use the convention of implicit summation on
repeated indices). Here,

Hij = ∂2F̊
∂r̊i∂r̊j

∣∣∣∣∣
�→1

(14)

is the Hessian matrix in the reference (initial) state, and the
vector field i,κχ is defined as

i,κχ = − ∂2F̊
∂�κχ∂r̊i

∣∣∣∣∣
�→1

. (15)

Note that taking partial derivatives of F̊ with respect to strain
components amounts to varying � at constant {r̊ i}, i.e., to
performing affine deformations about state {r̊ i}. Since, more-
over, in the limit � → 1, {r̊ i} tends to the initial (reference)
configuration, it turns out that i,κχδ�κχ can be interpreted as
the force induced by an infinitesimal affine deformation δ�κχ

[13]. In view of Eq. (13), the nonaffine displacement field

characterized by
∂r̊j

∂�κχ
|�→1 can be interpreted as the linear

elastic response of the system to this field of virtual forces.
This framework can be used to write explicit expressions

for stresses and elastic stiffnesses, which are first and second
derivatives of the free energy with respect to strain. In
particular, it has been shown that elastic stiffnesses [14],
defined as

Sαβκχ ≡ 1

A

∂2F
∂�αβ∂�κχ

∣∣∣∣
�→1

, (16)

with A being the system area, can be decomposed as [13]

Sαβκχ = SBorn
αβκχ + SNA

αβκχ , (17)

where

SBorn
αβκχ ≡ 1

A

∂2F̊
∂�αβ∂�κχ

∣∣∣∣∣
�→1

(18)

is the Born approximation for the stiffness tensor, which
assumes that the nodes follow affine trajectories, and the
nonaffine contribution

SNA
αβκχ = − 1

A
i,αβ · (H−1)ij · j,κχ (19)

results from the nonaffinity of the displacement field.

B. Microscopic expression of stress tensor

Since F = F ch + FFl, the macroscopic Cauchy stress
tensor is a sum of a chain and a Flory contribution:

σ = 1

A

∂F
∂�

∣∣∣∣∣
�→1

= σ ch + σ Fl. (20)

The “chain stress” is given by the classical expression for
systems with pair interactions; namely,

σ ch = 1

A

∑
i<j

F ′
ij (rij )

rij rij

rij

, (21)

with rij = rj − ri . The “Flory stress,” derived in Appendix B,
which reads

σ Fl = 1

A

∑
ijk

F ′
ijk(Aijk)Aijk1, (22)

is diagonal under any state of deformation, as expected
from the microscopically isotropic character of the Flory
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interaction; it hence only contributes to the osmotic pressure

P = − 1
2 Tr σ (23)

but not to deviatoric stresses.

C. Response to simple shear

Since hydrogels are incompressible on timescales where
poroelasticity is irrelevant, their elasticity is characterized, for
all practical purposes, by their response to shear. We thus focus
here on the case of simple shear deformation, for which

� =
(

1 γ

0 1

)
. (24)

In this case, the linear elastic response is characterized by the
shear modulus G = Sxyxy , which, according to Eqs. (17)–(19),
can be decomposed into Born and nonaffine contributions.

We first calculate explicitly the Born contribution GBorn,
which is obtained under the assumption of affine node
displacement. Denoting by r0

i the initial node positions, any
strand end-to-end vector r0

ij is transformed into rij = � · r0
ij ,

i.e.,

xij = x0
ij + γy0

ij ,

yij = y0
ij . (25)

Under such an affine displacement, which preserves areas,
the Flory free energy FFl, defined by Eq. (4), remains
invariant. The Born modulus [Eq. (18)] hence reduces to
GBorn ≡ 1

A
∂2F̊ ch/∂γ 2|γ→0. It is computed by writing the shear

stress at arbitrary γ ,

σxy(γ ) ≡ 1

A

∂F̊ ch

∂γ
= 1

A

∑
i<j

F ′
ij (rij )

xij y
0
ij

rij

, (26)

and differentiating once more. It will be useful to decompose
the result as follows:

GBorn = C + σ ch
yy , (27)

with

C = 1

A

∑
i<j

(
F ′′

ij

(
r0
ij

) − F ′
ij

(
r0
ij

)
r0
ij

)(
x0

ij y
0
ij

r0
ij

)2

(28)

and where

σ ch
yy = 1

A

∑
i<j

F ′
ij

(
r0
ij

)(
y0

ij

)2

r0
ij

(29)

is the yy component of the stress carried by the chain network
in the initial, undeformed, state.

