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Multistage modeling of protein dynamics with monomeric Myc oncoprotein as an example
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We propose to combine a mean-field approach with all-atom molecular dynamics (MD) into a multistage
algorithm that can model protein folding and dynamics over very long time periods yet with atomic-level
precision. As an example, we investigate an isolated monomeric Myc oncoprotein that has been implicated in
carcinomas including those in colon, breast, and lungs. Under physiological conditions a monomeric Myc is
presumed to be an example of intrinsically disordered proteins that pose a serious challenge to existing modeling
techniques. We argue that a room-temperature monomeric Myc is in a dynamical state, it oscillates between
different conformations that we identify. For this we adopt the Cα backbone of Myc in a crystallographic
heteromer as an initial ansatz for the monomeric structure. We construct a multisoliton of the pertinent Landau
free energy to describe the Cα profile with ultrahigh precision. We use Glauber dynamics to resolve how the
multisoliton responds to repeated increases and decreases in ambient temperature. We confirm that the initial
structure is unstable in isolation. We reveal a highly degenerate ground-state landscape, an attractive set towards
which Glauber dynamics converges in the limit of vanishing ambient temperature. We analyze the thermal
stability of this Glauber attractor using room-temperature molecular dynamics. We identify and scrutinize a
particularly stable subset in which the two helical segments of the original multisoliton align in parallel next to
each other. During the MD time evolution of a representative structure from this subset, we observe intermittent
quasiparticle oscillations along the C-terminal α helix, some of which resemble a translating Davydov’s Amide-I
soliton. We propose that the presence of oscillatory motion is in line with the expected intrinsically disordered
character of Myc.

DOI: 10.1103/PhysRevE.95.032406

I. INTRODUCTION

All-atom molecular dynamics (MD) [1] aims to simulate
the time evolution of every single atom in a given protein,
including solvents [2]. It produces a discrete and piecewise
linear time trajectory of each atom, as a solution of a discretized
(semi-)classical Newton’s equation. Thus the dimensionless
ratio between the iteration time step �t and the time scale τ

of a characteristic atomic motion,

e ∼ �t

τ
, (1)

should be small. Usually τ relates to the frequency of a covalent
bond oscillation that has a duration of a few femtoseconds.
As a result, �t should be very short and canonical values
are around 1–2 fs. The need for such a short time step
makes an all-atom approach to protein dynamics an extreme
computational challenge [2–4]. For example, the folding time
of a myoglobin is around 2.5 s [5] which can be considered
a fairly representative duration in the case of many proteins.
At the same time, MD can at best produce around 10 μs of
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in vitro folding trajectory per day in silico [6], and this is in
the case of proteins which are much shorter than myoglobin. It
would probably take close to 1000 years for presently available
computers to simulate a single all-atom folding trajectory of
myoglobin. Moreover, the currently available all-atom force
fields are not perfect [2]. Their limitations tend to essentially
affect a folding trajectory no later than around 10 μs [6].
Coarse-grained techniques are being developed to overcome
the bottleneck of short time steps but with loss in accuracy
[2,7]; see Ref. [8] for a recent survey of different approaches.

There are many examples in physics where a description
in terms of fundamental level constituents is too strenuous. In
such cases the concept of a mean-field theory can provide
a pragmatic alternative [9]. It has been proposed that a
mean-field approach could be introduced to model proteins
in terms of the Cα backbone [10–18]. For this we note that
any biologically relevant time scale is long in comparison to
the period of a covalent bond oscillation. Thus the distance
between two neighboring Cα atoms can be approximated by
the average value, which is around 3.8 Å. A Landau free
energy then engages only the bond angles κ ∈ [0,π ) and the
torsion angles τ ∈ [−π,π ) of the Cα skeletal as structural
order parameters, as shown in Fig. 1.

Moreover, the bond angles are known to have very small
variations along a protein backbone, both in static Protein
Data Bank (PDB) [19] structures and during dynamical MD
simulations, as confirmed by Figs. 2 and 3.
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FIG. 1. Definition of bond (κi) and torsion (τi) angles in relation
to the ith Cα atom.

Thus, the relative difference in values of κi between two
neighboring residues

�κi = |κi+1 − κi |
π

(2)

is small and can be employed as an expansion parameter in
lieu of (1). In particular, since an expansion in (2) does not
relate to any time scale, a mean-field description can at least
in principle describe time trajectories over any time period.

