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Cell-alignment patterns in the collective migration of cells with polarized adhesion
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Dictyostelium discoideum (Dd) utilizes inhomogeneities in the distribution of cell-cell adhesion molecules on
cell membranes for collective cell migration. A simple example of an inhomogeneity is a front-side (leading-edge)
polarization in the distribution at the early streaming stage. Experiments have shown that the polarized cell-cell
adhesion induces side-by-side contact between cells [Beug et al., Nature (London) 274, 445 (1978)]. This
result is counterintuitive, as one would expect cells to align front to front in contact with each other on the
basis of front-side polarization. In this work, we theoretically examine whether front-side polarization induces
side-by-side contact in collective cell migration. We construct a model for expressing cells with this polarization
based on the two-dimensional cellular Potts model. By a numerical simulation with this model, we find cell-cell
alignment wherein cells form lateral arrays with side-by-side contacts as observed in the experiments.
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I. INTRODUCTION

Collective cell migration is widely observed in the develop-
ment of organisms and is indispensable for the morphogenesis
therein [1–3]. In this decade, collective cell migration has been
intensively investigated in the fields of applied mathematics
and theoretical physics [4–10]. These investigations contribute
to the description of various collective cell migrations.
However, an understanding of the fundamental mechanisms
guiding cells in such migrations has not been sufficiently
achieved to date because of the complexity and diversity of
biological systems. In fact, this complexity and diversity have
resulted in many hypotheses on the guidance mechanism for
collective cell migration [11]. Most of the deeper theoretical
examinations necessary to support physical aspects of these
hypotheses have yet to be undertaken.

Cell-alignment patterns in collective cell migrations reflect
their guidance mechanism. A theoretical explanation of such
patterns would provide an effective means of supporting
a hypothesis for the guidance mechanism. The patterns
originate from various features of cells, including chemotaxis
[12], cell-level motility [13], cell-cell adhesion [14], and
cell-extracellular matrix interaction [15]. In any theoretical
explanation, an important issue will be the clarification of the
relationship between these features and the relevant patterns.

In clarifying this relationship, theoretical modeling that
ideally focuses on a particular cell feature is useful for avoiding
the complexity of biological systems. In the present work, we
focus on the feature of cell-cell adhesion, motivated by the fact
that cell-cell adhesion is a steering factor in cell coordination
and hence significantly affects the patterns formed [16–18].
Cell-cell adhesion in collective cell migration has been well
investigated for Dictyostelium discoideum (Dd) [19] and has
been reported to promote cell-alignment pattern formation
[20,21]. We further narrow our focus to the cell-cell adhesion
of Dd. This narrowing allows us to avoid complicating our
discussion with matters that are due to the diversity of
biological systems. Using the rich insights into Dd, we discuss
the relationship between cell-alignment patterns and cell-cell
adhesion.

Investigations to date have identified three molecules in
cell-cell adhesion [22]. These molecules control the fruiting

body formation of starved Dd [23]. Their expression changes
with the progress of the fruiting body formation. First, the
expression of gp24/DdCAD-1 [24,25] is observed with the
streaming formation of Dd in a very early stage. Then, as
the streaming formation proceeds, the expression of another
molecule, gp80/csA [26,27], becomes prominent. Lastly,
the heterophilic molecule pair TgrB1-LagC/gp150/TgrC1 is
expressed with the formation of cell aggregation [28,29].
These molecules are distributed on the cell membrane and
stabilize cell-cell contact in various ways [26,30]. The variety
in the styles of cell-cell contact results from the notable fact
that the concentration of cell-cell adhesion molecules exhibits
various spatial inhomogeneities.

We focus on gp24/DdCAD-1 as an example of these
inhomogeneities. Experiments on Dd have found that the
localization of this molecule is strongly polarized at the front
side (leading edge) of the cell as shown in Fig. 1(a) [19,31]. The
molecule induces side-by-side contact of cells in streaming
motions as shown in Fig. 1(b) and promotes their alignments
[26,30]. These results seem counterintuitive, as one would
expect cells to align front to front as shown in Fig. 1(c) owing
to the localization of the adhesion protein. In the present work,
we investigate whether cell motility along with this polarized
cell-cell adhesion can explain the alignment of nearby cells.

The present work is intended to shed light on the mechanism
of side-by-side contact. In this work, we propose the hypothe-
sis that the contact is an emergent effect of the synergy between
polarized cell-cell adhesion and cell motility. This hypothesis
offers a different point of view, namely, that of the synergy
between cell-cell adhesion and cell motility, and may thereby
provide a deeper understanding of the guidance mechanism
for collective cell migration.

To this end, we develop a model based on the two-
dimensional (2D) cellular Potts model [32,33]. The model
is extended to express this polarized cell-cell adhesion on
the basis of the inhomogeneous concentration of adhesion
molecules. Through a numerical simulation using this model,
we demonstrate that cells form lateral arrays through side-
by-side contact in their collective migration. This result
supports our hypothesis for side-by-side contact and ex-
plains the cell-alignment pattern observed in experiments
[26,30].
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FIG. 1. (a) Schematic image of a Dictyostelium discoideum cell
in the early streaming stage. Darkened areas indicate regions where
the concentration of the adhesion molecule gp24/DdCAD-1, ρ(r),
is high. Arrows represent the direction of cell polarity leading its
motion μ and the sawtooth shape at the front of the cell represents
pseudopods. (b) Side-by-side contact between two cells. (c) Front-to-
front contact between two cells.

In addition to the cellular Potts model, many theoretical
models have been used to express collective cell migration.
We briefly review these models in order to clarify the
appropriateness of our choice of model. Since the Keller-Segel
model was developed to explain Dd aggregation about half a
century ago [33–36], various continuum theoretical models
have been applied to collective cell migration including those
of wound healing [5,6,37] and epithelial spreading [38,39]. In
recent years, sophisticated continuum models including phase
field models opened a different approach for expressing details
of cell features. Such a model provided a detailed reproduction
of the migration of fish keratocytes [40,41] and has been further
applied to collective cell migration [42–45]. Models of another
type, discrete particle models, have also been frequently used
for expressing collective cell migration including swarming
of keratocytes [4] and wound healing [46]. These models
provide a possible tool for analyzing the collective behavior
of many-cell systems [47,48]. Furthermore, reflecting the
diversity of biological systems, hybrid variants of these models
[49,50] and many other types of models [51–55] have been
developed to express the specificity of biological systems.