Let us note that the chain free energyF ch, which determines
GBorn, only depends on the distances rij between connected
nodes. In such a case, the free energy under deformation
can be written as a function of the Green–Saint–Venant
tensor η = 1

2 (�T · � − 1), since r2
ij − (r0

ij )2 = 2r0
ij · η · r0

ij ,

and the general elastic theory for discrete systems shows that
the elastic stiffness tensor can be written as [13] Sαβκχ =
Cαβκχ + σβχδακ , where Cαβκχ = 1

A
∂2F̊/∂ηαβ∂ηκχ is called

the tensor of elastic constants, and σ is the stress in the
undeformed system. Expression (27) corresponds exactly to

this decomposition since C is precisely the elastic constant
Cxyxy . It should be emphasized that, because the Flory free
energy is invariant under simple shear and, consequently, GBorn

is determined by the variations of F ch, the stress term is only
σ ch

yy but not the total yy stress.
Finally, combining Eqs. (17) and (27) the total shear

modulus reads

G ≡ Sxyxy = σ ch
yy + C + GNA, (30)

which leads to Eq. (1) when the chain stress tensor is isotropic,
a condition which, as we will see shortly, is satisfied by our
triangular networks. The nonaffine contribution [Eq. (19)]
involves the field of virtual forces {i,xy} and the Hessian
matrix H. The explicit expression of H is provided in
Appendix B. Concerning {i,xy}, we note that, in view of
Eq. (15) and since the Flory free energy is invariant under affine
simple shear (∂F̊Fl/∂�xy = 0), there is no Flory contribution
to it.

It is worth noting that, since the Flory contributions to both
GBorn and {i,xy} vanish, excluded volume effects impact the
linear elastic response only indirectly via the role they play in
defining the equilibrium structure.

IV. A SIMPLE CASE: THE HOMOGENEOUS NETWORK

We focus in this section on the case when all strands have
an equal number of monomers N . Then, the nodes lie on a
regular lattice at any level of deformation and nonaffine effects
are absent.

A. General expressions

The stress tensor σ = σ ch + σ Fl, in the undeformed state,
is computed straightforwardly by using Eqs. (21) and (22):

σ ch =
√

3
F ch

N

′
(ξ )

ξ
1 ≡ −P ch1, (31)

and

σ Fl = −6kBT (1 − 2χ )
a2N2

ξ 4
1 ≡ −P Fl1. (32)

As expected for a 2D triangular lattice, σ ch is isotropic: σ ch
xx =

σ ch
yy = −P ch. Note that changing the swelling state of our gel

network amounts to varying ξ at fixed N . Accordingly, P =
P ch + P Fl = −∂F/∂A is the osmotic pressure. From Eq. (27)
we obtain for the shear modulus (which reduces to its Born
estimate)

G = C − P ch, (33)

with

C =
√

3

4

(
F ch

N

′′
(ξ ) − F ch

N

′
(ξ )

ξ

)
. (34)

B. The Gaussian chain model

Expressions (31)–(34) take especially simple forms for the
Gaussian model (F ch = F G). We then get for the osmotic
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FIG. 2. Osmotic pressure P (black), elastic constant C (green),
chain pressure P ch (red), and shear modulus G = C − P ch [Eq. (27)]
(blue) plotted vs mesh size ξ for a homogeneous network of fixed
structure (N = 100) and the three models of chain free energy:
Gaussian (thin lines), FJ (dashed lines), and BT (thick solid lines).
Parameters are �p = 7a, 1 − 2χ = 2 × 10−2. The monomer size a

and kBT are taken as units of length and energy.

pressure

P G = −
√

3kBT

Na�p

[
1 −

(
ξG

eq

ξ

)4]
, (35)

where ξG
eq, the mesh size at swelling equilibrium (P = 0), reads

ξG
eq

/
a =

(
2
√

3 (1 − 2χ )
�p

a

)1/4

N3/4. (36)

It is seen to be proportional to N3/4, the standard 2D scaling
behavior expected in the Flory framework. When ξ < ξG

eq, then
P < 0 and the gel is underswollen.

Turning to the value of the shear modulus, we first note
that, since F G

N is quadratic, the elastic constant CG [Eq. (34)]
vanishes so that

GG = −P ch,G =
√

3kBT

Na�p

. (37)

We recover here the classical expression deduced from rubber
elasticity [9], which states that the shear modulus of a polymer
gel is proportional to the chain number density times the elastic
free energy per chain.

