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We investigate the formation of stable ecological networks where many species share the same resource. We
show that such a stable ecosystem naturally occurs as a result of extinctions. We obtain an analytical relation for
the number of coexisting species, and we find a relation describing how many species that may become extinct as
a result of a sharp environmental change. We introduce a special parameter that is a combination of species traits
and resource characteristics used in the model formulation. This parameter describes the pressure on the system
to converge, by extinctions. When that stress parameter is large, we obtain that the species traits are concentrated
at certain values. This stress parameter is thereby a parameter that determines the level of final biodiversity of
the system. Moreover, we show that the dynamics of this limit system can be described by simple differential
equations.
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I. INTRODUCTION

Thermodynamics and statistical physics allow us to de-
scribe the equilibrium states of systems consisting of many
particles with a few variables. This approach is very effective
for many physical and chemical applications, particularly
when we are dealing with closed systems. It would be very
tempting to find such reduced macroscopic descriptions for
large ecological and economic systems.

Recently [1], a very reduced description was proposed for a
class of ecological models. It is based on an analog of the mean-
field theory, and it aims to describe possible bifurcations. In the
present paper, we suggest a variant of a reduced description
for another large class of ecosystems, where many species
compete for a few resources. Our second goal is to consider one
of the most intriguing puzzles in ecosystem theory, namely the
biodiversity problem: why can such a large number of similar
species share the same habitat, and how do we estimate this
number? A typical example is an aquatic ecosystem where
many different phytoplankton species coexist. The principle
of competitive exclusion [2,3] asserts that different species
sharing the same resource cannot coexist, and it predicts that
an assembly of competing species will converge to a single
species. In general, competition models show that the number
of species that can coexist in equilibrium cannot be greater
than the number of limiting factors [4,5]. However, hundreds
of species of phytoplankton coexist despite the fact that nitrate,
phosphate, light, and carbon are the only resources regulating
phytoplankton growth [6,7]. It is not clear why this is, although
the problem has attracted a great deal of attention among
ecologists (see, for example, [8–10], among many others),
and they have suggested numerous different approaches to
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that problem based on game theory, chaos, stochastics, space
inhomogeneities, turbulence, etc.

In this paper, we consider a model of an ecological system in
which many species share the same resource. Our dynamical
equations are close to the equations considered in [11], but
we extend that model to take into account species extinctions
and self-limitation effects (which are important, in particular,
for plankton populations [7]). There are a number of works
devoted to evolution in a multispecies context such as food
webs (see, for example, [12–15]) as well as the effect of species
extinctions [16,17]. These papers have used the Lotka Volterra
model, in which species interactions slowly evolve over time
(this may be connected with foraging [16] or an adaptation of
species behavior), and species extinctions are possible when
the abundances attain a critical threshold. In our model, all of
the parameters are random. However, contrary to [16,17], they
are fixed in time, and the primary effect on evolution is species
extinctions.

The main results are as follows. We introduce a specific
numerical characteristic, which we will call the stress pa-
rameter Pstress. It is a natural dimensionless multiplicative
combination of some main parameters involved in the model
formulation, namely the resource turnover rate, the maximum
supply of the resource, the self-limitation coefficient, and the
averaged specific growth rates. The stress parameter appears,
in a natural way, as a result of a model rescaling, and it can be
interpreted as a magnitude of selection pressure on ecosystem
species induced by the interaction between the ecosystem and
its environment. For example, Pstress is large if the resource
amount or the resource turnover rate is small. For large
values of the stress parameter, the model exhibits an effect of
convergence to similarity as in the competitive Lotka-Volterra
systems studied earlier [18]. In contrast to [18], we obtain a
complete analytical description of the system behavior. We
show that the model with or without extinction thresholds

2470-0045/2017/95(3)/032413(10) 032413-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevE.95.032413


VLADIMIR KOZLOV, SERGEY VAKULENKO, AND UNO WENNERGREN PHYSICAL REVIEW E 95, 032413 (2017)

is sharply different. Namely, the simpler model without a
critical extinction threshold exhibits a global stability, which
occurs when all positive trajectories converge to the same
equilibrium independent of the initial state. The model with
extinction dynamics is fundamentally nonpredictable. The
trajectories tend to different equilibria, and these final states
depend on initial data. The biodiversity level, which we
observe after a long evolution, can be expressed via the
initial number of species, the stress parameter, and other
ecosystem characteristics in an explicit way. This convergence
to similarity in a species trait can be called a “concentration
effect.” However, this concentration effect does not mean that
all species are completely identical: other traits defined by
species parameters can still differ.

The concentration effect leads to interesting phenomena.
Let us suppose that initially an ecosystem contains a number
of species with random parameters, and let us consider the limit
system, which is a result of a long evolution. We compare how
a sharp change in environment can affect the initial and final
systems. With our analytical relations one can estimate the
number of species that may become extinct. The limit system
is more stable than the initial one.

The limit ecosystem, which arises as a result of a long
evolution, has interesting properties: its dynamics is governed
by a simple differential equation of second order. This equation
describes a nonlinear oscillator with a friction and a memory.
If the friction is small and the memory is negligible, the
dynamics of this oscillator is defined by a Hamiltonian
system. The formation of this universal limit system is a
result of species extinctions and a selection pressure on some
species parameters, namely those that are important for species
survival.

II. POPULATION DYNAMICS

We consider the following system of equations:

dxi

dt
= xi[−ri + φi(v) − γi xi], i = 1, . . . ,M, (1)

dv

dt
= D(S0 − v) −

M∑
i=1

ci xi φi(v), (2)

where

φi(v) = ai�(v,Ki), �(v,K) = v

Ki + v
. (3)

Here xi are species abundances, M is the number of species,
v is the resource amount, D is the resource turnover rate,
and S0 is the maximum supply of resource v. In total, there
are five species-specific parameters: ri are species mortality,
ci > 0 is the fraction of resource consumption by individuals
of the i species, γi > 0 defines species-specific self-limitation,
the coefficients ai > 0 are species-specific growth rates, and
Ki > 0 are species-specific resource constants indicating a
reduction of resource effect by half. For γi = 0, this system
has been used to study the plankton paradox [11]. Following
[7], we assume γi > 0 since it is known that self-limitation is
essential for large ecosystems [19,20] and that plankton and
plant ecosystems can induce effects leading to self-limitation
[7]. We complement the system (1) and (2) with the initial

conditions

xi(0) = x̄i , v(0) = v0. (4)

III. GLOBAL STABILITY FOR THE MODEL
WITHOUT EXTINCTIONS

Here we show that the Cauchy problem (1), (2), and (4) has
a positive solution for all positive Cauchy data. Furthermore,
we study both the stability and large time behavior of solutions.