In the present work, from these models, we adopt the
cellular Potts model. The cellular Potts model has been
conventionally used for the reproduction of cell-alignment
patterns in Dd due to cell-cell adhesion [20]. This use is
due to the following advantage: in comparison with other
models, the model is relatively simple to use to express cell-cell
adhesion-inducing phenomena such as cell sorting [32]. This
advantage has enabled this model to be widely applied to
more complex systems including the final stage of fruiting
body formation [56], root growth [57], T-cell migration in
lymph nodes [58], vasculogenesis [59], and tumor growth
[60]. Furthermore, this model has the flexibility to express
polarization in cell-cell adhesion [61,62] and is therefore
appropriate for our purpose.

Here, we briefly summarize the organization of this paper.
Section II is devoted to an explanation of our model, with three
subsections: Sec. II A provides a basic description of the cel-
lular Potts model; Sec. II B explains the key of our model, the
formulation of polarized cell-cell adhesion, which is based on
the inhomogeneity of the concentration of adhesion molecules;
and Sec. II C explains the dynamics of the cell polarity that
controls cell motility. Next, in Sec. III, our simulation results
are described in four subsections as follows: Sec. III A briefly
revisits investigations of the case without polarized cell-cell

adhesion to determine the parameters of our simulation; for
the case with polarized cell-cell adhesion, Secs. III B and III C
examine the criteria for collective cell migration (mechanical
cell-cell contacts and supracellular polarity, respectively); and
Sec. III D demonstrates side-by-side contact via this model and
therewith evaluates our hypothesis. Finally, Sec. IV explains
the mechanism of side-by-side contact formation and gives
related remarks.

II. MODEL

In this section, we explain our model. This model is
constructed on the basis of the 2D cellular Potts model.

A. Cellular Potts model

This subsection describes the 2D cellular Potts model. The
two-dimensionality of this model corresponds to a scenario in
which the cells are cultured cells on a 2D medium and do not
form 3D structures; this is the case in a typical experimental
setting for Dd in the early stages of fruiting body formation.

The cellular Potts model simulates probable cell configu-
rations. First, we explain how to express cell configurations
in this model. For this explanation, let us consider the cell
configuration shown in the left panel of Fig. 2(a). In this
model, this configuration is represented by a state of the 2D
Potts model [63] on a square lattice as shown in the right
panel of Fig. 2(a). A state is denoted by {m(r)}. The brackets
{. . . } denote a set of numbers defined at all the sites r in the
square lattice. m(r) denotes the Potts state at the site r . m(r)
takes a number in {0,1,2, . . . ,NCell}, where NCell is the number
of cells, and represents the index of the cell that occupies r .
Hence, for a given {m(r)}, the domain of m(r) = m represents
the shape of the mth cell. m(r) = 0 represents the special
case that the site r is empty. In the present simulation, NCell is
assumed to be constant for simplicity. This assumption is made
for representing the early stage of the streaming of Dd, where
cells rarely proliferate and also rarely die during experiments.

Next, we go on to a description of the probability of
realization for {m(r)}, denoted as P ({m(r)}). With this
probability, one can sample for a probable cell configuration
by using Monte Carlo simulation and thereby simulate cell
configurations. P ({m(r)}) is represented by the Boltzmann
weight P ({m(r)}) ∝ exp [−βH({m(r)})]. β is an inverse
temperature, which characterizes cell motility [64]. H is
energy consisting of three terms as follows:

H({m(r)})=Ha({m(r)}) +Hv({m(r)}) +Hm({m(r)}). (1)

The first term on the right side of Eq. (1) represents both the
tension of the cell periphery and the cell-cell adhesion [64,65].
The concrete expression is given by

Ha({m(r)}) =
∑
〈r,r ′〉

Jm(r)m(r ′)[1 − δm(r)m(r ′)]. (2)

〈r,r ′〉 in the summation indicates that the summation is taken
over all adjacent site pairs. The set of adjacent sites consists of
all the nearest neighbor sites and the second-nearest neighbor
sites; this choice for adjacent sites reduces the artificial effects
of discreteness in the lattice [32].
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FIG. 2. (a) Schematic image of the correspondence between the configuration of cells and a Potts state. The left panel represents the
configuration of two cells (NCell = 2) in an empty space. The right panel shows the corresponding Potts state. L is the linear size of the system,
and r , r ′, and r ′′ are neighboring sites occupied by cell 1, the empty space, and cell 2, respectively. (b) em(r), representing the unit vector from
the central position Rm of cell m to a peripheral site r . The dashed arrow represents the direction of em(r). (c) A favorable pseudopod formation
at r given the configuration in (b) and the propulsion direction of cell m, indicated by the unit vector μm (solid arrow). (d) An unfavorable
pseudopod formation at r given the configuration in (b) and the propulsion direction of cell m, indicated by the unit vector μm (solid arrow).

δmm′ in (2) and hereinafter is the Kronecker δ,

δmm′ =
{

1

0

m = m′

m �= m′ . (3)

Hence, for each adjacent site pair r and r ′, Eq. (2) gives a
positive value only at the domain boundary, m(r) �= m(r ′).
Equation (2) gives no effect when m(r) = m(r ′).

The surface energy, Jmm′ in Eq. (2), depends on m and m′
as follows:

Jmm′ =
{

JCE

J (ρm(r),ρm′ (r ′))

m = 0 or m′ = 0

m �= 0 and m′ �= 0
, (4)

where JCE represents the tension of the cell periphery in the
empty space, and J (ρm(r),ρm′ (r ′)) is the adhesion energy,
in which ρm(r) represents the concentration of adhesion
molecules on the periphery site r of the mth cell.

To demonstrate how this dependence represents both the
tension of the cell periphery and the cell-cell adhesion, we
consider a site r occupied by cell 1 as shown in Fig. 2(a). In
this case, m(r) = 1. The site lies next to adjacent r ′, which is
an empty space represented by m(r ′) = 0. In this case, Jm(r)m(r ′)
is a constant, JCE, defined as the tension of the cell periphery in
the empty space. As shown in Fig. 2(a), the site r also lies next
to adjacent site r ′′, which is occupied by cell 2, represented by
m(r ′′) = 2. In this case, Jm(r)m(r ′′) = J (ρ1(r),ρ2(r ′′)), which
defines the adhesion energy representing the adhesion between
cells 1 and 2. Through this dependence, Eq. (2) represents both
the tension of the cell periphery and the cell-cell adhesion.