C. Dependence on swelling level for the three chain models

Note that varying ξ at fixed N amounts to changing the
swelling level of a gel of fixed network structure. So, the above
expression means that, for the Gaussian chain model, G is
independent of the swelling level.

To compare the different chain models, we study a homoge-
neous network of fixed N and plot on Fig. 2 the four quantities
P , C, P ch, and G which characterize the gel mechanical state
versus the mesh size ξ , which characterizes the swelling level.

The sharp drop of the osmotic pressure P with swelling at
small ξ is essentially due to the decay of the Flory pressure
P Fl [Eq. (32)], which is identical for all models.

Let us recall that the FJ and BT chain free energies account
for the stretch hardening of the chain segments while matching
the Gaussian expression at small ξ . Expectedly, the values of
P , C, P ch, and G obtained with both models smoothly grow
away from the Gaussian ones with increasing ξ . The BT model
data exhibit a much steeper dependence on the swelling level,
in agreement with the fact that it interpolates at high stretch
with the WLC behavior which is stiffer than the FJ one.

The conditions of our study should be contrasted with
the numerous existing works on filamentous networks [1–3],
which usually deal with the very stiff regime, �p � ξ � Na.
Here, on the contrary, we consider much more flexible gels
with the persistence length �p much smaller than the contour
length Na, at moderate stretch ratio ξ/(Na). It is thus striking
that both the FJ and BT models lead to a very substantial
growth of the shear modulus with swelling level, so that it
departs from the Gaussian prediction by amplification factors
G/GG of, respectively, 1.5 (FJ) and 4.5 (BT) at our highest
stretch ratio ξ/(Na) = 0.6.

D. Dependence on cross-link density at fixed
monomer concentration

The progress of the cross-linking reaction under undrained
conditions corresponds in our model to decreasing values of ξ

at fixed monomer density ρm = 2
√

3N/ξ 2. Rubber elasticity
theory [7] then predicts that G ∼ 1/ξd , with d being the
space dimension, an expression which is commonly used to
estimate mesh sizes from the tracking of the shear modulus in
experiments, yet is derived under the assumptions that chains
are Gaussian and deformations affine.

We expect our Gaussian chain homogeneous network
model to satisfy this scaling relation since it upholds both
assumptions. Indeed, rewriting expression (38) in terms of the
monomer density yields

GG = −P ch,G = 6kBT

a�pρm

1

ξ 2
. (38)

Since this scaling derives from purely entropic arguments,
it should break down in our FJ and BT models, which take
stretch hardening into account. To probe the magnitude of
the expected deviations, we plot in Fig. 3 P , C, P ch, and G

as a function of ξ for networks of a fixed monomer density,
ρm � 0.38/a2 corresponding to N = 100, ξ = 30a. As the
cross-link density increases (decreasing ξ ), the stretching
ratio ξ/(Na) = 2

√
3/(ρmaξ ) grows, and so does the chain

tension: P ch is increasingly negative. Since P Fl = P − P ch

only depends on ρm, hence is ξ and model independent, we
recover the intuitive result that osmotic pressure decreases
together with ξ , i.e., that the swelling level grows with cross
linking.

Chain pressure P ch is found to be only weakly model
dependent, i.e., is hardly affected by stretch hardening. As
for the elastic constant C, its FJ value weakly departs from
the Gaussian C = 0 limit, but grows significantly at low ξ in
the BT model, in agreement with the fact that it specifically
captures the deviations from harmonicity of the chain potential
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FIG. 3. Osmotic pressure P (black), Born elastic constant C

(green), chain pressure P ch (red), and shear modulus G = C − P ch

[Eq. (27)] (blue) plotted vs mesh size ξ , for a homogeneous network
at fixed monomer density (2

√
3N/ξ 2 � 0.38/a2) for the three models

of chain free energy: Gaussian (thin lines), FJ (dashed lines), and BT
(thick solid lines). Parameters are �p = 7a, 1 − 2χ = 2 × 10−2. Inset
shows scaling plot of Gξ 2 vs ξ .

[see Eq. (34)]. The resulting departure of the shear modulus
from the rubber elasticity scaling is quantified by plotting Gξ 2

vs ξ in the inset of Fig. 3. Over the whole ξ range considered
(from 18 to 6 nm) we find that GBT/GG increases from 1.2 to
1.6, which correspond to quite substantial relative deviations.