Proposition I. Solution (x(t),v(t)) of (1) and (2) with initial
data v(0) � 0,x̄i = xi(0) � 0 is defined for all positive t , and
it satisfies the estimates

0 � xi(t) � x̄i exp(āi t)

1 + x̄iγi ā
−1
i [exp(āi t) − 1]

, (5)

where āi = ai − ri , and

0 � v(t) � S0[1 − exp(−Dt)] + v(0) exp(−Dt). (6)

Proof. Since φi(v) < ai , we have xi(t) � yi(t), where yi(t)
is the solution of the Cauchy problem,

dyi

dt
= yi(−ri + ai − γiyi), yi(0) = x̄i .

Solving this equation, we obtain (5). Estimate (6) follows from
the non-negativity of the term

∑M
i=1 ci xi φi(v).

A. Global stability

Let

Xi(v) = (�(v,Ki) − pi)+, pi = ri/ai, (7)

where z+ = max{z,0}, and let also

FM (v) = FM (v,b,K,p) =
M∑
i=1

Ri(v,b,K,p),

where

Ri(v,b,K,p) = bi�(v,Ki)Xi(v)e, bi = ciγ
−1
i a2

i . (8)

Here the quantity Ri can be interpreted as a consuming rate of
the ith species, and FM is the sum of all consuming rates.

Here a=(a1, . . . ,aM ), b=(b1, . . . ,bM ), p=(p1, . . . ,pM ),
and K = (K1, . . . ,KM ). If v is a non-negative root of the
equation

D(S0 − v) = FM (v,b,K,p), (9)

then

xi = aiγ
−1
i Xi(v), i = 1, . . . ,M, (10)

and v is an equilibrium point of the system (1) and (2). We
assume here and in what follows that

max
i

(�(S0,Ki) − pi) > 0. (11)

Then the function FM is non-negative for v � 0, FM (v) = 0,
and FM (S0) > 0 due to (11). This implies that Eq. (9) has a
unique non-negative solution, which belongs to the interval
(0,S0). We denote this solution by veq.
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Let us rewrite Eq. (9) in the following way. Consider first
the relation

v = S0 − 1

D

M∑
i=1

bi�(v,Ki)Xi(w) = G(v,w),

with w ∈ [0,S0]. Since G(v,w) is decreasing in w from S0

to something that is smaller than S0, for each w the above
equation has a unique solution v = V (w). One can verify that
the function V is nondecreasing and continuous, V (0) = S0

and V (S0) > 0. We can consider (9) as the following fixed-
point equation:

v = V (v), v ∈ [0,S0]. (12)

To describe the large time behavior of the system (1) and (2),
we consider the following iterative procedure of solving (12):

v(k+1) = V (v(k)), k = 0,1, . . . , and v(0) = 0.

Then v(1) = S0, and v2 is the solution to

v(2) = G(v(2),S0),

which is positive due to assumption (11). Since V is nonde-
creasing, we have

0 = v(0) < v(2) � v(4) � · · · · · · � v(3) � v(1) = S0.

We set

v̂ = lim
k→∞

v(2k) and v̌ = lim
k→∞

v(2k+1).

Clearly,

0 < v(2) � v̂ � veq � v̌ � S0. (13)

Moreover,

v̂ = S0 − 1

D

M∑
i=1

bi�(v̂,Ki)Xi(v̌) (14)

and the same relation holds if v̂ and v̌ are exchanged. Now we
can formulate our main result about the large time behavior of
solutions to (1) and (2).

Theorem I. Let (x(t),v(t)) be a solution of (1) and (2) with
positive initial data. Then

lim inf
t→∞ v(t) � v̌, lim sup

t→∞
v(t) � v̂, (15)

and

lim inf
t→∞ xi(t) � Xi(v̌), lim sup

t→∞
xi(t) � Xi(v̂), (16)

i = 1, . . . ,M .
For the proof of this theorem, see the Appendix.
Note that v̂ = v̌ if dV/dw > −1, which is true when, for

example, D or γ0 = mini γi are sufficiently large. Indeed, if
dV/dw ∈ (−1,0], the operator v → V (v) defined on [0,S0] is
a contraction and therefore the iterations v(k) converge to the
same limit. This observation implies the following:

Corollary I. For sufficiently large D > 0 or γ0 > 0, all the
solutions (x(t),v(t)) of (1) and (2) with positive initial data
converge, as t → ∞, to the unique equilibrium point defined
by Eqs. (9) and (10).

B. Local stability

Consider now the problem of stability of equilibrium states
(x1, . . . ,xM,veq) defined by (9) and (10). Denote by Ieq the set
of indices i for which φi(veq) − ri > 0 and by Neq the number
of such indices. Then xi > 0 when i ∈ Ieq.

One can show that the eigenvalues of the linear approxi-
mation of (1) and (2) at the equilibrium point (x1, . . . ,xM,veq)
satisfy the equation (see the Appendix)

λ + D + G(λ) = 0, (17)

where

G(λ) =
∑
i∈Ieq

ci

(
xiφ

′
i(veq) + φi(veq)

xiφ
′
i(veq)

λ + Pi(veq)

)

and Pi(v) = φi(v) − ri .
Let us show that Reλ < 0. In fact, taking the complex

conjugate to (17) and summing these equations, we have

Reλ + D + Re G = 0, (18)

where

Re G =
∑
i∈Ieq

ci

(
xiφ

′
i(veq) + φi(veq)

xiφ
′
i(veq)[Reλ +Pi(veq)]

|λ + Pi(veq)|2
)

.

This implies that

Re λ � −D −
∑
i∈Ieq

cixiφ
′
i(veq) or Re λ � − min

i∈Ieq

Pi(veq).

Thus the equilibrium point (x1, . . . ,xM,veq) is locally stable
for all D.