ρm(r) in Eq. (4) represents the concentration of adhesion
molecules at the periphery site r of the mth cell. Hence,
the expression for the adhesion energy, J (ρm(r),ρm′ (r ′)),
means that it is a function of the concentration of adhesion
molecules. This function form for J (ρm(r),ρm′ (r ′)) is not
the conventional representation for polarization in cell-cell
adhesion. We discuss the concrete function form separately
in the next subsection in order to avoid redundancy in this
explanation of P ({m(r)}).

The second term on the right side of Eq. (1) is introduced
to represent the empirical fact that the cell volume is almost

constant. The expression is

Hv({m(r)}) = κ

NCell∑
m=1

(Vm − V )2, (5)

where κ is the cell volume stiffness [32], Vm represents the
volume of the mth cell, namely, Vm = ∑

r δmm(r), and V

denotes the maintenance target value for the volume.
The last term on the right side of Eq. (1) represents the

self-propulsion of the cell. This term is expressed as

Hm({m(r)}) = −E

NCell∑
m=1

∑
r∈�m

μm · em(r); (6)

E is the magnitude of the self-propulsion. �m is the set of all
sites occupied by the mth cell. μm is a unit vector indicating
the propulsion direction of the mth cell [39]. For simplicity,
we call this direction “cell polarity”, following conventional
terminology [66]. In this model, μm is one of the degrees of
freedom. We postpone the explanation of the dynamics of μm

to Sec. II C in order to avoid redundancy in this explanation of
P ({m(r)}). As shown in Fig. 2(b), em(r) is a unit vector from
Rm to r , where Rm is the central position of the mth cell and
is defined as

Rm = 1

Vm

∑
r∈�m

r. (7)

More concretely,

em(r) = r − Rm

|r − Rm| . (8)

The intuitive interpretation of Eq. (6) is as follows: μm

represents the direction of the movement of the cell. Since
Dd moves by forming pseudopods [23], μm represents the
direction in which the pseudopods tend to form. To represent
this situation in Hm({m(r)}), we use the energy proportional
to the inner product of μm by the vector em(r) as shown in
Eq. (6). This represents the fact that the direction of pseudopod
formation indicated by em(r) is favorably selected as it closely
aligns with μm. For example, the pseudopod formation in
Fig. 2(c) from the state shown in Fig. 2(b) is favorable because
this formation reduces the energy. In contrast, pseudopod
formation in the opposite direction as shown in Fig. 2(d)
from the state shown in Fig. 2(b) is suppressed. Furthermore,
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FIG. 3. Schematic images of adhesion molecule concentration ρ(r) at cell periphery. Gray shades represent the adhesion molecule
concentrations on the membrane: black indicates a high concentration, and white indicates a low concentration. (a) Adhesion contacts between
the mth cell and the m′th cell. r represents a contacting site for the mth cell, and r ′ represents a contacting site for the m’th cell. (b) Excess
energy of cell-cell adhesion, J (ρm(r),ρm′ (r ′)), as a function of the product of adhesion molecule concentrations, ρm(r)ρm′ (r). (c) Unpolarized
component of adhesion molecule concentration. (d) Polarized component of adhesion molecule concentration. Vector pm represents the
polarization direction of the adhesion molecule concentration. Vector em(r) is a unit vector indicating a position r on the periphery of the mth
cell. Rm and r represent the center position of the mth cell and a position on the cell periphery, respectively.

after Rm moves in the direction of μm by the pseudopod
formation, the domain of the mth cell is contracted in the
direction opposite from μm because the contraction reduces
the energy. As a result, this term induces the self-propulsion
of the cell in the direction of μm.

Up to this point, we have defined the probability of
realization P ({m(r)}) for {m(r)}. Here, we move on to
an explanation of the simulation method for sampling cell
configurations by following P ({m(r)}). In this simulation,
the following conventional Monte Carlo sampling process is
employed. During this sampling process, a Monte Carlo step is
iterated. In this Monte Carlo step, 16 × L2 copy trials of m(r)
are sequentially generated, where L represents the linear size
of the system as shown in Fig. 2(a). For each copy trial, first
the trial site r is randomly chosen. Then, the state mtrial(r ′) of
an adjacent site r ′ is selected randomly as the copy trial state,
as in the voter model [67]. The copy of the trial state to the
site r is accepted with a certain acceptance probability, given
by the Metropolis transition probability,

P ({mtrial(r)}|{m(r)}) = min

[
1,

P ({mtrial(r)})
P ({m(r)})

]
, (9)

where {mtrial(r)} is the configuration in which m(r) in {m(r)}
is replaced with mtrial(r ′). Finally, if the copy is accepted, m(r)
is replaced with mtrial(r ′); otherwise, m(r) remains.

This Monte Carlo step is iterated to produce a series of
configurations {m(r)}, which can be sampled to obtain a
probable cell configuration. Note that the series of sampled
configurations is recognized as a time series of cell configu-
rations; therefore, the simulation also accomplishes sampling
for cell dynamics.

B. Polarized adhesion

The model in the previous subsection contains the surface
energy, expressing the cell-cell adhesion J (ρm(r),ρm′(r ′)), in
Eq. (4). Since for our purpose J (ρm(r),ρm′ (r ′)) should express
the polarized cell-cell adhesion of Dd, J (ρm(r),ρm′ (r ′)) should
be appropriately formulated to reflect the inhomogeneity in the
adhesion molecule concentrations ρm(r) and ρm′(r ′). Here, as
defined in the previous subsection, ρm(r) is the concentration
of adhesion molecules at site r on the periphery of the mth cell.

In this subsection, we develop the appropriate formulation for
J (ρm(r),ρm′ (r ′)).