V. DISORDERED NETWORKS

We now introduce disorder by attributing, as explained
in Sec. II C, random values to the bond monomer numbers
Nij . To isolate the effect of disorder strength, we vary the
distribution width � for fixed average monomer and cross-link
densities, i.e., fixed average N = 100 and ξ = 30a. The
results, averaged over 100 configurations, are shown, for the
bimodal distribution BN,� [Eq. (9)], in Fig. 4.

A. Osmotic and chain pressures

Figure 4(a) displays the osmotic pressure P and its two
terms, the chain and Flory pressures, P ch and P Fl. Over
the considered � range, P Fl is not strictly constant, but its
variations are much too small to be visible on the graph.
The changes of osmotic pressure hence only result from the
changes of P ch.

Visibly, P ch decreases, i.e., the average chain tension
increases with disorder. A hint to understand this trend is
provided by constructing a regular network approximation
(RNA), which neglects the fact that the mechanically equi-
librated network is distorted with respect to the reference
triangular lattice. In this approximation, all end-to-end vec-
tors assume the same length ξ and orientations as in the
homogeneous problem, and the chain pressure reduces to
an expression similar to Eq. (31): P ch

RNA = −√
3〈F ch

Nij

′
(ξ )〉/ξ ,

where the average is taken over the Nij distribution. One

0 20 40

-0.004

-0.002

0

0.002

0.004

0.006

0 20 40

0 20 40
-0.004

-0.003

(a) (b)

ΔΔ

P

P ch

P Fl

G

C

P ch

G na

Δ

P ch

FIG. 4. Network properties vs disorder strength, using bimodal
monomer number distributions BN,�, with N = 100 and varying
�. Parameters are �p = 7a, ξ = 30a, 1 − 2χ = 2 × 10−2. (a) De-
composition of the osmotic pressure P = P Fl + P ch (black) into its
Flory (orange) and chain (red) contributions. Inset shows P ch (solid)
vs P ch

RNA (dot-dashed) for the Gaussian model. (b) Shear modulus
G = −P ch + C + Gna (blue) and its three components [see Eq. (1)]
P ch (red), C (green), and Gna (magenta). The three types of lines
correspond to the Gaussian (thin solid), FJ (dashed), and BT (thick
solid) models.

easily checks that, for the Gaussian and FJ models, the
chain tension −F ch

Nij

′
(ξ ) is a concave function of Nij at all

stretch ratios (x < 1). The same holds for BT as long as
�p < 0.60ξ , a condition satisfied by gels of flexible polymers
at not too large underswelling levels. This property entails
that (i) P ch

RNA < −√
3F ch

N

′
(ξ )/ξ , the chain pressure of the truly

homogeneous network (for which � = 0, i.e., Nij = N ); (ii)
at fixed N , P ch

RNA decreases (in algebraic value) with �.
We test this approximation in the simplest case of the

Gaussian model by plotting P ch
RNA and the true P ch of the

inhomogeneous problem [inset of Fig. 4(a)]: it appears that
P ch

RNA noticeably overestimates the effect of disorder. To
understand the origin of this discrepancy, let us write the
microscopic expression of the chain pressure:

P ch = − 1

2A

∑
i<j

F ′
ij

(
r0
ij

)
r0
ij = −

√
3

ξ 2

〈
F ′

ij

(
r0
ij

)
r0
ij

〉
, (39)

where 〈·〉 stands for the pair average. In the case of
Gaussian chains, P ch = −

√
3kBT

ξ 2a�p
〈r2

ij /Nij 〉, while P ch
RNA =

−
√

3kBT
a�p

〈1/Nij 〉. The comparison between P ch and P ch
RNA

points to the importance of correlations between chain end-
to-end distances rij and monomer numbers Nij . Indeed, ne-
glecting these correlations would lead to P ch = 〈r2

ij 〉/ξ 2P ch
RNA.

Since, in a triangular network, 〈r2
ij 〉 > ξ 2 always holds,2 this

2To check this inequality it suffices to notice that the energy of
a network of Gaussian chains of unique N is minimized, at fixed
monomer density, i.e., fixed ξ , by the homogeneous state with rij = ξ .
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FIG. 5. Black line shows the normalized distribution of end-to-
end distances rij for an ensemble of disordered networks of Gaussian
chains with the bimodal monomer number distribution B100,50 (top)
and B100,20 (bottom). Red (blue) shows the contribution of short (long)
chains. Parameters are �p = 7a, ξ = 30a, 1 − 2χ = 2 × 10−2.

assumption would result in |P ch
RNA| < |P ch|, in contradiction

with the data.
To show the correlations between chain end-to-end dis-

tances and monomer numbers, we plot in Fig. 5, for two
bimodal disorder strengths, the distribution of rij and its
decomposition into the contributions of short and long chains.
The two subdistributions are clearly separated. Hence, in both
cases, corresponding to large and modest elastic contrasts,
chain lengths and monomer numbers are strongly correlated.