IV. EXTINCTIONS

System (1) and (2) does not take into account species
extinctions due to extinction thresholds. Here we present a
model describing this effect. The system thereby handles the
evolution to the final set of species. We follow [21] with
essential simplifications since we do not take into account
the emergence of new species. We start from random values
of the model parameters.

The main parameters of our model in this section are the
coefficients ri , Ki , ai , and γi . Let us introduce the vector
parameter Pi = (ri,Ki,ai,γi). Note that ci is a species-specific
parameter not necessary to include in this analysis and assumed
to be fixed.

Let P = (P1,P2,P3,P4) be a random vector with a prob-
ability density function ξ (P). This means that the values Pi

are defined by random sampling, i.e., the parameters of the
species are random independent vectors Pi that are drawn
from the cone R4

+ = {P : P1 > 0,P2 > 0,P3 > 0,P4 > 0} by
the density ξ . Our assumption to ξ can be formulated as
follows:

Assumption I. The probability density function ξ is a
continuous function with a support, which has a compact
closure in the positive cone R4

+.
The function ξ is positive on Sξ , where Sξ is an open and

bounded set. The closure of Sξ we denote by S̄ξ . Assumption
I implies that the mortality rates do not approach zero, and
resource consumption is restricted. It is supposed that initial
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data x̄i = xi(0) are random mutually independent numbers
drawn according to a density distribution

x̄i ∈ X (X̄,σX) (19)

with the mean X̄ and the deviation σX. The random assembly
of the species defines an initial state of the ecosystem for t = 0.

To describe species extinction, we introduce a small positive
parameter Xext as an extinction threshold. We represent the set
of indices IM = {1,2, . . . ,M} as a union of the two disjoint
sets:

IM = Se(t) ∪ Sv(t), t � 0.

Here Se(t) is the set of indices of species that exist at the time t ,
and Sv(t) is the set of indices of species that have disappeared
by the moment t . Let N (t) denote the number of species in
Sv(t) at the moment t , N (0) = M . We assume that Se(0) =
{1,2, . . . ,M} and Sv(0) = ∅. In our model, the species with
abundance xk vanishes at the moment t∗ if xk(t∗) = Xext and
xk(t) > Xext for t < t∗. The parameter Xext can be interpreted
as a threshold for species abundances.

The time evolution of the sets Se(t) and Sv(t) can be
described as follows:

(a) If the kth species vanishes at a certain moment t∗, i.e.,
k ∈ Se(t) for t < t∗ and xk(t∗) = Xext, then the index k moves
from Se(t) to Sv(t) at this moment t = t∗ and we set xk(t) = 0
for all t > t∗.

(b) We assume that the evolution stops at the moment tend

if at this moment Se(t) = ∅.
With the modifications described above, Eqs. (1) and (2)

define the dynamics as follows. Within each time interval
(t∗,T∗) between the subsequent species extinctions, the dy-
namical evolution of xi(t) is defined by the system (1) and (2).

The quantity N (t) is a piecewise constant decreasing
function, therefore there exists a limit

N (t) → Nf , t → +∞, (20)

where Nf is the number of species that survived to the limit
state (note that it is possible that Nf = 0).

Let us introduce the parameters

δi = Xextγi/ai (21)

and assume that

�(S0,Ki) > ρi = pi + δi (22)

for some i. Condition (22) means that the resource supply is
large enough for the existence of a positive equilibrium.

V. DYNAMICS OF THE MODEL WITH EXTINCTIONS

From (20) there exists a time moment Tf such that all
extinctions have occurred and thus we can use Theorem I and
its corollary for the remaining species. According to Sec. IV,
Se(Tf ) is the set of indices corresponding to the species that
exist for all t > 0. That set contains Nf = N (Tf ) indices. We
modify Eq. (9) as follows:

D(S0 − veq) = Fext(veq,b,K,p), (23)

where

Fext(v,b,K,p) =
∑

i∈Se(Tf )

Ri(v,b,K,p). (24)

Corollary II. For sufficiently large D > 0 or γ0 > 0, all
the solutions (x(t),v(t)) of (1) and (2) with positive initial
data converge, as t → ∞, to an equilibrium point defined by
Eqs. (10), (23), and (24). That equilibrium depends on the set
of remaining species Se(Tf ).

The assertion follows from the arguments at the beginning
of this section and Corollary I.

Note that the set Se(Tf ) depends on initial data, therefore,
in contrast to Theorem I, we have a number of possible
final equilibria. To show this, let us consider the following
situations. Let M = 3, and for Xext all three species survive,
thus Neq = 3.

Let Xext > 0 and x3(0) = Xext + κ , where κ > 0 is a small
number. We assume that x1(0) − Xext and x2(0) − Xext are not
small. Suppose, moreover, that D[S0 − v(0)] − FM [v(0)] < 0
and |D[S0 − v(0)] − FM [v(0)]| >> κ . Then it is clear that x3

will become extinct within a short time period, and thus the
third species is not involved in the set Se(Tf ) of final equilibria.
If κ is not small, then the set contains the third species.

VI. CONCENTRATION OF SPECIES TRAITS

Let us consider the case of arbitrary parameter values,
supposing that the initial number of species M 	 1. For each
ε > 0, let us denote by Wε(z) the set of the points in S̄ξ that
lie in the ball of radius ε centered at z = (r,K,a,γ ). The
ε-neighborhood Wε(B) of a subset B ⊂ S̄ξ is the union of
ε-neighborhoods Wε(z) taken over all the points z ∈ B.

In the set S̄ξ we introduce the partial order �e:
(ri,Ki,ai,γi) �e (rj ,Kj ,aj ,γj ) if ai � aj , ri � rj , Ki � Kj ,
and γi � γj .

Consider the points z∗ = (r∗,K∗,a∗,γ∗), which are maximal
with respect to the order >e in the set S̄ξ . Since that set
is closed, bounded from below with respect to K,r,γ , and
bounded from above with respect to a, the set B∗ of the
points z∗ is not empty. It is clear that B∗ is a subset of the
boundary ∂Sξ .

Theorem III (concentration of traits). Let assumption I and
(22) hold and let ε > 0 be a number. Then the parameters ai ,
ri , γi , and Ki of species xi such that xi(t) > Xext for all t > 0
lie in the domain Wε(B∗) with the probability PrM (ε) such that
PrM (ε) → 1 as M → +∞.