To this end, we consider an adhesive contact between two
cells. We assume that the contact is formed between the mth
and m′th cells shown in Fig. 3(a). We concentrate on the contact
localized at the interface between sites r and r ′. As mentioned
above, J (ρm(r),ρm′ (r ′)) is supposed to depend on both ρm(r)
and ρm′ (r ′). Since the adhesion molecules are necessary for
both cells to form adhesive contact, we can expect that the
strength of the adhesion depends on the product ρm(r)ρm′ (r ′).
By considering only the leading linear order of the dependence,
we have the following expression for the surface energy:

J (ρm(r),ρm′(r ′)) = ηCC − ν
ρm(r)ρm′(r ′)

ρ2
s

, (10)

where a positively defined value ηCC represents the strength
of the surface energy between cells, which is independent
of ρm(r); a positively defined value ν represents the surface
energy gain for cell-cell adhesion; and ρs is the saturation
concentration for the adhesion molecule. For simplicity, we
assume that these values are independent of the cell index m.

The intuitive meaning of Eq. (10) is as follows: By the
negative sign for the second term in Eq. (10), the equation
expresses the fact that the presence of concentration product
ρm(r)ρm′(r ′) reduces the surface energy as shown in Fig. 3(b);
that is, its presence stabilizes cell-cell contact. This represents
the pair binding effect of the adhesion molecule, which
stabilizes the cell-cell contact [14].

Next, we derive the polarization part of cell-cell adhesion
on the basis of Eq. (10). We shall do this by expressing the
spatial inhomogeneity in ρm(r). For simplicity, we assume that
ρm(r) depends only on the direction from the center of the mth
cell for the periphery site r . The direction is denoted by em(r)
as in Eq. (8). In this case, we can use the following multipole
expansion (or the angular Fourier transform) [68]:

ρm(r) = ρs[φ0 + φ1 pm · em(r) + · · · ]. (11)

Here, φ0 is the constant magnitude of the unpolarized part
of ρm(r) shown in Fig. 3(c), φ1 is the constant magnitude
of the polarized part shown in Fig. 3(d), and pm is a unit
vector indicating the polarized direction of ρm(r) as shown in
Fig. 3(d). pm is the degree of freedom obeying the constitutive
equation given later. The motion of pm through the constitutive
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equation gives a coarse-grained expression of the dynamics of
ρm(r).

For simplicity, we assume that φ0 and φ1 do not depend on
the cell index m. We consider only the front-side polarization
in the concentrations and, to express this, we ignore the higher
oscillatory terms denoted by “. . . ” in Eq. (11). We also impose
the positivity of the concentration ρm(r) and maxρm(r) = ρs

to determine φ0 and φ1.
By the substitution of the expression in Eq. (11) for ρm(r)

in Eq. (10), Jm(r)m(r ′) reads

J (ρm(r),ρm′(r ′)) = JCC − JA

4
[1 + θ pm · em(r)]

× [1 + θ pm′ · em′(r ′)], (12)

where JCC = ηCC + ν is the basal adhesion that represents
the unpolarized part of the cell-cell adhesion, JA = 4νφ2

0 is the
polarized part, and θ = φ1/φ0. As the strength of the cell-cell
adhesion, we use Eq. (12) to express the polarized cell-cell
adhesion.

Here, let us quote similar previous works relating to
polarized cell-cell adhesion [61,62] in order to clarify the
differences of the formulation of adhesion in Eq. (12) from that
in previous work. In these previous works, a polarization in the
cell-cell adhesion for a biaxial anisotropy was introduced into
Jmm′ in a heuristic way [61,62]. The polarization successfully
reproduces the convergent extension during the development
of Xenopus and Drosophila. In these cases, the regions of high
adhesion molecule concentration exist on two opposite sides of
the cell. Thus, the scenario for Xenopus and Drosophila differs
from that for Dd because the polarized cell-cell adhesion of
Dd has only a single high concentration region, and it lies on
the front side of the cell as shown in Fig. 1(a). The situation in
the cases of Xenopus and Drosophila is intuitively expected to
trivially reproduce a side-by-side contact when regions of high
concentration lie on the two lateral sides of the cell. However,
this mechanism of side-by-side contact is not equivalent to
that in the case of Dd. Therefore, we needed the formulation
in Eq. (12) to express the polarized cell-cell adhesion in Dd.

Finally, we consider the equation of motion for pm. As
mentioned above, this paper aims to clarify the effects of
cell-cell adhesion polarized in the front side of the cell as
shown in Fig. 3(a). For this purpose, we consider the simplest
constitutive equation,

pm = μm. (13)

Hence, we identify the dynamics of μm as that of pm.
Here, we emphasize the difference between the constitutive

equation (13) for pm and that in previous works [61,62]. In the
previous works, the polarization in the adhesion is aligned with
the direction of the cell’s elongation; the alignment feature is
not equivalent to cell motility. In contrast, Eq. (13) directly
couples the polarization in cell-cell adhesion, pm, with the
self-propulsion direction μm, which is strongly related to cell
motility.

C. Dynamics of cell polarities

The self-propulsion of a cell in our model is formulated
by using Eq. (6). Equation (6) contains the cell polarity μm,
which is a degree of freedom. In this subsection, we formulate

the equation of motion for μm. As is well known, Dd exhibits
a persistent random walk [69,70], where the direction of the
cell’s motion is maintained for a duration τ . To reproduce this
walk, a normalized mean velocity over τ is conventionally
employed for μm [7,20,58]. A possible realization of the mean
velocity expression is

μm ∝
∫ t

−∞
dt ′χ (d Rm/dt ′) exp[(t ′ − t)/τ ]/τa, (14)

where d Rm/dt is the derivative of Rm in Eq. (7) with respect
to time t , the unit of time t is set to a single Monte Carlo step,
χ is the ratio of the change in μm to the change in d Rm/dt ,
and a is the lattice constant.

When the equation of motion (14) is solved numerically, a
history of the d Rm/dt must be kept. By using the correspond-
ing differential formula, however, one can reduce the memory
requirement. By the differentiation of Eq. (14), we obtain the
differential formula,

dμm

dt
∝ 1

τ

[
χ

a

d Rm

dt
− μm

]
. (15)

This formula produces a change in the norm of μm as time
advances; this is contradictory to the definition of the unit
vector μm. One can solve this issue by setting the part parallel
to μm in the right side of Eq. (15) to zero. To do this, we
subtract μm(χd Rm/adt · μm − 1)/τ from the right side of
Eq. (15), and then we have

dμm

dt
= χ

τa

d Rm

dt
− χ

τa

(
d Rm

dt
· μm

)
μm. (16)

In the present work, we use this equation of motion for
μm. Note that this equation is essentially equivalent to the
corresponding equation used previously [71].

