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Traffic gridlock on a honeycomb city
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Inspired by an old and almost in oblivion urban plan, we report the behavior of the Biham-Middleton-Levine
(BML) model—a paradigm for studying phase transitions of traffic flow—on a hypothetical city with a perfect
honeycomb street network. In contrast with the original BML model on a square lattice, the same model on
a honeycomb does not show any anisotropy or intermediate states, but a single continuous phase transition
between free and totally congested flow, a transition that can be completely characterized by the tools of
classical percolation. Although the transition occurs at a lower density than for the conventional BML, simple
modifications, like randomly stopping the cars with a very small probability or increasing the traffic light periods,
drives the model to perform better on honeycomb lattices. As traffic lights and disordered perturbations are
inherent in real traffic, these results question the actual role of the square gridlike designs and suggest the
honeycomb topology as an interesting alternative for urban planning in real cities.
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As cities turn denser, urban networks tend to adopt a
squared-lattice shape [1], and many traditional urban planning
styles, like the one Spaniards and Portugueses disseminated
through all Latin America, are grounded on such square
patterns [2]. Following this trend, most prominent studies
on city traffic adopt square lattices [3—5]. Despite modern
urban planners’ claim that this design favors connectivity,
the question of whether a square design optimizes traffic
flow has not being studied systematically. In contrast, Nature
usually opts for other alternatives. Hexagonal structures in
two dimensions are present in cellular tissues [6,7], bee
honeycombs [8], and soap bubbles [9,10]. Such patterns arise
by minimizing surface energy on a fixed area [11]. Inspired by
Nature, humans have also implemented hexagonal tesselations
in a wide range of disciplines, including structured materials
[12,13], wireless networks [14], computer graphics [15], etc.
However, in the realm of the urban design, street patterns based
upon hexagonal lock are just a theoretical alternative which has
fallen into oblivion with almost no practical applications (see
[16] and references therein), but hiding possible unexplored
solutions for the overwhelming problem of traffic flow in
modern cities.

The BML model is the simplest traffic cellular automaton
able to exhibit self-organization, pattern formation, and phase
transitions [17-20]. The original model describes two species
of cars (east-running and north-running cars) moving by turns
on a two-dimensional square lattice with periodic boundary
conditions. Thus, the dynamics considers the city as a closed
system with a constant number of cars and, does not allow
cars to change direction. Despite these oversimplifications, the
model allows us to focus on the nature of the phase transition
between free and congested flow, and much extensive research
has been based on it [3,21-23]. Driven by car density, the
control parameter, the system falls into three different phases
according to its asymptotic velocity v: free flow (all vehicles
move v = 1), jammed phase (all vehicles are stuck v = 0),
and intermediate states where jams and free flow coexist on
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a wide density range (0 < v < 1) [24-26]. A recent study
has shown that such intermediate states are a consequence
of the anisotropy inherent to the model [27], which produces
two different phase transitions: one if the system is longer
in the flow direction (longitudinal) and the other if the
system is longer in the perpendicular one (transversal). It
has also been reported that this intermediate phase disappears
when some kind of randomization is introduced [25,28,29],
or the traffic periods for the two cars are increased [30].
Some other extensions include free boundary conditions [31],
four directions for the cars [32], or three-dimensional (3D)
implementations [33]. In contrast, the role played by the
network topology has been overlooked and, there are very
few studies considering the Biham- Middleton-Levine (BML)
model on different lattices: square lattice generalizations with
extra sites in the bonds [34,35] and triangular lattices where
three species of cars are considered [36,37]. In all cases a more
complex behavior with different jammed phases is observed.

The main goal of this work is to test the BML traffic
model [17] on honeycomb lattices. The intention is to explore
how the topology (i.e., the node degree) affects the jamming
transition and, eventually, when a honeycomb lattice offers
a better performance than the square one. As in the original
model, we will implement two car species moving by turns
on a lattice with periodic boundary conditions, which can be
closed on a torus in three different ways. Surprisingly, all
systems show a single well-defined phase transition, although
there is still a preferred flux direction and, moreover, there are
cases where the BML performs better on honeycomb lattices
than on square ones. So, this work questions the assumption
that square grids are always optimal and suggests honeycombs
as interesting alternatives for urban designers.