The proof can be found in the Appendix.
If the set B∗ is a singleton (i.e., it consists of a single point),

then we have the concentration trait effect, i.e., all essential
parameters of the ecosystem become almost identical as a
result of extinctions. Note that the set B∗ is a singleton in the
case when Sξ is a box, i.e.,

Sξ = {a− < ai < a+, r− < ri < r+,

K− < Ki < K+,γ− < γi < γ+}.
The set B∗ can have a more complicated structure, e.g., it may
be a union of isolated points or a curve. Also note that even in
the singleton case, species may differ in coefficients ci .

VII. LIMITS OF BIODIVERSITY
IN A STRESS ENVIRONMENT

The following assertion gives us information on the limits
of biodiversity for arbitrary parameter values, and our results
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are valid for arbitrary system dynamics: we do not use
any assumptions here on the existence of globally attracting
equilibria. Recall that Nf is the number of species that survive
as t → +∞, i.e., the corresponding abundances xi(t) � Xext

for all t � 0.
Proposition II. The number Nf is bounded by a constant

independent of M , namely

Nf < Nmax =
[

DS0

Xexta0c0(p0 + δ0)

]
+ 1, (25)

where [x] denotes the integer part of x, c0 = min ci , and

a0 = min
r,a,K,γ∈S̄ξ

a, δ0 = min
r,a,K,γ∈S̄ξ

δ, p0 = min
r,a,K,γ∈S̄ξ

p.

Proof. First we use an idea from [22]. Let 〈F 〉T =
T −1

∫ T

0 F (s)ds be the average of a function F on [0,T ]. The
average of F on [0, + ∞) we denote by 〈F 〉. By averaging
(2), one obtains

T −1[v(T ) − v(0)] = D(S0 − 〈v〉T ) −
M∑
i=1

ciai 〈xi�(v,Ki)〉T .

(26)

Since the left-hand side here tends to 0 as T → +∞, Eq. (26)
leads to

D(S0 − 〈v〉) =
M∑
i=1

ciai 〈xi�(v,Ki)〉, (27)

which in turn entails the estimate

Nf a0c0Xext〈�(v,K∗)〉 < DS0, (28)

where K∗ = maxi∈Se(Tf ) Ki . Consider the equation in (1) with
the index i ∈ Se(Tf ) for which Ki = K∗. Dividing both sides
there by xi , averaging, and using the fact that xi is bounded
and separated from zero by Xext, we get

〈φi(v)〉 − ri = γi〈xi〉 � γiXext.

Hence

〈�(v,K∗)〉 � p0 + δ0. (29)

This together with (28) leads to (25).
To find more precise estimates, we assume that coefficients

ci , ai , γi , and ri satisfy

C−a < ai < C+a, C−c < ci < C+c, 1 � i � M, (30)

C−γ < γi < C+γ, C−r < ri < C+r, 1 � i � M, (31)

where a, c, γ , and r are characteristic values of the correspond-
ing coefficients, and C± are positive constants independent of
M , a, c, γ , and r . Let us introduce the stress parameter by

Pstress = ca2

γDS0
. (32)

To simplify the statement, we also suppose that Ki =
K . The general assertion on the trait concentration can be
formulated as follows:

Proposition III. Suppose Assumption I and condition (22)
hold. Let i,j be two indices such that the corresponding species

abundances xi(t),xj (t) satisfy xi(t) > Xext,xj (t) > Xext for all
t � 0. Then

|pj − pi | < C0P
−1
stress(p0 + δ0)−1, (33)

where C0 > 0 does not depend on a, c, γ , r , and Xext.
Proof. Consider the species such that xi(t) > Xext for all t �

0. The corresponding set of indices we denote by Se. Averaging
Eqs. (1) for the species xi with i ∈ Se, we obtain the following
relation:

γi

〈
x2

i

〉 = ai〈xi[�(v,K) − pi]〉. (34)

Furthermore, we divide (1) on xi and average the obtained
equation that gives

〈xi〉 = aiγ
−1
i 〈�(v,K) − pi〉. (35)

The Cauchy inequality implies 〈x2
i 〉 � 〈xi〉2. Therefore, (34)

and (35) entail

〈xi(� − pi)〉 � aiγ
−1
i 〈� − pi〉2, (36)

where, for brevity, we use the notation � = �(v,K). From (2)
we have

DS0 �
∑
i∈Se

ciai〈xi�〉. (37)

We observe that

〈xi�〉 = 〈xi� − xipi + xipi〉.
From the above identity and (34), one has

〈xi�〉 = 〈xi(� − pi)〉 + aiγ
−1
i pi〈� − pi〉.

The above relation and (36) and (37) lead to the inequality

DS0 � 〈�〉
∑
i∈Se

cia
2
i γ

−1
i 〈� − pi〉, (38)

which, with (29), can be rewritten as follows:

P −1
stress � 〈�〉

∑
i∈Se

βi〈� − pi〉, (39)

where βi = ciaiγi(caγ )−1 are bounded coefficients indepen-
dent of a, γ , and c. Estimate (39) entails

[�(v,K) − pl]+ < C2P
−1
stress〈�〉−1 ∀ l ∈ Se (40)

for some C2 > 0, which is independent of γ , a, c, and r . From
(35), � − pi is positive and hence the index + in (40) can
be removed. Combining (40) for l = i and j and taking into
account that 〈�〉 > p0 + δ0, one has (33).

Let us derive an estimate of Nf via Pstress >> 1 and the
average 〈�〉. We suppose that pi = p0 + (i − 1)�p, �p � 1,
and βi = β = O(1). Then estimate (39) implies

Nf � 2β−1P −1
stress[(〈�〉 − p0)〈�〉]−1. (41)

This calculation is consistent with numerical simulations.
For γ = 0.000 01, when all other parameters have the order
1, we obtain a strong concentration effect (see Fig. 1).
Computations were done for a population of M = 50 species,
where random parameters are chosen as explained above.

As a measure of the trait concentration, we can use the
quantity

var(p) = maxi{pi} − mini{pi}. (42)
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FIG. 1. Dynamics of a large population with a very small γ . The
graphs of the species abundances are xi(t), and the species number is
M = 50. The parameters are as follows: K = 4, D = 10, S = 100,
Ey = 1, sy = 0.3, Ea = 2, sa = 0.2, Er = 1 − ln(20), sr = 0.1, and
γ = 10−5. Here four species coexist instead of a single one (they are
indicated by numbers 1–4).