For ease of integrating Eq. (16) in the present simulation,
the adiabatic approximation is assumed as follows: Eq. (16)
is integrated numerically by the Euler method in the polar
coordinate expression corresponding to μm. The integration
is carried out only between two consecutive Monte Carlo
steps. This approximation is based on the assumption that
μm varies very slowly during a single Monte Carlo step. This
approximation means that μm is adiabatically decoupled from
the copy process for Potts states in the Monte Carlo step. That
is to say, all changes in m(r) in a single Monte Carlo step occur
simultaneously in the time scale of the change in μm. Since
the time scale of μm is τ/χ , this approximation is justified for
large values of τ/χ .

For the integration of Eq. (16), dμm/dt strongly depends
on the timing of Rm used in the equation. To determine the
timing, we further introduce the approximation that the time
scale of the change in Rm is of the same order as that of μm. For
consistency between these time scales, we assume that χ is of
the order of unity. Furthermore, Rm is assumed to be constant
during the Monte Carlo step. Hence, Rm is calculated only
once [using Eq. (7)] for each Monte Carlo step. We carry out
this calculation before the numerical integration of Eq. (16).
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III. NUMERICAL SIMULATION

A. Simulation conditions

Since the present paper addresses collective cell migration,
we start our study from its realization in our model. For this
purpose, we need to specify the strength of the polarized cell-
cell adhesion JA, which effects the collective cell migration.
To specify the strength, we carry out a search for suitable
parameter values, examining steady states for criteria for
collective cell migration. As criteria, we adopt a simple
definition of collective cell migration from Ref. [39] for
convenience. The definition consists of the following two
conditions: The first condition is the existence of mechanical
cell-cell contacts. In our model, mechanical contact simply
corresponds to contact between cells. The second condition is
the presence of supracellular polarity and cytoskeleton orga-
nization. In our model, the supracellular polarity corresponds
to the intercellular order in the cell polarity μm. In our search
for parameter values, we utilize these two conditions as an
indicator of collective cell migration.

In this subsection, we determine the other simulation
parameters used in this parameter value search. To reduce
calculation costs in this determination, we specify the typical
steady state of JA = 0 and determine the corresponding typical
parameters. These typical parameters are used in the parameter
value search described in the subsections that follow.

Let us begin by determining the size parameters for this
simulation and the boundary condition. The size of the
simulation needs to be determined in order to control the
calculation cost. Since the calculation cost strongly depends
on cell density, an appropriate condition for cell density should
be clarified. Therefore, we discuss the appropriate condition
for cell density. In the present work, we have an interest in a
nontrivial cell-alignment pattern in a steady state. Therefore,
low cell densities are preferable to avoid highly confluent states
having only trivial cell alignments, such as simple aggregation.
In contrast, to reduce the calculation cost of the steady state,
high cell densities are preferable; this is because the relaxation
time for cell-cell contact increases as cell density decreases,
giving rise to a larger calculation cost. To satisfy these two
opposing conditions, adequate cell densities are the most
preferable.

In order to establish a value for adequate cell density, we
choose the size parameters for the simulation: the number of
cells, NCell = 256; the maintenance target for the cell volume,
V = 64; and the system size, L = 196. Since the correspond-
ing volume fraction NCellV/L2 ∼ 43%, highly confluent states
covering the whole system are avoidable. In our observation,
the cell density relaxes quickly to a steady-state number of
cell-cell contacts. The typical relaxation time scale is of the
order of 104 Monte Carlo steps at most for typical parameters
of our simulation. To obtain the steady state, we employ 105

Monte Carlo steps and then 5 × 104 Monte Carlo steps to
average observables. These periods are much longer than the
relaxation time and therefore allow a steady state to be reached.
When we use parameter values that give rise to much longer
relaxation times, we note these exceptions in the text.

As the boundary condition of the system, we use a periodic
boundary condition so that the cells can move freely through
the boundary. This type of boundary condition is useful to

avoid the suppression of collective cell migration via the
collision of cells with the boundary.

Next, we determine the parameter values for the unpolar-
ized part of cell-cell adhesion. In the unpolarized part, the ratio
of the adhesion to the periphery tension, JCC/JCE, is the main
determinant of the steady state. Conventionally, instead of this
ratio, Glazier and Graner’s surface tension [64,65],

γ = 1 − 1

2

JCC

JCE
, (17)

is used as a control parameter. Here, we normalize the γ

previously given by JCE to simplify the expression. Since the
unpolarized part strongly affects the steady state of mechanical
cell-cell contact, we determine the typical γ for reaching
typical steady states of mechanical contacts.

To determine this value, we revisit these steady states,
which have been well studied previously for the unpolarized
case (JA = 0) [33,64,65]. At the zero-temperature limit, cells
contact each other when γ > 0 and do not make contact when
γ < 0. At finite temperatures, the steady states are as shown
in Figs. 4(a)–4(f). Here, we set JCE = 2 and consider three
values of γ . For γ = 0.25 (JCC = 3), the snapshots are shown
in Figs. 4(a) and 4(d); the figures show that cells isotropically
form contacts with each other and form aggregations. For
γ = 0 (JCC = 4), isotropic contacts seem to be almost stable
and are only slightly destabilized as shown in Figs. 4(b) and
4(e). For γ = −0.25 (JCC = 5), cells disperse and have almost
no contact with other cells, as shown in Figs. 4(c) and 4(f),
except for incidental unstable contacts due to the high cell
density.

From these results, it is concluded that, at very near γ = 0,
the cells switch between contacted and uncontacted states.
These two states are the known typical states for mechanical
cell-cell contact for unpolarized cell-cell adhesion (JA = 0).
We hereinafter employ these three values of γ for the parameter
value search.

Lastly, we determine the values for parameters related to
cell motility. The constants for the volume stiffness κ and
self-propulsion E are unity in the present simulation; these
settings establish a condition in which cells easily move by
their deformation. We additionally employ τa/χ = 10. Our
simulation result does not crucially depend on this value,
excluding extremely small values where the discretization of
Eq. (16) induces a numerical instability.