To understand why long (softer) chains are more extended
than short (stiffer) ones, note that, in the regular network
approximation, the stretch ratios sij = rij /(Nija) of long and
short chains take the values ξ/[a(N ± �)]: short chains are
more taut (than long ones) and hence pull more strongly on
their surroundings. Under the effect of mechanical equilibra-
tion, short chains thus tend to contract while the long chains
expand, which reduces the contrast of stretch ratios (and hence
of chain tensions). Nevertheless, this effect does not fully
resorb the stretch-ratio contrast: the data of Fig. 5 show that,
in mechanical equilibrium, the stretch ratio of the short chains
peaks around 0.35 for � = 20 and 0.5 for � = 50, while those
of the long chains peak around 0.26 for � = 20 and 0.23
for � = 50. In mechanical equilibrium, short chains always
remain on average more taut than long ones, and increasingly
so for large disorder strength. Mechanical equilibration hence
only mitigates the effect of chain stiffness disorder as captured
by the regular network approximation.

This observation sharply contrasts with the assumptions
of rubber elasticity, which overlooks mechanical equilibration
and postulates that chains are independent with a Gaussian
statistics for end-to-end vectors. It follows that 〈r2

ij /Nij 〉 is
independent of Nij , which leads to predicting a constant
P ch. Since C [see Eq. (28)] vanishes for Gaussian chains,

20 30 40-0.01

-0.005

0

0.005

0.01

ξ

P

G

C

Gna

P ch

FIG. 6. Dependence of network properties on the swelling level
for the BT model, comparing the homogeneous N = 100 network
(dot-dashed) with a disordered network with B100,50 (solid). Parame-
ters are �p = 7a, 1 − 2χ = 2 × 10−2.

rubber elasticity predicts the shear modulus to be disorder
independent.

B. Contributions to shear modulus

Let us now turn to Fig. 4(b), which displays the shear
modulus along with the three terms of its decomposition
G = −P ch + C + Gna. In all cases, the chain-pressure term
−P ch provides the largest contribution. The elastic constant C

captures departures from Gaussianity. It vanishes for Gaussian
chains. It remains weak for the FJ model, is comparable to
|P ch| for the BT one, and in both cases grows with disorder
strength. This latter effect results primarily from the fact
that, in both models, F ′′ − F ′/r is a concave function of
N , a property which is expected to hold rather generally for
stretch-hardening chain free energies. Of course, like chain
pressure, the exact value of C in the FJ and BT models
depends on the correlations evidenced in Fig. 5 between chain
end-to-end distances and monomer numbers. Yet, as we saw
above, mechanical equilibration does not destroy the contrast
of stretch ratios between short (more taut) and long chains,
and hence the value of C grows with disorder strength.

The nonaffine contribution Gna also increases with disorder,
as intuitively expected. Yet, strikingly, it only contributes a
small fraction of the shear modulus: Gna/G remains smaller
than 1% for both the Gaussian and FJ models; it reaches at most
�7% for the highest disorder strength with the BT model. It
thus turns out that the effect of disorder on the shear modulus is,
for all practical purposes, captured by the Born approximation:
G � −P ch + C. As both terms grow similarly with disorder,
so does the shear modulus G.

C. Response to swelling

To illustrate how disorder impacts the elastic response of
the network to swelling, we compare in Fig. 6 the swelling

032501-7
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FIG. 7. Mechanically equilibrated configurations of a unique
disordered network (for the B100,50 distribution of the Nij ) at two
different swelling levels corresponding to ξ = 20a (left) and ξ = 40a

(right). Other parameters are �p = 7a, 1 − 2χ = 2 × 10−2. Short and
long chains are drawn in light and dark blue.

response of a B100,50 network with its homogeneous (N = 100)
counterpart, both using the BT model of chain free energy.
For pedagogical purposes, our swelling range extends up to
a very high—of course unrealistic—level (ξ = 40a). All the
measured quantities vary much more steeply with swelling
level, in the disordered network.