Then the initial var(p) ≈ 0.6, but for four remaining species
with large abundances we have var(p) = 0.07. We see that
these four species are abundant whereas all other species
are extremely rare. Note that these asymptotic results can be
generalized in the case of different Ki .

A. Mass extinctions: An analytical approach

Relation (25) allows us to describe, in an analytical way,
mass extinctions. Mass extinctions may result as a conse-
quence of a sharp change of some environmental parameter.
It is natural to assume that climate variations or other abiotic
ones can reduce the resource supply level S0. Assume, for
example, that this reduction is �S0 > 0 and the new resource
supply Snew = S0 − �S0 satisfies

Snew < Xexta0c0(p0 + δ0). (43)

The preceding equation implies that for sufficiently large �S0,
even all species may become extinct. We therefore refer to this
level of the resource Snew as a catastrophic level.

Note that these analytical results show that there are
interesting phenomena. First, let us compare two ecosystems.
One is a random assembly of many species where the variation
var(p) defined by (42) is large, and the other ecosystem is a
result of a long evolution leading to the concentration, i.e.,
var(p) is small. We find that the concentrated system is more
stable with respect to variations in the resource. Namely, a
sharp change of S0 will kill many more species in the first
ecosystem than in the second one. Secondly, assume that
catastrophes do occur several times yet with a fairly long time
in between. Each catastrophe will reduce the biodiversity yet
with less and less probability since the concentration effect
becomes stronger and stronger.

FIG. 2. Dynamics of a species community. The species number
M = 50, D = 0.1, and S0 = 30. We observe oscillations and finally
that the competition exclusion principle works: only a single set of
parameters remains. This can imply a single species (indicated by 1),
especially if no other traits are important, as assumed in the model.

To investigate more realistic situations when Ki are differ-
ent and the parameters are random, we performed numerical
simulations described in the following section.

VIII. NUMERICAL SIMULATIONS

In numerical simulations, the parameters are chosen as
follows. The coefficients ai are independent and identically
distributed (i.i.d.) random quantities such that each ln ai is a
normally distributed number with the mean Ea = 1 and the
standard deviation σa = 0.2. This means that each ai has the
same log-normal distribution, ai ∈ ln N(Ea,sa).

Similarly, the coefficients ri are i.i.d. random quantities,
ln ri is normally distributed on [0,1] number with the mean
Er = 0.1, and the standard deviation σr = 0.03 − ln(20). The
parameters D = 0.1, K = 4, S = 30, and γi = γ = 0.001.
The coefficients ci are random numbers uniformly distributed
on [0,1] and normalized in such a way that

∑
ci = 1.

The initial data Xi are i.i.d. random numbers distributed
log-normally, Xi = exp(yi), yi ∈ N(Ey,sy), with parameters
Ey = 1 and sy = 0.3. We suppose that all ck , rj , and al are
mutually independent.

For these random species communities and N = 50 we
observe oscillations and then a convergence to an equilibrium
(see Fig. 2).

Using simulations, we have considered the dependence of
biodiversity and the concentration trait effect on the stress
parameter for populations with random parameters Ki,pi .
The results are consistent with analytic considerations of the
previous section, and they can be seen in Fig. 3.

In the numerical simulations of biodiversity, we can also
observe the trait concentration. For the example illustrated by
Fig. 3, the variation var(p) decreases very strongly as a result
of species extinctions, and this reduction increases as the stress
parameter increases.
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FIG. 3. The species number M = 100. The species parameters K

and p are random numbers obtained by log-normal distributions, K =
exp(K̃), p = exp(p̃), where K̃ ∈ N (K0,σK ) and K̃p ∈ N (p0,σp).
The star curve corresponds to the case K0 = 1, σK = 0, p0 = −1,
and σp = 0.2. For the continuous curve the parameters are the same,
but we have a variation in K: σK = 0.5.

IX. DYNAMICS OF THE LIMIT ECOSYSTEM

According to Theorem III, if the set B∗ consists of a single
point, for M 	 1 the limit system (that appears as a result of
many extinctions) has the property pi ≈ p, Ki ≈ K , where
p,K are some parameter values. To understand the dynamics
of that system, we consider system (1) and (2) for the case pi =
p and Ki = K . Let us introduce a new variable Q = −pt +∫ t

0 �(v(s),K)ds. The variable Q is an analog of “quality of
life” introduced in [2] for the linear case �(v,K) = v. This
case is studied in [23]. The results of [23] can be extended to
our limit model. We seek solutions to Eqs. (1) in the form

xi(t) = Ci(t) exp[aiQ(t)],

where Ci are new unknowns. From (1) one obtains

dCi

dt
= −γiC

2
i exp[aiQ(t)], Ci(0) = x̄i ,

which gives

dCi

dt
= −γiC

2
i exp[aiQ(t)].

By solving these equations, we find

Ci = Ci(0)

1 + γiCi(0)
∫ t

0 exp[ajQ(t ′)]dt ′
.

Using the last relation, from (2) one obtains

v = KP

1 − P
,

dv

dt
= K

(1 − P )2

dP

dt
, (44)

where P = dQ/dt + p.

After some straightforward computations, Eqs. (1) and (2)
reduce to the system

K

(1 − P )2

dP

dt
= D

(
S0 − KP

1 − P

)
− Pf (Q(·)), (45)

dQ

dt
= P − p, (46)

where

f (Q(·)) =
N∑

j=1

cj aj x̄j exp[ajQ(t)]

1 + γj x̄j

∫ t

0 exp[ajQ(t ′)]dt ′
. (47)

Equation (45) describes a nonlinear oscillator with a
damping term and nonlinearities with a time delay. Note that f
depends on initial data x̄i . So, we see that the limit ecosystem
can be considered as a nonlinear oscillator with a friction and a
memory. The oscillator state is determined by two variables: P
and Q. The first variable is a difference between the normalized
species consuming rate �(v,K) and the normalized species
mortality rate, i.e., it allows for a biological interpretation. This
variable can be called the Malthusian parameter. The variable
Q does not allow for a simple explicit interpretation. It is a
generalization of the quality of life introduced by Volterra.
Note that Q is the integral of P , i.e., it can be considered as
an integral Malthusian parameter. Since this is a parameter
expressing a trait over a long period of time, we can call P the
sustainable Malthusian parameter.