Here we propose to combine mean-field theory with all
atom molecular dynamics into a multistage algorithm to model
protein dynamics, and in particular intrinsically unstructured
proteins, over long time periods yet with atomic level scrutiny.
We use mean-field theory to leap over high energy barriers
and long time periods. We refine the structure to the atomic
level by following how it evolves over a short time period
using all-atom MD. The algorithm goes as follows. We first
construct the Landau free energy that models a given protein
structure. The initial ansatz can either be taken from PDB, or
it can be constructed using homology modeling with all-atom
MD refinement as in Ref. [6]. We then proceed to locate the
minimum energy configurations of the Landau free energy.
For this we use the Glauber algorithm [21,22] to repeatedly
increase and decrease the ambient temperature between very
high and very low values. In the limit of very low temperatures,
at the end of heating and cooling, the structure settles near
a local minimum of the free energy. Thus, by numerously
repeating a heating and cooling cycle, we can reveal the
low-energy landscape, as the set of structures towards which

FIG. 2. Distribution of bond angles κ in crystallographic PDB
structures. Note that for α helices κ ≈ π/2 and for β strands κ ≈ 1.

FIG. 3. The distribution of values (2) along the Cα backbone
during the Villin simulation in Anton [20]. Based on data obtained
from authors.

the Cα backbone becomes attracted in the low-temperature
limit of the Glauber algorithm. Once we have found such
a Glauber attractor of low-energy structures, we proceed to
refine and scrutinize it using all-atom MD. When certain
predetermined convergence and stability criteria are met,
the simulation is considered complete and the algorithm is
terminated. Otherwise, the procedure is repeated.

As an example, we investigate the topography of Glauber
attractor in the case of the biomedically highly important
Myc proto-oncogene protein [23–29]. Malfunctioning and
overexpression of Myc has been implicated in a number of
human cancers, from lymphomas and leukemias to carcinomas
in colon, breast, and lungs. Thus, Myc is considered a
promising target for cancer therapeutics and development of
anticancer drugs. Under physiological conditions a monomeric
Myc is presumed to be intrinsically unstructured and it is not
known to have any direct biological effect. Apparently, Myc
becomes functionally active only when it stabilizes into a DNA
binding basic-helix-loop-helix-leucine-zipper conformation
on heterodimerization with Max; see Fig. 4.

As a component of the heterodimer, Myc then participates
in processes such as cell cycle progression, apoptosis, and
cellular transformation by regulating the transcription of the
relevant target gene.

We analyze a monomeric Myc in isolation, as a biomedi-
cally important exemplar to develop our methodology: There
should be a correlation between the conformation of a
monomeric Myc and the rate at which it can heterodimerize
with Max in vivo. We start our analysis from a crystallographic
structure of the Myc-Max heteromer which is bound to DNA;

FIG. 4. The Cα backbone of the crystallographic PDB structure
1NKP, with a segment of DNA. Myc in red and Max in blue.
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we use the structure with PDB code 1NKP [28], which is
shown in Fig. 4. We construct the initial Landau free-energy
ansatz of monomeric Myc using the conformation it has
in the heterodimer. We subject the Landau model of Myc
to repeated heating and cooling cycles using the Glauber
algorithm. We categorize the Cα structures towards which
it becomes attracted on cooling. We observe that the resulting
Glauber attractor accumulates along a linear trajectory in
terms of root-mean-square distance (RMSD) and radius of
gyration Rg . This trajectory emanates from the initial Myc
structure and proceeds towards decreasing Rg , and energy. We
identify five different structural clusters along the mean-field
trajectory, and we select a representative from each cluster for
MD simulation stability analysis. We use molecular dynamics
package GROMACS 4.6.3 [30] with the united-atom force
field GROMOS53a6, which we have previously analyzed
and compared with all-atom force fields CHARMM27 and
OPLS/AA [31] in a closely related context; we deduce that
GROMOS53a6 is the most reliable among the three force
fields for the present purposes. We perform the MD simulation
near room temperature at 290 K and we limit the simulation
duration to 50 ns in vitro: Since we are interested in the
local stability and refinement of the initial structure, we do
not attempt a full-scale all-atom MD search of a folded Myc.
Besides, we doubt that any presently available computer power
is sufficient for such an analysis. We find that in four of the
clusters we identify, the MD trajectory drifts away from the
cluster. Accordingly, these clusters are unstable under MD time
evolution. However, the fifth cluster is remarkably stable under
MD evolution. The MD simulation is only slightly readjusting
the positioning of the backbone and side-chain atoms. But
during the MD evolution of the representative that we have
chosen from the apparently stable cluster, we also observe
intermittent oscillatory behavior, some aspects of which
resemble a propagating, asymmetric Amide-I Davydov soliton
[32,33].