To understand swelling effects, we display in Fig. 7
the equilibrium configurations of a single realization of the
disordered network, at two different swelling levels. It is
immediately clear that increasing ξ leads to a rapid growth
of the network distortion away from the regular triangular
configuration. This can be ascribed to chain strain hardening:
at any ξ , short chains present larger stretch ratios and stiffen
faster with elongation than long ones. As the system swells,
stretch ratios increase; but the shorter a chain, the larger the
force it opposes to further stretching. Hence, an increasingly
large fraction of the deformation is accommodated by long
chains. As a direct consequence, swelling enhances structural
heterogeneities, as proposed by Bastide and Leibler [15] and
first observed by Mendes et al. [16].

The rapid increase of the shear modulus and other quantities
for the disordered systems, as illustrated by Fig. 6, also
results from chain hardening. Indeed, for example, in the
highly swollen system at ξ = 40a, the end-to-end distances
of short chains are strongly peaked around rij � 35a, which
corresponds to a very high stretch ratio �0.7, while the long
chains exhibit rather modest stretch ratios ∼0.37. This is to be
compared with the unique stretch ratio =0.4 of all chains in
the corresponding homogeneous network (N = 100). Clearly,
it is primarily the short chains that are responsible for the
disordered-induced enhancement of stiffening with swelling.

VI. CONCLUSION

Here we have analyzed in detail the case of flexible net-
works, in which the persistence length �p remains substantially
smaller than the contour length of inter-cross-links polymer
chain segments. Their modulus can be decomposed into
three terms, G = −P ch + C + Gna, which present different
sensitivities to chain flexibility and network disorder. We have
shown the following:

(i) The nonaffine contribution vanishes in the limit of either
very flexible (Gaussian) chains or of homogeneous (nondis-
ordered) networks. As a consequence, it contributes only a
few percents of G if we limit ourselves to a realistic range of
disorder (�/N � 25%) and swelling levels. Hence, the shear
modulus is very well captured by the Born approximation:
G � −P ch + C.

(ii) The elastic constant C vanishes in the limit of flexible
(Gaussian) chains, but is nonzero for stretch-hardening chains
even in the absence of disorder. It thus presents values that are
systematically larger that Gna. However, it contributes only a
small fraction of G at reasonable disorder and swelling levels.

(iii) In all cases, G is dominated by the chain pressure
contribution (−P ch), all the more so that chains are more
flexible.
This hierarchy of importance between the three contributions
(−P ch � C � Gna) is specific to flexible networks, in con-
trast with networks made of rigid polymers exhibiting finite
average end-to-end distances on the scale of the mesh size ξ .

Of course, the specific value of P ch (and of G) depends
on both the distribution of chain stiffnesses and on the
accommodation of this elastic disorder by mechanical equi-
libration. A trivial effect of disorder—captured in the regular
network approximation, which assumes that cross links lie
on a regular lattice—is that shorter (stiffer) chains tend to be
more taut than long (softer) ones, which entails that disorder
strongly enhances the stretch-hardening effects. Mechanical
equilibration mitigates this effect by introducing correlations
between end-to-end distances and chain contour lengths. These
joint effects bring in a noticeable contribution to G even in the
case of fully flexible (Gaussian) chains, in contradiction with
the prediction of rubber elasticity.
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APPENDIX A: FREELY JOINTED CHAIN
IN TWO DIMENSIONS

We compute the 2D polymer entropic elasticity following
the usual route. A chain is supposed to comprise N monomers
of size a. To take into account the finite persistence length, it is
decomposed into NK = Na/�K Kuhn segments of fixed size
�K = 2�p and orientation ui . The Kuhn segments are attached
at their endpoints and can rotate and overlap freely. One end of
the polymer is held fixed, and a force f = f ex is applied at the
other, which amounts to introducing a potential E = −f · R,
with R = �K

∑
i ui the end-to-end vector. Under equilibrium

at temperature T , the partition function is Z = zNK with

z =
∫

C

duie
β�Kf ·ui =

∫ π

−π

dθeβf �K cos θ = 2πI0(βf �K ),

(A1)
with β = 1/(kBT ) and I0 being a modified Bessel function of
the first kind. The average end-to-end vector is

〈R〉 = ∂lnZ

∂(βf )
ex = NK�K

I ′
0(βf �K )

I0(βf �K )
ex, (A2)
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so that the norm of the end-to-end distance is R =
Nag(βf �K ), with g(z) = I ′

0(z)/I0(z).
To invert approximately this relation, we note that, for small

z, at lowest order, I0(z) � 1 + 1
4z2, whence g � z/2; and for

large arguments, I0(z) � ez/
√

2πz, whence g � 1 − 1/(2z).
The inverse relations, respectively, are z � 2g (when g → 0)
and z � 1