Equation (45) can be simplified in two cases: for γ = 0 and
for bounded times, t � ln(γ −1) (an initial stage) and t 	 1/γ

(large times, the final stage). In the first case from (47) we have

f (Q(·)) = f (Q(t)) =
N∑

j=1

cj aj x̄j exp[ajQ(t)]. (48)

We obtain an oscillator, which is a perturbed Hamiltonian
integrable system without memory. In this case, for small D the
solutions of (45) tend to equilibrium in an oscillating manner
(see Fig. 2).

X. CONCLUSION

In this paper, we have investigated a model of ecosys-
tems exploiting a single resource and interacting with the
environment. Until May’s seminal works [24,25], ecologists
believed that large complex ecosystems, involving a larger
number of species and interconnections, are stable. May
[24,25] considered a community of S species with connectance
C that measures the number of realized links with respect
to the number of all possible links. May’s analysis of the
local stability of an equilibrium produced results that were
quite revolutionary and inspired a great deal of discussion.
It was shown that for large systems with random interaction
parameters, instability can occur for large C. Communities
that are more connected are more unstable. This approach
was developed in [19,26], which studied more complicated
networks with interactions of different types (predator-prey,
amensalism, mutualism, and competition).

All of these fundamental results hold under the assumption
that, at an equilibrium, ecosystems have a random structure.
In other words, the entries of the matrix, which define
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the linearization of a system at equilibrium, are distributed
according to smooth densities, e.g., Gaussian densities.

In this paper, we use a similar assumption but on the initial
choice of species traits. The initial distribution of species traits
is defined by continuous densities with nonempty supports,
i.e., roughly speaking, the species traits are distributed homo-
geneously in a domain. We show that in the evolution process,
the distribution of species traits becomes more concentrated
when an ecosystem evolves under a stress or as a result of
species extinctions. During the evolution process, the domain
of species trait localization shrinks. That small domain of
localization means that species become increasingly similar
(as in [18]). In contrast to [18], we do not use any specific
assumptions on the adaptation of system parameters. We
have found a parameter that defines the stress level. This
parameter depends on the supply level, turnover rate, and
resource-consuming intensity.

The most interesting effect of species trait concentration is
as follows. For large times, a stable and simple limit ecosystem
appears just because most species become extinct under stress.
For large times, ecosystem dynamics and extinctions of species
under stress produce a self-organized community consisting
of species with close consumer efficiencies (note that these
species can be different in other traits). In some cases, the
dynamics of this limit community can be described by a simple
equation that describes a nonlinear oscillator with a friction and
a memory, which is close to a Hamiltonian system. We have
found an asymptotic approach to study this system. Note that
the reduction mechanism differs from the one previously found
in [1,23]. In [1], a mean-field approach is applied to complex
ecosystems and gene networks. This approach exploits the
system topology when species (genes) can interact with many
others. Complicated systems of equations were reduced to a
single differential equation of first order. Such equations do
not exhibit time oscillations, whereas our equation simulates
a perturbed nonlinear oscillator, and it can describe slowly
decreasing oscillations. In [23], a reduction to Hamiltonian
systems is also based on the topological properties of interac-
tions in ecosystems. So, the reduced descriptions of complex
systems proposed in [1,23] can be called topological. In
contrast to [1,23], in the present paper the reduced description
is based not only on the system topology (i.e., the fact that
species share the same resource) but also on other phenomena,
namely extinctions and selection by a tough environment
(which can be measured by the stress parameter).

These results can be useful for understanding why ecosys-
tems where species feed on few resources can have a large
biodiversity, and how mass extinctions depend on environment
and ecosystem parameters. The intriguing effect is that we
observe a picture similar to statistical physics: the state of an
ecosystem that arises as a product of a long evolution can be
described by two quantities, P,Q, which have a biological
interpretation. Namely, P can be called the Malthusian
parameter, and this quantity determines a balance between
mean mortality and growth rates. The quantity Q can be named
the sustainable Malthusian parameter, and it can be obtained
by integrating P over time.

We have computed analytically the number of finally
coexisting and surviving species, and how this number depends
on the main parameters of the ecosystem (i.e., the resource

supply, the mortality rates, the resource turnover, etc.). It
is shown that the main quantity that determines the final
biodiversity is the stress parameter.
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APPENDIX

1. Proof of formula (17)

Assume that all Pi(veq) > 0. Then the eigenvalue problem
for the linear part of the right-hand side of (1) and (2) at the
equilibrium point (x1, . . . ,xM,veq) has the form

−γixiXi + xiφ
′
i(veq)V = λXi, i = 1, . . . ,M, (A1)

−
M∑
i=1

ciφi(veq)Xi −
(

D +
M∑
i=1

cixiφ
′
i(veq)

)
V = λV, (A2)

where (X1, . . . ,XM,V ) is an eigenvector corresponding to the
eigenvalue λ. Solving the first system with respect to Xi and
inserting the solution into the second equation, we obtain

Xi = xiφ
′
i(veq)

λ + γixi

and

λ + D +
M∑
i=1

cixiφ
′
i(veq) +

M∑
i=1

ciφi(veq)
xiφ

′
i(veq)

λ + γixi

= 0.

(A3)

Since γixi = Pi(veq) at the equilibrium point, we arrive at (17).
If some of Pi(veq) are nonpositive, the corresponding terms

in (A1)–(A3) are zeros and we again arrive at (17).

2. Proof of Theorem I on the global stability of positive solutions

We apply a special method based on the theory of
decreasing operators in Banach spaces (see [27] and references
therein) that allows us to prove this assertion without any
additional assumptions. This approach is applicable here due
to the special properties of monotonicity in our problem.

Let us rewrite (12) as follows:

v̄ = V (v̄), (A4)

where the operator V is described in Sec. III A. We remind the
reader that V (v̄) is a decreasing function in v̄.

Our next step is to rewrite system (1) and (2) as an integral
equation for an unknown function v(t). Let w(t) be a given
non-negative, continuous, bounded function on [0,∞) having
a limit w̄ at infinity. We can resolve Eqs. (1) (with v replaced
by w) following Sec. IX. As a result, we obtain

xi(t) = Xi(w(·))(t), (A5)
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where

Xi(w(·))(t) = xi(0)

Ji(w(·))(t)
and

Ji = exp

(
−

∫ t

0
Pi(w(s))ds

)

+ γixi(0)
∫ t

0
exp

(
−

∫ t

t1

Pi(w(s))ds

)
dt1.