Our Glauber dynamics simulations are swift. A full heating
and cooling cycle takes only around 1 min in silico, when we
use a single processor in a current Apple Pro desktop computer.
The MD analysis is much more tedious: The ideal length
of a MD trajectory seems to be around a few microseconds
[6]. However, the computer resources that are available to
us in practice limit the duration of our MD trajectories to
around 100 ns. Moreover, we do not repeat our multiscale
algorithm beyond its first level of iteration. Since we identify
an apparently MD stable assembly already after a single
iteration, the example we present serves as a proof-of-concept
exercise. For a firmer conclusion on Myc and its landscape
of assemblies, the technology described in Ref. [6] should be
used.

II. METHODS

A. Mean-field theory

A mean-field model of a protein is built as follows: Most
biologically relevant processes have a time scale which is
very long in comparison to the period of a covalent bond
oscillation. Thus, over any biologically relevant time period
we can approximate the distance between two neighboring Cα

atoms with the average value 3.8 Å of a crystallographic PDB

structure. The skeletal Cα bond κ and torsion τ angles that
we define in Fig. 1 then constitute a complete set of structural
order parameters. As shown in Figs. 2 and 3, the bond angles
are relatively rigid and slowly varying; the differences �κi

in (2) are small. Thus, the Landau free energy E(κ,τ ) can be
expanded in powers of these differences. A detailed analysis
in Refs. [10–18] shows that in the limit of small �κi the free
energy admits the following expansion:

E(κ,τ ) =
N−1∑
i=1

�κ2
i +

N∑
i=1

{
λ

(
κ2

i − m2
)2 + d

2
κ2

i τ 2
i

− bκ2
i τi − aτi + c

2
τ 2
i

}
+ O

(
�κ4

i

)
. (3)

Here (λ,m,a,b,c,d) are parameters. For a given PDB protein
structure these parameters are determined by training a
minimum energy configuration of (3) to model the PDB
backbone. There is a program PROPRO that can be used to
train the parameters in (3) so the model describes a given PDB
structure. The program can be used online [34].

We recognize in (3) a modification of the Hamiltonian that
defines the discrete nonlinear Schrödinger (DNLS) equation
[11,12]. The first row coincides with a naive discretization
of the continuum nonlinear Schrödinger equation. The fourth
term (b) is the conserved momentum in the DNLS model, the
fifth (a) term is the Chern-Simons term, and the sixth (c) term is
the Proca mass. Note that both momentum and Chern-Simons
are chiral. We refer to Refs. [35,36] for detailed analyses.

B. Validation of mean-field approach

In the case of proteins we validate (3) qualitatively with
the following line of arguments: According to Refs. [37–39],
the folding of a protein is a “cooperative” process that
resembles a first-order phase transition. Indeed, the DNLS
equation supports solitons which are the paradigm cooperative
organizers in numerous physical scenarios. A soliton emerges
as a solution of the variational equations that coincide with the
extrema of (3). For this we first eliminate the torsion angles
using the equation

τi[κ] = a + bκ2
i

c + dκ2
i

. (4)

For bond angles we then obtain

κi+1 = 2κi − κi−1 + dV [κ]

dκ2
i

, (5)

where

V [κ] = −
(

bc − ad

d

)
1

c + dκ2
−

(
b2 + 8λm2

2b

)
κ2 + λκ4.

The difference equation (5) can be solved iteratively, for
example, using the algorithm in Refs. [12]; a soliton solution
models a supersecondary protein structure such as a helix-
loop-helix motif and the loop corresponds to the soliton proper.
The parameter m is the main regulator of the secondary
structure, and its value specifies whether we have an α helix,
a β strand, or some other kind of regular pattern. Details can
be found in Refs. [10–18].
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In order to reveal a relation between (3) and the structure
of a first-order phase transition, we note that in the case of a
protein the bond angles are rigid and the torsion angles are
flexible. In particular, the variations of κi along the backbone
are small and cover only a portion of the allowable range of
κ as shown in Figs. 2 and 3. Thus, over sufficiently large
distance scales we may try and proceed self-consistently to
ignore fluctuations and use the mean value κi ∼ κ . We can
then solve for this mean value κ in terms of the mean value of
torsion angles τi ∼ τ . From (3)

δE

δκ
= 0 ⇒ κ2 = m2 + b

2λ
τ − d

4λ
τ 2. (6)

We substitute this into the equation that determines the extrema
of (3) with respect to variations in τ ,

δE

δτ
= 0 ⇒

d2

4λ
τ 3 − 3bd

4λ
τ 2 +

(
b2

2λ
− dm2 − c

)
τ + (

a + bm2
) = 0.

(7)

This equation coincides with the variational equation that
specifies the extrema of the following free energy:

d2

16λ
τ 4 − db

4λ
τ 3 +

(
b2

4λ
− dm2

2
− c

2

)
τ 2 + (a + bm2)τ. (8)

This has the canonical form of the Landau–De Gennes free
energy for a first-order phase transition [40], thus completing
a naive qualitative validation of (3) along the arguments in
[37–39].