2(1−g) (when g → 1). In the spirit of the Cohen
approximation for the 3D case [10], we interpolate between
these two limits by using the rational function z = g(1 +

1
1−g2 ) ≡ w′(g). So we write f � kBT

�K
w′(R/(Na)). From this,

we derive the expression for the elastic the free energy FFJ of
the freely jointed chain that appears in Eq. (6):

F FJ(R) = kBT
Na

�K

w

(
R

Na

)
, (A3)

where �K = 2�p and

w(x) = 1
2 [x2 − ln(1 − x2)]. (A4)

APPENDIX B: CALCULATIONAL DETAILS

The total free energy is of the form: F = F ch + FFl, with
the chain and Flory contributions

F ch =
∑
{ij}

Fij (rij ), (B1)

and

FFl =
∑
{ijk}

Fijk(Aijk). (B2)

In these expressions, {ij} and {ijk} respectively index pairs
and triangles, rij is the norm of the difference vector rij ≡
rj − ri between the positions of nodes i and j , and Aijk is
the area of triangle {ijk}. It is convenient, for any vector r =
(x,y) to define r⊥ ≡ (−y,x); also, we assume—without loss
of generality—that all triangles are oriented counterclockwise,
so that the area of a triangle reads Aijk = 1

2 r⊥
ij · rik .

1. Microscopic forces

The force exerted on node i can be decomposed into the
contributions of both the chain and Flory free energies:

f
i
≡ −∂F

∂ri

= f ch
i

+ f Fl
i
. (B3)

The chain contribution f ch
i

= −∂F ch/∂ri is of the form

f ch
i

=
∑
{jk}

f
jk

(δij − δik), (B4)

where the summation counts any pair once, and where f
ij

denotes the force exerted by j on i:

f
ij

≡ −∂Fij (rij )

∂ri

= Fij
′(rij )

rij

rij

= −f
ji

. (B5)

The last equation is Newton’s second law. The Flory contribu-
tion reads

f Fl
i

= −
∑
{klm}

f
klm→i

, (B6)

where

f
klm→i

= −∂Fklm(Aklm)

∂ri

(B7)

is the force caused on node i by the three-body interaction
between nodes k, l, and m. Of course, it is nonzero only if
i ∈ {k,l,m}. Thanks to the translation and rotation invariance
of Fklm, the forces it induces on the summits verify

f
klm→k

+ f
klm→l

+ f
klm→m

= 0, (B8)

and

rk × f
klm→k

+ rl × f
klm→l

+ rm × f
klm→m

= 0, (B9)

with × being the vector product. The general expression for
f

klm→i
reads

f
klm→i

= −F ′
klm(Aklm)

∂Aklm

∂ri

, (B10)

with

∂Aklm

∂ri

= 1

2
(δikr

⊥
lm + δilr

⊥
mk + δimr⊥

kl). (B11)

2. Macroscopic stress

Let us consider an arbitrary deformation �. As in Sec. III A,
under the conditions of mechanical equilibrium, the nodes
follow trajectories ri(�) that are not identical in general
to their affinely displaced values � · ri(1); the nonaffine
displacements can be characterized by considering the zero
strain antecedents: r̊ i(�) ≡ �−1 · ri(�) during deformation.

The macroscopic Cauchy stress is defined as

σ = 1

A

∂F
∂�

∣∣∣∣∣
�→1

= 1

A

[
∂F̊
∂�

+ ∂F̊
∂r̊i

· ∂r̊i

∂�

]∣∣∣∣∣
�→1

, (B12)

with A being the system area. The second term vanishes on the
right-hand side since ∂F̊/∂r̊i does, by definition of mechanical
equilibrium, so that

σ = 1

A

∂F̊
∂�

∣∣∣∣∣
�→1

≡ σ ch + σ Fl. (B13)

This property, which is independent of the form of the total
free energy, states that the Cauchy stress can be computed
by considering that deformation is associated with affine
displacements only, since the derivative is taken at fixed r̊ i .