The inverse temperature β also significantly affects cell
motility [64]. To obtain highly mobile cells, which mimic
starved Dd, we should use a low β. Therefore, we employ
values of β equal to or less than unity in order to incorporate
high cell motility. However, as is already known, a β value
that is too low gives rise to the unrealistic destruction of the
cell. To obtain a sufficiently low value of β to allow highly
mobile cells to be stably simulated, we check the dependence
of steady states on β. For β = 0.1, a roughness in the cell
periphery appears as shown in Figs. 4(a)–4(c); in this case,
the cells are partially destroyed. To reduce this destruction of
cells, we employ values of β greater than or equal to 0.1.
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(a) (b) (c)

(d) (e) (f)

(γ = 0.25, β = 0.1) (γ = 0.0, β = 0.1) (γ = -0.25, β = 0.1)

(γ = 0.25, β = 1.0) (γ = 0.0, β = 1.0) (γ = -0.25, β = 1.0)

FIG. 4. Snapshots of steady states for (a) γ = 0.25 and β = 0.1, (b) γ = 0 and β = 0.1, (c) γ = −0.25 and β = 0.1, (d) γ = 0.25 and
β = 1.0, (e) γ = 0 and β = 1.0, and (f) γ = −0.25 and β = 1.0. Other parameters are given in the main text. Black regions represent empty
spaces, and other colored regions represent cells, with different colors representing different cells. The white arrow at each cell’s center indicates
the direction of μm.

B. Mechanical cell-cell contact

From here, we move on to the confirmation of collective
migration of cells with polarized cell-cell adhesion (JA > 0).
In this subsection, we quantitatively examine the existence
of mechanical cell-cell contacts, which is the first condition
of collective cell migration. In particular, we clarify the JA

dependence of this existence. To quantitatively examine the
existence of mechanical cell-cell contacts, we calculate a
related value:

nCC = 1

NCell

∑
〈r,r ′〉

δm(r)m(r ′)[1 − δm(r)0][1 − δ0m(r ′)]. (18)

On the right side, δm(r)m(r ′) restricts the adjacent sites to those
that are occupied by different cells or by both a cell and the
empty space. In addition, 1 − δm(r)0 excludes the latter case.
Hence, nCC is the total number of site pairs that represent
cell-cell contacts. Therefore, nCC is available as a probe for
the existence of mechanical cell-cell contacts.

To calculate the JA dependence of nCC, we carry out
simulations for values of JA from 0 to 4.0 for the cases of
γ = −0.25 and γ = 0. For the case of γ = 0.25, we consider
JA from 0 to 3.0 because the cell is unstable at JA � 3.0.
We start the simulations at JA = 0.0. As the initial state of
{m(r)} for JA = 0, we choose a square lattice array of cells
without cell-cell contacts. For the initial state of μm, we choose
a random alignment. To obtain a steady state, we perform
a relaxation simulation for 105 Monte Carlo steps. Then,
we calculate the time-averaged value of nCC during 5 × 104

Monte Carlo steps. After the completion of the time-average
calculation, we increase JA by the incremental value of 0.2
and repeat the same procedure for the case of JA = 0.2. The

same procedure is repeated for incrementally larger values of
JA up to the upper bound.

In this simulation, we employ the largest value of θ in
Eq. (12), namely θ = 1. This choice of θ aims to maximize
the effect of polarized cell-cell adhesion so that it can be easily
observed. This may lead to an overestimation of the effect.
However, the choice is effective in the present situation in
that we lack quantitative data about polarization in the actual
system.

The calculated nCC values are plotted in Figs. 5(a)–5(c).
For the case of γ = 0.25, shown in Fig. 5(a), nCC takes large
values, ranging from 80 to 100. The values are more than
twice the perimeters of the cells in our estimation, on which
the number of periphery sites are about 2πr 
 30 for a circular
cell shape with cell volume V = πr2 = 64. This large value
reflects the fact that cells isotropically form cell-cell contacts
and form a simple aggregation as shown in Figs. 4(a) and 4(d).
nCC values plotted for β = 0.1, 0.2, 0.3, 0.5, and 1.0 become
slightly larger as β decreases. This is because the cell periphery
becomes rougher as β decreases, and thereby the cell periphery
available for cell-cell contact effectively elongates. nCC also
becomes slightly larger as JA increases, simply because the
increase in JA promotes cell-cell contact. The dependencies
of nCC on these parameters are weak; this indicates that the
aggregation is stable over changes of these parameters. Even
for a γ value of 0, nCC remains almost constant as shown in
Fig. 5(b). In this case, cells are also expected to form cell-cell
contacts almost isotropically.

When γ further decreases to γ = −0.25, nCC values for
small values of JA are small in comparison with those at
γ = 0.25 and γ = 0, as shown in Fig. 5(c). In particular,
nCC is close to 0 for high values of β, indicating an absence
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FIG. 5. Time-averaged nCC as a function of JA for (a) γ = 0.25, (b) γ = 0, and (c) γ = −0.25. The data are shown by a solid line for
β = 0.1, a dashed line for β = 0.2, a dotted line for β = 0.3, a dashed-dotted line for β = 0.5, and a dashed-double-dotted line for β = 1.0.
The other parameters are given in the main text. In (a), the data are not shown for JA > 3.0 because the cells are unstable.

of cell-cell contacts in this case. Furthermore, in contrast to
γ = 0, at γ = −0.25, nCC takes values only up to 60 even
when JA increases to 4.0. In this case, the result implies the
possibility that cells form partial contacts with other cells.
A partial contact is expected to reflect a nontrivial style of
cell-cell contact. The contacts may stabilize a cell alignment,
which is not shown in Figs. 4(a)–4(f).

In summary, mechanical cell-cell contacts exist except in
the case of negative γ , high β, and small JA. In particular, only
in the case of negative γ and large JA do we find partial contact.
In this case, we expect a characteristic style of cell-cell contact
induced mainly by the polarization part of cell-cell adhesion.
This is reasonable because the unpolarized part does not
contribute to the stabilization of cell-cell contacts for negative
values of γ . We also expect that high β is preferable for
observing the characteristic style of cell-cell contact because
the styles of partial contact become unclear owing to the
roughening of the cell periphery at low values of β. Therefore,
with regard to the aspect of mechanical cell-cell contact, the
parameter values of negative γ , high β, and large JA provide
a good candidate case for cells to form a characteristic style of
cell-cell contact induced by polarized cell-cell adhesion.