C. Long-distance interactions in mean-field theory

A protein chain is subject to long-distance interactions
which in a MD approach are modeled by a hydrogen bond or
Lennart-Jones, Coulomb, and other force fields. In the present
mean-field theory these interactions are presumed to be taken
into account through the nonlinear terms in the free energy,
except for the short-distance Pauli repulsion which needs to be
introduced explicitly. In the leading order it suffices to proceed
as follows: A statistical analysis of PDB structures shows that
two Cα atoms located at sites i and k respectively that are not
nearest neighbors along the backbone obey the constraint

|ri − rk| > 3.8 Å for |i − k| � 2. (9)

We impose this constraint as a rigid acceptance criterion in the
Monte Carlo algorithm. More elaborate forms of short- and
long-distance interactions could also be introduced, and we
refer to Ref. [41] for analysis.

D. Glauber algorithm and fluctuations in mean-field approach

Arrhenius’s law states that the reaction rate r depends
exponentially on the ratio of activation energy H and the
physical temperature factor kBθ ,

r ∝ exp

{
− H

kBθ

}
.

Here kB the Boltzmann constant and θ is the temperature
measured in kelvin. On the other hand, Glauber dynamics

assumes that the transition probability from a state a to another
state b has the form

P(a → b) = 1

1 + e�Eba/T
, (10)

where �Eba = Eb − Ea is the activation energy, and in the
mean-field approach we compute it from (3). The parameter
T is the Monte Carlo temperature factor. In general it does not
coincide with the physical temperature factor kBθ , but the two
can be related by methods of renormalization group [42]; here
we do not need an explicit relation, ultimately the molecular
dynamics step in our algorithm will determine the temperature.

A small two-state protein often folds in line with Arrhe-
nius’s law [43], and for a simple spin chain the Glauber
algorithm reproduces Arrhenius law. Furthermore, a protein
backbone with its side chains has a structure that resembles a
spin chain [15]. Thus we proceed by assuming that Glauber
dynamics is a good leading-order approximation to model
aspects of protein dynamics.

E. Side chains in a mean-field approach

The mean-field theory (3) builds on the Cα coordinates.
There is no direct information on the side-chain coordinates,
and their effects are accounted for implicitly by the interactions
in (3). Once we have found a minimal energy Cα structure, we
can reconstruct an ansatz for the all-atom structure using side-
chain libraries; here we use Pulchra [44]. We can then employ
MD to refine the ensuing side-chain structure if need be [6].
Accordingly, we proceed as follows: Once we have constructed
a set of minimal energy Cα structures using Glauber dynamics,
we screen it using Pulchra and proceed only with those Cα

structures that are void of all-atom steric clashes. For this we
demand that the distance between any pair of atoms that are
not covalently bonded is larger than a predetermined cut-off
distance R0. The covalent bond distance among C, N, and
O atoms is at most around ∼1.54 Å, and thus we adopt the
following global value:

R0 = 1.6 Å. (11)

We only proceed to our MD stability analysis with such mean-
field structures that pass this screening.

F. Molecular dynamics

We use the molecular dynamics package GROMACS 4.6.3
[30]. We analyze in detail 50-ns-long trajectories, with initial
configurations that we specify in the sequel. We use the
Gromos53a6 force field, with a time step of 2 fs. We motivate
our choice of force field by the analysis in Ref. [31]. We
use periodic boundary conditions, with 0.9-nm cutoff for
long-distance interactions. The box is rectangular, with a
distance of 2.0 nm between the protein and the box walls; we
adjust the box size depending on the initial configuration. We
use a salt concentration of 0.15 mol/l and temperature 290 K,
supported with a Berendsen thermostat in the equilibration
phase and with a v-rescale thermostat in the production run.
The pressure is kept constant with the Berendsen barostat
and changed to Parrinello-Rahman in the production run. The
changes ensure that we generate a proper canonical ensemble.
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TABLE I. Structure assignment of Myc in PDB entry 1NKP
chain A.

Structure Residues Number of residues

Base GLY897-ARG914 18
Helix ASN915-ILE928 14
Loop PRO929-PRO938 10
Helix LYS939-CYS984 46

We record the coordinates every 2 ps, which gives us 2500
frames for each poduction run.

III. RESULTS

A. Myc as a multisoliton

Our starting point is the crystallographic PDB structure
with code 1NKP [28] shown in Fig. 4. It describes a DNA-
bound heterodimer of Myc and Max in a base-helix-loop-helix
leucine zipper conformation, with 1.8 Å resolution. We use
chain A where the sites with PDB index 897-984 correspond
to Myc, and its major features are summarized in Table I.