Model. Consider two types of cars moving zigzag in two
different directions, yellow and black, on a honeycomblike
lattice with periodic conditions (Fig. 1). Each node is con-
nected with three others and can be in one of three states:
empty, occupied by a yellow car, or occupied by a black one.
The cars are initially randomly distributed over the lattice sites
with spatial density p. The fully deterministic dynamics is as
follows: On even (odd) steps, all yellow (black) cars attempt to
advance one lattice site on their zigzag pattern. If the site ahead
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FIG. 1. Average velocity (v) vs density p (solid red line) for the
BML model on 128 x 128 honeycomb lattices. Here and everywhere
(v) is the fraction of random initial configurations with asymptotic
velocity v = 1. Insets show snapshots for free flow (left), one
global jam (center), and random jams (right) on lattices with three
boundaries: rhombic [diamonds and (b)], square [squares and (c)],
and honeycomb [circles and (d)]. The flow direction is defined by just
two (yellow and black arrows) of the three reflection symmetry axes.
Topologically, the honeycomb lattice is equivalent to the brick-wall
lattice (e).

of a car (in color direction) is currently empty, it advances;
otherwise, it remains stationary. The system is implemented
on a torus, i.e., with periodic boundary conditions, as in the
original model. Nevertheless, there is no unique way to close
a hexagonal lattice on a torus, but three [38]: square, thombic,
and honeycomb [Figs. 1(b)-1(d)]. We shall consider all these
three tori in the most part of our analysis.

Absence of anisotropy. Starting the simulations from ran-
dom configurations, the system reaches one of its limiting
states after a transient period. If the system size is large
enough (L > 64), there are only two different limiting states
[Fig. 1(a)]: a free-flow phase, where all cars move freely
every time step (v = 1) and a jammed phase, where no cars
move (v = 0). Contrary to the original model, there are no
intermediate states, and the system exhibits a sharp jamming
transition between these two phases [Fig. 1(a)].

As in the original model, there is a preferred flow direc-
tion: the one bisecting the two directions for cars and, in
consequence, it could be possible to find a similar anisotropy in
the correlation length. Let us start by studying the isotropy of
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FIG. 2. Longitudinal & and transversal &, correlation lengths
from final configurations at densities p in the range [0.265-0.310]
for honeycomb lattices of different sizes with the three boundary
conditions. Each point is an average over 50 configurations. The
dashed lines show the power-law fits with anisotropy exponents
0~ 1.0, i.e., the system behaves isotropic. Here and everywhere the
error bars are 3o0.

the system. If the density is large enough, the system reaches a
jamming state after a transient period. Following the methods
applied in [27], we define the parallel (perpendicular) spatial
correlation function [18] as

- 1 . L -
G’ = N<Z o(f)-o(r+ r’)>, (0

where o (F) =1 (0) if the site with position 7 is occupied
(empty), N is the total number of cars and r’ is a vector
in the direction || (L) you want to compute the correlation
function along. The symbol () denotes averages over final
jammed configurations starting from different random initial
conditions at densities slightly above the jamming transition.
The correlation functions are fitted with exponentials G (1)
exp(—r/&j1)) to estimate the correlation lengths &) in
each direction. The anisotropy exponent 6 can be estimated
numerically from the fact that, close to the critical point, the
two correlation lengths must be related by & ~ &9 [39,40].

Figure 2 presents the correlation lengths computed from
final configurations of the BML model for the three different
honeycomb tori with different sizes and at densities close to
the threshold transition. A power-law fit gives values for 6
very close to 1, meaning that the system can be considered
isotropic, such that the standard finite-size scaling (FSS)
theory is suitable for describing the phase transition. Indeed,
simulations on systems with different aspect ratios (not shown
here) show no difference on the transition. This surprising
result is, therefore, not a consequence of the preferred flow
direction alone, but also of the grid itself.