C. Supracellular polarity

In this subsection, we proceed to the examination of the
second condition of collective cell migration. This condition
is the formation of supracellular polarity and cytoskeleton
organization. In the present model, supracellular polarity
corresponds to the multicellular order of cell polarity μm. To

quantitatively examine this order, we define an order parameter
for cell polarity M by

M = 1

NCell

∣∣∣∣∣
NCell∑
m=1

μm

∣∣∣∣∣. (19)

In a perfectly polarity-ordered state, where all μm’s align in the
same direction, M is unity. In the disordered state of μm, M is
small. Therefore, M is useful as a probe for the multicellular
order of μm. We calculate the JA dependence of M to obtain
adequate values of JA for realizing collective cell migration.

The calculated M values are plotted in Figs. 6(a)–6(c) for
the same conditions as were used for the calculation of nCC.
M takes values larger than 0.5 and is almost independent of
γ , β, and JA. This result shows that a multicellular order of
μm appears for any parameter values used in our simulations.
Therefore, the second condition of collective cell migration
will usually be satisfied in the parameter ranges used in our
simulation.

Note that multicellular order exists even in the case without
cell-cell contacts. This is already known to be a common
feature for self-propelled particles with steric interactions
[72–75], a deformable shape [44,76], or an elastic core [77].

To obtain further insights into the steady state of μm, we
investigate the spatial fluctuation of μm. With this multicellular
order, fluctuations in μm are expected to be suppressed. The
suppression is seen in the correlation function of μm as a rapid
decay [78–80]. To check this expectation, we consider the
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FIG. 6. The time-averaged order parameter M as a function of JA for (a) γ = 0.25, (b) γ = 0, and (c) γ = −0.25. The data are shown by
a solid line for β = 0.1, a dashed line for β = 0.2, a dotted line for β = 0.3, a dashed-dotted line for β = 0.5, and a dashed-double-dotted line
for β = 1.0. The other parameters are given in the main text. In (a), the data are not shown for JA > 3.0 because the cells are unstable.
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correlation function

g(r) = 1

N (r)

∑
〈m,n〉

μm · μnδ(|Rm − Rn| − r) − M2. (20)

Here, 〈m,n〉 indicates the summation over all cell pairs, and
N (r) represents the number of cell pairs having an intrapair
distance of r . The calculated correlation function values are
shown in Figs. 7(a) and 7(b). As expected, the correlation
function decays at around ten cells for γ = 0.25 and at a
few cells for γ = −0.25. The decay in these curves is almost
independent of β and JA. This indicates that the formation of
multicellular order is independent of the parameters.

By combining these observations with the results in the
previous subsection, we conclude that both conditions of
collective cell migration are satisfied, except in the cases of
γ = −0.25, low β, and small JA, at which mechanical contacts
are not formed. From these results, we can successfully specify
JA for observing collective cell migration. In particular, we
previously suggested that cases with negative γ , high β, and
large JA are candidates for cells to exhibit a characteristic style
of cell-cell contact induced by polarized cell-cell adhesion. In
the next subsection, we concentrate on these cases and examine
them for the characteristic style of cell-cell contact.

D. Contact due to polarized adhesion

Finally, we examine the characteristic style of cell-cell
contact by polarized cell-cell adhesion. In particular, we
attempt to show that the style is side-by-side contact resulting
from the synergy between polarized cell-cell adhesion and cell
motility. This style is expected only for negative γ and high
β as discussed previously. Therefore, we employ γ = −0.25
and β = 1.0. The other model parameters are the same as those
given in the previous subsection.

Our main purpose is to examine whether polarized cell-
cell adhesion induces side-by-side contact, as is suggested
experimentally [26,30]. Therefore, we examine the possibility
of side-by-side contact. To do this, we define the following
quantity related to lateral contact:

nL = 1

NCell

∑
〈r,r ′〉

δm(r)m(r ′)[1 − δm(r)0]

× [1 − δ0m(r ′)]w(m(r),r)w(m(r ′),r ′), (21)

w(m,r) = 1 − [em(r) · μm]2. (22)

Lateral contact is defined as cell-cell contact perpendicular to
the cell polarity μm. The quantity nL is the total number of site
pairs having cell-cell contacts, weighted by w(m,r). Since the
side-by-side contact shown in Fig. 1(c) has a larger value of
w(m,r) than other styles of contacts, this weight is useful for
eliminating the contribution of other styles of cell-cell contact.
As a result of this elimination, nL is available as a probe for
the formation of side-by-side contacts.

In this examination, we calculate the dependence of nL on
JA in order to learn the effect of the polarized part of cell-cell
adhesion. For JA, we sweep its value in the same way as in the
previous subsections. In addition, we carry out a comparison
of the frequency of side-by-side contacts with the frequency
of other styles of contact in order to effectively evaluate the
predominance of side-by-side contact. To do this, we also
calculate nNL = nCC − nL. These values are averaged over
5 × 104 Monte Carlo steps and plotted in Fig. 8. For small JA,
both nL and nNL take similar small values. As JA increases up
to 1, their values remain small. Then, as JA further increases,
nL increases more rapidly than nNL. In the inset, the fractions
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“×” markers) as a function of JA. The data are calculated for β = 1.0
and γ = −0.25. The other parameters are given in the main text. The
inset shows the relative proportions of nL and nNL.
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(a) (b) (c) (d)

FIG. 9. Snapshots of steady states for (a) JA = 0, (b) JA = 0.5, (c) JA = 1.0, and (d) JA = 4.0. Other parameters are given in the main
text. The black region represents m = 0, and other colored regions represent cells, with different colors representing different cells. The white
arrow at each cell’s center indicates the direction of μm.

nL/nCC and nNL/nCC are shown. For small JA, nL/nCC is
smaller than nNL/nCC. As JA increases, nL/nCC increases and
becomes larger than nNL/nCC for JA � 1. This indicates that
the polarized part of cell-cell adhesion promotes the formation
of side-by-side contact.

Note that the increase in nL with increasing JA is gradual.
Thus, there is no phase transition from the state of uncontacted
cells to the state with side-by-side contacts; the transition
between the two states occurs as a crossover. This contrasts
with the discontinuous transition between the contacted state
and the uncontacted state around γ 
 0. The difference may
reflect the one-dimensional characteristics of cell alignment
through side-by-side contacts. That is, when cells align in only
one dimension, no long-range order in finite temperatures is
expected from the low dimensionality [81,82], and, therefore,
no phase transition is expected.