In Figs. 5 (top) and 5 (bottom), we show the bond and
torsion angles of Myc in 1NKP, respectively. In these figures
we follow Ref. [45] and extend the range of bond angle into
κ ∈ [−π,π ). Thus there is a twofold covering of the geometry
by the bond angles, which we compensate for with a discrete
local Z2 symmetry. We employ this symmetry to identify the

FIG. 5. (a) The bond κ angle spectrum of 1NKP after we
introduce the Z2 transformation that identifies the soliton structure
(gray), together with the corresponding spectrum of the multisoliton
structure (red). (b) The torsion τ angle spectrum of 1NKP after the
Z2 transformation that identifies the soliton structure in top figure
(gray) together with the corresponding spectrum of the multisoliton
structure (blue).

TABLE II. Parameters for each soliton.

Parameter Soliton-1 Soliton-2 Soliton-3

b 8.731 e-11 1.588 e-8 6.486 e-10
d 1.268 e-7 7.637 e-8 5.832 e-8
e 1.004 e-11 8.77 e-10 1.888 e-10
q − 5.944 e-8 − 6.827 e-7 − 5.755 e-9
c1 5.459 2.603 4.459
c2 2.318 2.252 4.13
1 1.539 1.494 1.405
m2 1.651 1.404 1.655

Parameter Soliton-4 Soliton-5 Soliton-6
b 3.414 e-10 4.4967 e-9 1.148 e-9
d 4.865 e-8 6.943 e-10 3.402 e-8
e 1.501 e-10 7.612 e-15 1.353 e-10
q − 5.331 e-8 − 2.906 e-7 − 7.716 e-8
c1 0.887 3.225 2.872
c2 2.449 2.995 18.223
m1 1.533 1.595 1.54
m2 1.5 1.54 1.049

soliton content, which is visible in Fig. 5 (top): We identify six
different individual solitons. Four of the solitons form the loop
region of Myc. There is one soliton along the leucine zipper at
the location of the turn around residue 954 where we observe
a jump in the torsion angle in Fig. 5. There is one soliton at
the C terminal of Myc.

In Fig. 5 we also compare the bond and torsion angle
values between Myc in 1NKP and its multisoliton. We use
the program PROPRO [34] to construct the multisoliton profile,
and the parameter values that we find for the Landau free
energy are given in Table II; we have rounded the numbers
to four digits, and higher precision is easily obtained using
Ref. [34].

In Fig. 6 we interlace the original PDB structure of Myc
with the multisoliton profile. The RMSD between the two is
0.98 Å.

In Fig. 7 we compare the residue-wise distance of the Cα

atoms in the multisoliton from those in the crystallographic
structure. We also show an estimate of the one-standard-
deviation error in the crystallographic coordinates, which we
compute from the B factors using the Debye-Waller relation.

B. Glauber attractor and minima of Landau free energy

We subject the multisoliton to successive heating and
cooling simulations using the Glauber algorithm. Our goal
is to identify the low-temperature Glauber attractor. This
we define as the set of all the structures towards which the

FIG. 6. Comparison between the crystallographic Myc (gray) and
its multisoliton (red).
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FIG. 7. Residue-wise distance of the Cα atoms in the multisoliton
from their crystallographic coordinates. The red line shows the
Debye-Waller one-σ fluctuation distance in the PDB structure.

Glauber algorithm converges in the limit of vanishing ambient
temperature. A priori, the Glauber attractor should coincide
with the landscape of local minima of the Landau free energy.

As we increase the ambient temperature, the multisoliton
structure starts to thermally fluctuate. At sufficiently high
temperatures the structure can cross over energy barriers that
surround the initial multisoliton profile. If the multisoliton is
not stable, then the structure can be expected to start drifting
away from its vicinity. When the ambient temperature subse-
quently decreases, the structure becomes attracted towards a
local minimum of the free energy. In the case of a protein such
as myoglobin that has an essentially unique and stable fold,
the final conformation coincides with the initial multisoliton.
However, if the protein is intrinsically unstructured there are in
general several local minima and/or high levels of degeneracy
in the free-energy landscape to which it can become attracted;
the final conformation does not need to be unique. In fact, it can
differ considerably from the initial one. The Glauber attractor
can have an elaborated topography. When we repeat the heating
and cooling cycle sufficiently many times, with sufficiently
high-temperature variations, we expect to eventually resolve
for the Glauber attractor.