One can verify that for xi(0) > 0,

Xi(w)(t) → Xi(w̄) as t → ∞,

where Xi is defined in Sec. III A.
Next, we can solve Eq. (2) with respect to v, where xi

is given by (A5) and v(0) = v0. We denote this solution by
V(t) = V(w(·))(t). We cannot write this solution explicitly,
but in what follows we need only some of its properties. First,
this solution is a decreasing function with respect to xi and
consequently with respect to w. Second,

V(w(·))(t) → v̄ as t → ∞,

where v̄ = V (w̄). Thus the unique solution to the problem (1)
and (2) with the Cauchy data (4) can be obtained by solving
the following fixed-point problem:

v(t) = V(v)(t) (A6)

and then

xi(t) = Xi(v(·))(t), i = 1, . . . ,M.

To solve the equation v = V(v(·)) in the class of bounded,
continuous, non-negative functions (denoted by B), we use the
following iterations:

vn+1(t) = V(vn(·))(t), n = 1,2, . . . , v0(t) = 0.

Then

v0 � v2 � v4 � · · · , v1 � v3 � · · · , and

v2j � v2k+1 for all j,k

(here � denotes the partial order on B: v � u if u(t) �
v(t) ∀ t ∈ [0,T ]).

To show the convergence of the odd and even iterations, we
observe that we can consider the fixed-point equation (A6) on a
finite interval (0,T ). Now the operator V : C[0,T ] → C[0,T ]
is compact and hence the odd and even terms of sequences
converge on [0,T ] for each T . We introduce their limits

V̌ (t) = lim
j→∞

v2j (t), V̂ (t) = lim
k→∞

v2k+1(t).

Then V(V̌ ) = V̂ and V(V̂ ) = V̌ . Let x̂i be given by (A5) with
w = V̂ , and let x̌i be given by (A5) with w = V̌ . Then the
vector function (x̌1, . . . ,x̌M,V̂ ) satisfies the problem

dx̌i

dt
= x̌i[−ri + φi(V̌ ) − γi x̌i], i = 1, . . . ,M,

dV̂

dt
= D(S0 − V̂ ) −

M∑
i=1

ci x̌i φi(V̂ ),

and the functions (x̂1, . . . ,x̂M,V̌ ) are solutions of

dx̂i

dt
= x̂i(−ri + φi(V̂ ) − γi x̂i), i = 1, . . . ,M,

dV̌

dt
= D(S0 − V̌ ) −

M∑
i=1

ci x̂i φi(V̌ ).

Moreover, the last two systems have the same Cauchy data.
Taking the differences, we obtain a homogeneous Cauchy
problem for (x̂1 − x̌1, . . . ,x̂M − x̌M,V̂ − V̌ ), and by unique-
ness for the Cauchy problem we obtain that V̌ = V̂ .

Let us turn to the asymptotic behavior of the fixed-point
solutions. Let v̄k = limt→∞ vk(t). Then

v̄0 = 0 and v̄k+1 = V (v̄k), k = 0, . . . .

This proves inequalities (15) and (16) and completes the proof
of Theorem I.

3. Proof of Theorem III

This proof proceeds in three steps.
Step 1: Monotonicity of species abundances. Consider a

point z̄ = (ai,ri,γi,Ki), which is not contained in Wε(B∗), and
the corresponding species population xi(t). Suppose that for
all t � 0 we have

xi(t) > Xext. (A7)

Consider the j th species with parameters (aj ,rj ,γj ,Kj ) and
the species abundance xj (t). We assume that

xj (0) � xi(0), ri � rj , ai � aj , γi � γj , Ki � Kj .

(A8)

Then

xj (t) � xi(t) ∀ t > 0. (A9)

Indeed, let us consider equations for xi,xj :

dxi

dt
= xi[−ri + φi(v) − γi xi], (A10)

dxj

dt
= xj [−rj + φj (v) − γj xj ]. (A11)

If (A9) is violated, then there is a time moment t1 > 0 such
that

xj (t1) = xi(t1),
dxi

dt
(t1) >

dxj

dt
(t1). (A12)

But

xi(t1)[−ri + φi(v) − γi xi(t1)]

� xi(t1)[−ri + φi(v) − γi xi(t1)]

due to the first inequality in (A12) and (A8). The last inequality
contradicts the second inequality in (A12), thus (A9) is proved.

Inequality (A9) shows that if the species xi survives for all
times, then all the species with parameters satisfying (A8) also
survive for all t > 0.

Step 2: A priori boundedness of biodiversity. Here we use
Proposition II. The number Ns of species that survive for all
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times is a priori bounded by the system parameters and does
not depend on M as M → ∞. We refer to the corresponding
set of species parameters as Ps . Due to Proposition II,

Ns < C, (A13)

where C > 0 is independent of M .
Step 3. Let us consider the ε-neighborhood Wε(B∗).

Suppose there exists a point z̄ /∈ Wε(B∗). We denote the initial
data xi(0) for the corresponding species by x̄i . Then, according
to step 1, the set Ps contains all points z from Wε(B∗) such
that z �e z̄. We denote the set of such points by Wε,z̄(B∗). Note
that due to the conditions of the set Sξ (see Assumption I), the
set Wε,z̄(B∗) contains a small open ball. Therefore, since ξ is
positive on the interior of Sξ (see Assumption I), we have

1 > J =
∫

Wε,z̄(B∗)ξ (z)dz > δε,z̄ > 0.

The number δε,z̄ is independent of M . Consider the event
E = AB, where A is the event in which the species parameters
lie in Wε,z̄(B∗), and B is the event in which the initial data
xi(0) > x̄i ∀ i. The events A and Bs are independent, and
Prob(A) > 0 due to the above estimate for J . According to
the hypothesis on the random choice of xi(0), we also have
Prob(B) > 0. Therefore, Prob(E) = q > 0.

Consider the event EM,Ns
in which among M species there

are not more than Ns species such that the corresponding
species parameters lie in Wε,z̄(B∗) and the initial data xi(0) >

x̄i ∀ i. The probability of EM,Ns
can be computed by the

Bernoulli relation, and we have

Prob(EM,Ns
) <

Ns∑
k=0

Mk(k!)−1qk(1 − q)M−k.