To directly confirm the formation of one-dimensional cell
alignment with side-by-side contact, we show snapshots of
the configurations in Figs. 9(a)–9(d). As shown in Figs. 9(a)
and 9(b), respectively, almost no cell-cell contacts for JA = 0
or JA = 0.5 are observed. In contrast with these cases, in
the case of JA = 1.0, shown in Fig. 9(c), cells align in the
direction perpendicular to their cell polarity and form side-
by-side contacts. The side-by-side contacts are observed up to
JA = 4.0 as shown in Fig. 9(d). Furthermore, as expected from
the above, cells clearly form a one-dimensional short lateral
array with increasing JA.

Up to this point, we have focused only on the effect of
polarized cell-cell adhesion on the formation of side-by-side
contact. In order to show that contact formation is a synergetic
effect between cell motility and polarized cell-cell adhesion,
we now go on to focus on cell motility. To examine the
effect of cell motility, we calculate nL and nNL as a function
of E.

Before performing this calculation, we need to consider the
difficulty of simulation for small E. In the case of E = 1, nL

and nNL rapidly relax, with a typical relaxation time scale [33].
Unfortunately, the transition from relaxation to the steady state
is very slow for E 
 0 because of a power law relaxation in the
Lifshitz-Slyozov growth of cell aggregation [83]. Therefore, a
systematic calculation of small values of E is difficult to carry
out. In fact, nL and nNL for the same parameters with E 
 0 do
not relax in our calculation time. To overcome this difficulty,
we use β = 0.5 to boost the relaxation. As a side effect of this
boosting, the decreasing of β from 1.0 to 0.5 makes it difficult
to visually distinguish the side-by-side contact from other
styles. To solve this issue, we employ the relative proportions

of nL and nNL in nCC as a probe for the effect of E. In addition,
to enhance the detectability of the effect of E, we use JA = 4.0,
which readily induces side-by-side contact.

We calculate the dependence of nL and nNL on E by a
series of simulations while sweeping through values of JA, as
in previous subsections. Here, we use an incremental value
of 0.04 for increasing E and set an upper bound of 1.0. The
calculation result as a function of E is shown in Fig. 10.
For small values of E, cells may not sufficiently relax to a
steady state because of the reason discussed above. However,
they form small clusters like those in Fig. 4(c), and, thereby,
nL and nNL relax to a value comparable to those for large
values of E. The relative proportions are shown in the inset.
The proportion of nL increases in comparison with that for
nNL; this suggests that cell motility promotes the formation
of side-by-side contact. This result implies a synergy between
polarized cell-cell adhesion and cell motility in side-by-side
contact formation.

IV. SUMMARY AND DISCUSSION

In the present paper, we have examined theoretically the for-
mation of side-by-side contact by cells with polarized cell-cell
adhesion in collective cell migration. We constructed a model
expressing polarized cell-cell adhesion on the basis of the
cellular Potts model and carried out numerical simulations of
collective cell migration. We have demonstrated the formation
of lateral arrays of cells with side-by-side contacts in a certain
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(a) (b) (c) (d)

FIG. 11. Schematic images to explain side-by-side contact formation. The arrows in the cells represent cell polarity. Darkened areas indicate
regions with high concentrations of cell-cell adhesion molecules. The sawtooth shape at the front of the cell indicates pseudopods. (a) Cells
with front-to-front contact. (b) Cells whose front-to-front contact is destabilized by the motility of the cells. (c) Cells whose cell polarity and
direction of movement are aligned in the same direction. (d) Cells that make side-by-side contact at their fronts.

case even though the intuitive expectation is that polarized
cell-cell adhesion would induce front-to-front contacts of cells
as shown in Fig. 1(c).

Let us discuss the mechanism of side-by-side contact
formation. We propose that this side-by-side contact formation
essentially results from a synergy between cell motility and
polarized cell-cell adhesion as follows: If front-to-front contact
were stable as expected, side-by-side contact would not occur.
In reality, however, front-to-front contact is unstable in the
case of a highly mobile cell. To demonstrate this instability,
we consider the front-to-front contact of two cells as shown in
Fig. 11(a). As expected, if the cell motility is strong enough
to break the adhesion contact between the cells, the motion of
the two cells destabilizes the front-to-front contact by making
the cells move in opposite directions, as shown in Fig. 11(b).
In addition, by analogy with the results of self-propelled
particles [74,75], the cells are expected to align according
to the direction of their motion as shown in Fig. 11(c).
In this alignment, polarized cell-cell adhesion stabilizes the
side-by-side contact near the front side of the cell as shown in
Fig. 11(d), and hence the lateral alignment appears. As a result,
the cells form the side-by-side contact shown in Fig. 9(c).

Side-by-side contact is also observed in experiments
[26,30]. This side-by-side contact is an observation intuitively
peculiar to the case of front-side polarized cell-cell adhesion
[19]. Contrary to the intuitive expectation, our result supports
the counterintuitive observation on the basis of the front-
side polarization. Therefore, this work may bridge the gap
between the polarization in the cell-cell adhesion and the cell
alignment that are independently observed in the two different
experiments.

We should note that our setting does not agree perfectly with
the scenario in the above experiment in which side-by-side
contacts were observed. In that experiment, cells exhibited

aggregation by chemotaxis [26,30]. Since chemotaxis is not
considered in the present paper, cell migration in our model
does not rigorously express the effects of chemotaxis in the
corresponding experiments. However, if we assume that the
chemotaxis effect only caused cells to be attracted to each
other and thereby made them condense, the condensation is
also realized artificially in our simulation; that is, the effect
of the chemotaxis is eventually realized in our simulation by
our choice of model parameter values. In this case, our result
gives a candidate mechanism for the experimental observation
on the basis of the polarized cell-cell adhesion.

As for side-by-side contact, a quantitative analysis based on
experimental data is currently lacking. To clarify the effect of
polarized cell-cell adhesion, a comparison of the result of this
simulation with experimental results would be meaningful.
For this purpose, an experiment without chemotaxis effects
would be preferable in order to examine the effects of pure
polarized cell-cell adhesion separately from the effects of
chemotaxis. To close this paper, we suggest the possibility
that such an experiment could make use of the kinase-inactive
(KI) mutant of Dd [84,85]. Using this mutant, it is possible to
perform experiments at high concentrations of cells without
the involvement of chemotaxis effects [86]. Thus, if conditions
for cells in the early streaming stage are realized in the future,
it may make possible a quantitative experimental comparison
with this work.
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