In the case of Myc we deduce that TH = 10−9 and TL =
10−14 can be considered representative for the high- and low-
temperature factor values that we use in the Glauber algorithm
(10). Similarly, we conclude that 50 × 106 is a representative
number of Monte Carlo steps for a heating and cooling cycle. In
a single cycle we first take 5 × 106 steps at the low-temperature
factor value TL to fully thermalize the system. We then increase
T during 10 × 106 steps linearly on a logarithmic temperature
scale, to the high-temperature factor value TH , and thermalize
the system at TH during 20 × 106 steps. We conclude the cycle
by lowering T back to TL by reversing the heating process. We
repeat the cycle until we are confident that we have identified
the Glauber attractor. We have performed several repeated
heating and cooling simulations, with the number of cycles
varying between 2500 and 5000. Accordingly, we have very
good statistics. There are two production runs that we analyze
in detail. In one we use the full-length Myc structure while in
the other we exclude the residues near the flexible N and C
terminals and simulate only the segment between amino acids
901 and 979. We find the same Glauber attractor in both cases.
We always perform all MD simulations with the full chain
length.

FIG. 8. (a) Evolution of RMSD distance from the crystallo-
graphic Myc structure during the heating and cooling cycle. (b)
Evolution of radius of gyration Rg during the heating and cooling
cycle. The red line denotes the average value over 5175 simulations,
and the gray band determines the one-σ deviation from the average
value.

Figure 8 shows the statistical evolution of RMSD and the
radius of gyration Rg that we obtain in all our heating and
cooling cycles.

There is, on average, an aapproximately 5 Å RMSD
distance between the initial crystallographic structure and
the final structure. This distance is larger than the ∼4.2 Å
one-standard-deviation spread that we observe in the average
value of the RMSD distance from the crystallographic Myc.
Thus the Glauber attractor is degenerate, and there does not
appear to be a single folded state. In particular, the initial
multisoliton is not stable. Such a degeneracy can be expected
in the case of an intrinsically unstructured protein.

FIG. 9. The low-temperature Glauber attractor on the Rg vs.
RMSD plane. The five different clusters that we have analyzed in
detail are identified. The initial multisoliton is marked with a red
triangle in cluster 5. The error bars denote a one-standard-deviation
distance around the average value that determines the average line
(12).

032406-6



MULTISTAGE MODELING OF PROTEIN DYNAMICS WITH . . . PHYSICAL REVIEW E 95, 032406 (2017)

FIG. 10. (Top) The energy landscape of the Glauber attractor, in
terms of Rg vs. RMSD of the final structures. The multisoliton is
marked with a red triangle. Note that the energy of the attractor is
highly degenerate, and free-energy differences are minor. The RMSD
and radius of gyration are measured in Ångströms, and the energy
unit is defined by the overall normalization of (3).

In Fig. 9 we present the Glauber attractor on the RMSD vs.
Rg plane. The figure reveals a highly degenerate landscape of
ground-state conformations. We observe an apparent tendency
for the ground-state conformations to form disjoint clusters. In
the figure we have identified five clusters as examples that we
have analyzed in more detail. Note that one of these examples
(cluster number 5) corresponds to structures that return to the
vicinity of the initial multisoliton of the crystallographic Myc.
We observe that the full Glauber attractor is tightly located
around the line

RMSD ≈ −2.4 Rg + 56.9 (Å). (12)

Figure 9 shows that the initial multisoliton has a tendency to
collapse towards spatially more compact structures.

Figure 10 shows the Landau free-energy landscape of a
Glauber attractor as a function of Rg and RMSD.

The initial multisoliton is marked by a red triangle. It
is unstable, and its Landau free energy is above that of
Glauber attractor states. We note that the free energy is highly
degenerate, to the extent that the clusters of Fig. 9 appear
as space-filling point sets, prolated along the energy axis on
the scale that we use in the figure. A space-filling ground-
state degeneracy is in line with the expected intrinsically
unstructured character of Myc. Thermal fluctuations move
the structure around, making it hop between the different
low-temperature states near the local energy minima.

In Table III we summarize the main characteristics of the
clusters that we identify in Figs. 9 and 10.

TABLE III. Minimimum and maximum
RMSD distance of each cluster from the initial
Myc structure in 1NKP.

Cluster min max

1 16.2 18.7
2 8.7 9.2
3 8.3 8.8
4 3.1 3.4
5 0.9 1.2

FIG. 11. The fraction of structures in the Glauber attractor with
not a single all-atom steric clash according to Pulchra, as a function of
the cut-off parameter R0. Here we adopt the cut-off value R0 = 1.6 Å.

C. Molecular dynamics analysis

We use MD to analyze the local spatial and temporal
stability of clusters in the Glauber attractor. We perform
the simulations at relatively low temperatures, near a room-
temperature value 290 K. Higher temperatures entail larger
amplitude thermal fluctuations and it becomes difficult to
deduce the level of local cluster stability in the background
of large-amplitude thermal motions.