We see that EM,Ns
→ 0 as M → ∞, and Theorem III is

proved.
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[14] Å. Brännström, N. Loeuille, M. Loreau, and U. Dieckmann,

Theor. Ecol. 4, 467 (2011).

[15] A. J. McKane, Eur. Phys J. B 38, 287 (2004).
[16] M. Kondoh, Science 299, 1388 (2003).
[17] G. J. Ackland and I. D. Gallagher, Phys. Rev. Lett. 93, 158701

(2004).
[18] M. Scheffer and E. H. van Nes, Proc. Natl. Acad. Sci. (USA)

103, 6230 (2006).
[19] S. Allesina and Si. Tang, Nature (London) 483, 205 (2012).
[20] S. Allesina (private communication).
[21] V. Kozlov, S. Vakulenko, and U. Wennergren, Bull. Math. Biol.

78, 2186 (2016).
[22] J. Hofbauer and K. Sigmund, Evolutionary Games and Pop-

ulation Dynamics (Cambridge University Press, Cambridge,
1998).

[23] V. Kozlov, S. Vakulenko, and U. Wennergren, Phys. Rev. E 93,
032413 (2016).

[24] R. M. May, Nature (London) 238, 413 (1972).
[25] R. May, Stability and Complexity in Model Ecosystems (Prince-

ton University Press, Princeton, NJ, 1974).
[26] S. Allesina, Nature (London) 487, 175 (2012).
[27] G. Herzog and P. C. Kunstmann, Numer. Funct. Anal. Optim.

34, 530 (2013).

032413-10

https://doi.org/10.1038/nature16948
https://doi.org/10.1038/nature16948
https://doi.org/10.1038/nature16948
https://doi.org/10.1038/nature16948
https://doi.org/10.1126/science.131.3409.1292
https://doi.org/10.1126/science.131.3409.1292
https://doi.org/10.1126/science.131.3409.1292
https://doi.org/10.1126/science.131.3409.1292
https://doi.org/10.2307/1935608
https://doi.org/10.2307/1935608
https://doi.org/10.2307/1935608
https://doi.org/10.2307/1935608
https://doi.org/10.1090/S0002-9947-02-03103-3
https://doi.org/10.1090/S0002-9947-02-03103-3
https://doi.org/10.1090/S0002-9947-02-03103-3
https://doi.org/10.1090/S0002-9947-02-03103-3
https://doi.org/10.1086/282171
https://doi.org/10.1086/282171
https://doi.org/10.1086/282171
https://doi.org/10.1086/282171
https://doi.org/10.1016/j.ecocom.2007.02.016
https://doi.org/10.1016/j.ecocom.2007.02.016
https://doi.org/10.1016/j.ecocom.2007.02.016
https://doi.org/10.1016/j.ecocom.2007.02.016
https://doi.org/10.1086/587517
https://doi.org/10.1086/587517
https://doi.org/10.1086/587517
https://doi.org/10.1086/587517
https://doi.org/10.1890/07-1745.1
https://doi.org/10.1890/07-1745.1
https://doi.org/10.1890/07-1745.1
https://doi.org/10.1890/07-1745.1
https://doi.org/10.1093/icesjms/fst049
https://doi.org/10.1093/icesjms/fst049
https://doi.org/10.1093/icesjms/fst049
https://doi.org/10.1093/icesjms/fst049
https://doi.org/10.1038/46540
https://doi.org/10.1038/46540
https://doi.org/10.1038/46540
https://doi.org/10.1038/46540
https://doi.org/10.1073/pnas.0408424102
https://doi.org/10.1073/pnas.0408424102
https://doi.org/10.1073/pnas.0408424102
https://doi.org/10.1073/pnas.0408424102
https://doi.org/10.1016/j.jtbi.2004.04.033
https://doi.org/10.1016/j.jtbi.2004.04.033
https://doi.org/10.1016/j.jtbi.2004.04.033
https://doi.org/10.1016/j.jtbi.2004.04.033
https://doi.org/10.1007/s12080-010-0089-6
https://doi.org/10.1007/s12080-010-0089-6
https://doi.org/10.1007/s12080-010-0089-6
https://doi.org/10.1007/s12080-010-0089-6
https://doi.org/10.1140/epjb/e2004-00121-2
https://doi.org/10.1140/epjb/e2004-00121-2
https://doi.org/10.1140/epjb/e2004-00121-2
https://doi.org/10.1140/epjb/e2004-00121-2
https://doi.org/10.1126/science.1079154
https://doi.org/10.1126/science.1079154
https://doi.org/10.1126/science.1079154
https://doi.org/10.1126/science.1079154
https://doi.org/10.1103/PhysRevLett.93.158701
https://doi.org/10.1103/PhysRevLett.93.158701
https://doi.org/10.1103/PhysRevLett.93.158701
https://doi.org/10.1103/PhysRevLett.93.158701
https://doi.org/10.1073/pnas.0508024103
https://doi.org/10.1073/pnas.0508024103
https://doi.org/10.1073/pnas.0508024103
https://doi.org/10.1073/pnas.0508024103
https://doi.org/10.1038/nature10832
https://doi.org/10.1038/nature10832
https://doi.org/10.1038/nature10832
https://doi.org/10.1038/nature10832
https://doi.org/10.1007/s11538-016-0216-7
https://doi.org/10.1007/s11538-016-0216-7
https://doi.org/10.1007/s11538-016-0216-7
https://doi.org/10.1007/s11538-016-0216-7
https://doi.org/10.1103/PhysRevE.93.032413
https://doi.org/10.1103/PhysRevE.93.032413
https://doi.org/10.1103/PhysRevE.93.032413
https://doi.org/10.1103/PhysRevE.93.032413
https://doi.org/10.1038/238413a0
https://doi.org/10.1038/238413a0
https://doi.org/10.1038/238413a0
https://doi.org/10.1038/238413a0
https://doi.org/10.1038/487175a
https://doi.org/10.1038/487175a
https://doi.org/10.1038/487175a
https://doi.org/10.1038/487175a
https://doi.org/10.1080/01630563.2012.760591
https://doi.org/10.1080/01630563.2012.760591
https://doi.org/10.1080/01630563.2012.760591
https://doi.org/10.1080/01630563.2012.760591