The chain contribution is given by the Irvin–Kirkwood
formula:

σ ch = 1

A

∑
{ij}

f
ij
rij . (B14)

The Flory contribution is just

σ Fl = 1

A

∑
ijk

F ′
ijk(Aijk)Aijk1. (B15)
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3. Hessian

The Hessian matrix

Hij = ∂2F̊
∂r̊i∂r̊j

∣∣∣∣∣
�=1

≡ Hch
ij + HFl

ij (B16)

is needed to compute the nonaffine displacement fields from
Eq. (13). A concise expression for the pair (chain) contribution
is obtain by writing how it applies on a displacement field
u ≡ {ui}:

(Hch · u)i ≡
∑

j

Hch
ij · uj . (B17)

The result is classical:

(Hch · u)i = −
∑

j

M
ij

· uij , (B18)

with uij = uj − uj and

M
ij

=
(

F ′′
ij − F ′

ij

rij

)
rij rij

r2
ij

+ F ′
ij

rij

1. (B19)

To compute the Flory contribution to the Hessian, we write

HFl
ij =

∑
{klm}

F ′′
klm

∂Aklm

∂ri

∂Aklm

∂rj

+ F ′
klm

∂2Aklm

∂ri∂rj

(B20)

and compute

(HFl · u)i =
∑

j

HFl
ij · uj . (B21)

The first gradient of Aklm was provided under Eq. (B11), and

∂2Aklm

∂ri∂rj

= 1

2
(−δikδjl + δilδjk − δimδjk

+ δikδjm − δilδjm + δimδjl)S, (B22)

where S is the matrix with components Sαβ ≡ ∂r⊥
α

∂rβ
, i.e.,

S =
(

0 −1
1 0

)
, (B23)

which transforms any vector a into S · a = a⊥.
Putting it all together, we find

(HFl · u)i =
∑

j

HFl
ij · uj

= 1

2

∑
{klm}

F ′′
klm(r⊥

kl · ulm − r⊥
lm · ukl)

∂Aklm

∂ri

+ F ′
klm(δiku

⊥
lm + δilu

⊥
mk + δimu⊥

kl). (B24)

4. The � field

To compute the fields {i,κχ } defined by Eq. (15), note that
in either Eq. (B18) or (B24) the right-hand side is expressed
entirely in terms of displacement differences (i.e., stretches)
{uij }, which is a field defined on pairs—not on nodes. Thus
the action of the Hessian can be viewed as a the series of
two operations: a discrete gradient D : {ui}→{uij =uj−ui},

followed by an operation denoted M, which applies on the
field of pair differences {uij }.

This separation results from the fact that the free-energy
function is only a function of the stretches {uij }. The chain
rule permits to write the Hessian as follows:

Hij = ∂2F̊
∂r̊i∂r̊j

∣∣∣∣∣
�=1

=
∑
{kl}

∂2F̊
∂r̊i∂r̊kl

· ∂r̊kl

∂r̊j

∣∣∣∣∣
�=1

. (B25)

Let us define

M
ikl

= ∂2F̊
∂r̊i∂r̊kl

∣∣∣∣∣
�=1

, (B26)

and

Dklj = ∂r̊kl

∂r̊j

∣∣∣∣∣
�=1

= δjl − δjk. (B27)

The transformation by H of any displacement field {ui} can
be written as

∑
j Hij · ui = ∑

{kl} Mikl · ∑
j Dklj uj , i.e., as

the combination of two operators: H = M · D. The discrete
gradientD applies on any displacement field {ui} and produces
for each pair the value

∑
j Dklj uj = ul − uk .

Operator M applies on “stretch fields,” i.e., vector
fields {skl} defined on all pairs, and transforms them into
(force) fields carried by nodes with values: (M · {skl})i ≡∑

{kl} Mikl · skl . The explicit form of M = Mch + MFl is
easily obtained from the expressions derived above for H. For
an arbitrary field of stretches s = {sij }, we find

(Mch · s)i = −
∑

j

M
ij

· sij , (B28)

and

(MFl · s)i = 1

2

∑
{klm}

F ′′
klm(r⊥

kl · slm − r⊥
lm · skl)

∂Aklm

∂ri

+ F ′
klm(δiks

⊥
lm + δils

⊥
mk + δims⊥

kl), (B29)

which compares with Eq. (B18) or (B24).
With this in hand, let us turn back to the calculation of

{i,κχ }. In Eq. (15) the partial derivative with respect to strain
refers to the changes in potential due to affine displacements,
i.e., to variations of the difference vectors as raff

kl (�) ≡ � ·
rkl(1). By using the chain rule, we then find

i,κχ = − ∂2F̊
∂�κχ∂r̊i

∣∣∣∣∣
�→1

= −
∑
{kl}

Mikl · ∂raff
kl

∂�κχ

∣∣∣∣
�→1

,

(B30)

which is, up to the minus sign, the transform by M of a field

of virtual stretches, ∂raff
kl

∂�κχ
|�→1, the value of which is easily

computed on each pair.
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