The Landau free energy engages only the Cα backbone, and
thus it can support backbone structures with steric clashes in
all-atom structures. We start by screening out such structures
that lead to steric clashes. For this we use a Pulchra side-chain
reconstruction algorithm to recover an all-atom structure
from the Cα trace. We impose stringently the acceptance
criterion (11). Figure 11 shows the overall acceptance ratio of

FIG. 12. (a) The evolution of RMSD in the three clusters 1 and 4
and the PDB structure 5 under our MD simulations. (b) The evolution
of Rg in the three clusters 1, 4, and 5 under our MD simulations. The
RMSD is computed from the initial structure of the simulation, chosen
randomly in clusters 1 and 4 and as the multisoliton in cluster 5.
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FIG. 13. (a) The evolution of cluster 1 under MD simulation. (b)
The evolution of cluster 5 (PDB structure) under MD simulation.
Color coding for time evolution is same in both figures, but note the
difference in scales.

mean-field Cα structures as a function of the cut-off parameter
R0.

At the value (11) of R0 around 40 percent of Pulchra,
structures are sterically fully consistent. In particular, each of
the five clusters have representatives with sterically acceptable
all-atom structures. But we note a sharp drop in the number of
accepted structures when R0 increases beyond the value (11).

We (randomly) select one all-atom structure from each of
the five clusters for MD stability analysis. We find that only
cluster 1 appears MD stable. In all other clusters, the initial
structure drifts systematically away from the cluster under MD
time evolution. We describe the examples in clusters 1, 4, and
5 in more detail: In Fig. 12 (top) we show the evolution of
RMSD and in Fig. 12 (bottom) we show the evolution of Rg

during our MD simulations.
We note how in both clusters 4 and 5 the initial structure

drifts away from the cluster. In cluster 1 the structure also
initially moves away, but then the values of RMSD and
Rg quickly stabilize: Qualitatively, the evolution in cluster
1 differs from the other two. There is an apparent initial
relaxation of the tension in the Pulchra side-chain assignment,
with corresponding adjustment of the backbone during the
first ∼15 ns. This is followed by a stabilization. In Fig. 13 we
compare the evolution trajectory for cluster 1, with cluster 5 of
the PDB structure. Cluster 1 converges towards a region which
is close to the original cluster, while cluster 5 systematically
drifts away from the initial position. The MD trajectories of
clusters 1 and 5 differ considerably.

FIG. 14. (a) The initial structure from cluster 1 in the all-atom
MD simulation. (b) Representative snapshot structure from halfway
around the trajectory. (c) Representative snapshot structure near the
end of the MD simulation. In the figures we have identified two
residues, Leu-951 and Leu 960.

D. Myc at room temperature

The mean-field structures in cluster 1 have the shape of a
hairpin. In Fig. 14 (top) we show a generic structure, the one
that we use as the initial configuration in our MD simulation.
The two α-helical segments of Fig. 6 have become almost
parallel and quite close to each other.

In the course of the MD time evolution the hairpin continues
to emerge but intermittently: The hairpin shown in Figs. 14
(middle) and 14 (bottom) repeats itself several times during
the time evolution; the middle figure is taken near the halfway
point of the MD simulation and the bottom figure is taken
close to its end. The two hairpins are almost identical and very
similar to the (generic) mean-field cluster 1 structure that we
show in the top figure.

Besides the hairpin of Fig. 14, we identify another structure
that appears repeatedly in our MD simulation. We show it both
in the top (9.74 ns) and bottom (18.52 ns) snapshots of the
motion we outline in Fig. 15. This structure is essentially the
hairpin of Fig. 14, but with a turn near the middle of one of the
two parallel helices. The turn is located right after Leu-951 in
the proximity of the turn that we observed previously in the
crystallographic structure; see Fig. 5.

We deduce that the MD trajectory is akin to a dynamical
two-state system, with oscillatory motion between the hairpin
structure of Fig. 14 and the turn-in-helix hairpin structure
that we show in the top and bottom snapshots of Fig. 15.
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FIG. 15. The MD evolution of the Cα backbone between frames
443 and 786 of Fig. 13.

In Fig. 16 we confirm this; in this figure we show the
results from a secondary structure analysis of the entire MD
trajectory, starting from cluster 1. The secondary structure
profile is remarkably stable, except for the oscillatory two-state
dynamics between the hairpin of Fig. 14 and the hairpin with

FIG. 16. The do.dssp secondary structure analysis of the MD
trajectory. The apparent Davydov soliton in Fig. 15 is identified.

turn-in-helix. The oscillations between the two states start after
an initial hairpin stabilization period of around 8 ns.

In Fig. 17 (top) we show the evolution of an angle which
is formed between the vector pointing from the Cα to Cβ at
site Leu-951 and the corresponding vector at site Ala-955.
The dynamical two-state oscillatory character of the trajectory
is apparent in this figure: After the initial stabilization, the
angle between the two vectors jumps between two different
values, corresponding to the helix and to the turn-in-helix
structures. Such oscillatory behavior between multiple differ-
ent, energetically degenerate structures has been previously

FIG. 17. (a) The angle between vector pointing from Cα to Cβ

at Leu-951, and the vector pointing from Cα to Cβ at Ala-955. (b)
The values of the side-chain η angle [31] during frames 200–1300 of
the MD simulation of cluster 1. We have encircled the portion that
relates to the event in Fig. 15, also identified in Fig. 16.
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identified in the case of intrinsically unstructured proteins
[46]. Energy degeneracy with several different conformational
states, separated by small energy barriers, appears to be
symptomatic for these proteins.

In Fig. 17 (bottom) we show the evolution of the side-chain
η angles along the entire chain during the MD time evolution.
The concept of the η angle has been introduced and analyzed
in Ref. [31]. The angle measures difference in the direction
between neighboring Cα-Cβ vectors, and it characterizes
the local twisting of the side-chain assignment along the
backbone. The focus in the figure is in the time period
between frames 200 and 1300, corresponding to time segment
4.0–26.0 ns. In the figure we identify one relatively long-lived
bend intermediate, with the bend located near Leu-960. This
intermediate originates from the turn at Leu-951, and we
summarize its emergence and evolution in Figs. 15; see also
Fig. 16 and Fig. 17 (top) where the intermediate is identified.
The bend formation starts with the turn first appearing near
Leu-951, as shown in the 9.74-ns snapshot of Fig. 15. This turn
propagates to the vicinity of Leu-960, as shown in snapshots
at 10.78 ns and 11.58 ns. It stays there as a bend (according
do.dssp) for several nanoseconds and then translates back
towards Leu-951 (snapshot at 15.98 ns), where it stops and
forms a turn (according do.dssp) as shown in the snapshot at
18.52 ns. Finally, the turn dissolves and the structure returns
to the hairpin conformation of Fig. 14. The entire oscillatory
event lasts around 9 ns, and it is clearly identifiable in our
simulations.

We propose that the event we summarize in Figs 15 and
17 (bottom) corresponds to a formation and propagation of
Davydov’s Amide-I soliton along the α helix: Apparently, the
hydrogen bonds that stabilize the α helix occasionally break,
causing the formation of a turn near Leu-951. This turn is a
localized quasiparticle akin to Davydov’s soliton. It propagates
along the backbone to the vicinity of Leu-960, bounces back,
and returns to Leu-951, where localizes and then dissolves.

IV. SUMMARY

We have proposed to combine an effective mean-field
description with molecular dynamics. The outcome is a
multiscale algorithm that can be used to model protein

dynamics efficiently both over long time periods and with
atomic-level precision. We have applied the algorithm to study
properties of Myc, which is a biomedically highly relevant
oncoprotein. Myc has an important role in regulation of gene
expression, and a malfunctioning or overexpressed Myc has
been implicated in many cancers from Burkitt’s lymphoma
and neuroblastomas to carcinomas of colon, breast, and lungs.
Accordingly, Myc is subject to vigorous pharmaceutical and
biomedical research, and it is a potentially highly important
target to anticancer drugs.

An isolated monomeric Myc is presumed to be intrinsically
unstructured under physiological conditions. Moreover, as a
momoner Myc has no known biological function, it becomes
biological active only in a heterodimer with protein Max. The
heteromerization rate of Myc and Max should depend on the
conformational state of an isolated monomeric Myc in vivo.
Thus, the investigation of the conformational landscape in
the case of an isolated Myc should have direct biomedical
relevance: When we understand the physical properties of a
monomeric Myc, we can identify mechanisms to control the
rate at which Myc and Max heterodimerize.

We have found that at room temperature a monomeric
Myc has a tendency to turn into a hairpinlike conformation.
We have also found that this conformation is unstable. It
tends to occasionally buckle, at a specific location that we
have identified. Moreover, we have observed that the ensuing
deformation can translate back and forth along the backbone in
a manner that resembles the propagation of Davydov’s Amide
I soliton. Accordingly, the low-energy landscape of Myc is
degenerate, and there is at least a two-state structure between
which Myc oscillates at room temperature. The oscillatory
behavior is in line with the expected character of Myc as an
intrinsically unstructured protein.
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