The jamming transition. Figure 3(a) shows the transition
curves for several system’s sizes, ranging from L = 64 to L =
1024. In the honeycomb-torus case, the size L denotes the torus
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FIG. 3. Finite-size scaling analysis for the dynamical phase transition. (a) Transition curves for the three types of torus (symbols) with five
different system sizes (colors), ranging from L = 64 to L = 1024. Each point is averaged over 2000 (1000) final configurations for L < 512
(L = 1024), obtained after convergence (v = 0 or v = 1) or after 2x 103 time steps (whichever comes first). (b) Scaling of the transition width
A(L). Dashed lines are power-law fits for the three tori, giving 1/v = 0.38(3) on average. (c) Scaling of the finite critical density. Because
of strong finite-size effects, we neglect L = 64, and obtain p.(c0) = 0.244(3) on average. (d) Average speed in function of time for five
configurations. Dotted lines show the definition of the relaxation time 7,,. The inset evidences that 7/, follows a log-normal distribution.
(e) Mean relaxation time 7y, for densities above p.(00) on the honeycomb torus (results on other tori are quite similar). The slope gives on
average a critical exponent x = 1.55(2). (f) Scaling of the relaxation time at the critical point 7,5(p.). On average, we obtain a dynamical
critical exponent z = 0.50(6). Each point on the last two figures is averaged over 100 configurations.

with the number of nodes closest to L2.! As in many models
with phase transitions in statistical physics (e.g., percolation
[41]), the value of the critical density p. decreases with system
size, reaching a critical value p, as the system size approaches
infinity. By fitting the transition curves with an error function,
Figs. 3(b) and 3(c) show that the transition width and the
density threshold scale as [42]

A(L) ~ L™ and |p, — (po(L))] ~ L™ 2)

The values obtained for v and p.(0c0) are very similar for the
three tori. On average, we obtain 1/v = 0.38(3) and p.(c0) =
0.244(3).

To investigate the dynamics of the model in the jammed
state, let us define 7;/, [18] as the time when the average
speed is half of the initial speed [Fig. 3(d)]. This relaxation
time follows a log-normal distribution and, therefore, its mean
value can be estimated as (7;,,) = exp(u + 02/2), with u ~
15 Inty, and 02 > L3 (In7)5, — w)* In the jammed
phase (p > p.), Fig. 3(e) shows that (7y,;) is independent
of the system size and scales as (71,2) ~ (0 — p.)~* with

'A honeycomb torus of size n has 6n nodes and n hexagons be-
tween the center and boundary. Thus, a L? torus actually corresponds
to a torus in which n is the closest whole number of L /+/6.

x =1.55(2). In addition, the values of 7y, at the critical
density p. scales with system size as (t1,2)(p.,L) ~ L*, with
z = 0.50(6) [Fig. 3(f)]. The finite size scaling theory suggests
that above the transition point x/v =z = 0.56(5), in fair
agreement with the value above.

A mean-field analysis. Interestingly, the critical density
can be approximated by using a naive mean-field analysis,
inspired by [43]. Consider the mean velocity of yellow cars
(by symmetry, the reasoning is also valid for black cars). A
yellow car will stop either because it is blocked by a black
car or by another yellow car. On honeycomb lattices, there is
almost no difference between these two types of interactions.
At a random initial configuration, the probability that a car
is blocked is p, that is, at the beginning of the simulation
the proportion of stopped cars must be equal to p. Since
black (yellow) cars spend on average a time 1/v on a site,
they will reduce the speed of yellow cars from unity by p/v.
Hence, a self-consistency equation for the average speed v
will be

v:l—ﬁ,
v

3)

which gives p. as the critical density at which the equation
ceases to give a real solution. That occurs at p, = 0.25,
very close to the value of 0.244(3) obtained from finite size
scaling.
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FIG. 4. Effects of two modifications of the BML model on both rhombic tori (diamonds) and square lattices (triangles). (a) Effect of
including a random update, where cars move with probability P if the target site is empty. The figure shows the critical density p. as a function
of 1 — P for lattice sizes L = 128. Insets show the transition curves for three values of P. (b) Effect of increasing the traffic light period .
The figure shows transition curves for t = 2 and v = 4 on lattices with size L = 256. Each point in both figures is averaged on 400 runs.
Measurements are obtained after 6x 10° time steps or until convergence (whichever comes first).

A comparison with the square lattice. Remarkably, the
critical density p, = 0.244(3) for the BML model on a
honeycomb is lower than the value of 0.283(2) for the lowest
transition on a square lattice [27]. However, this order is
reversed in at least two cases. First, let us remove full
synchrony by introducing a random update [28], where a car
advances with probability P < 1 if the target site is empty; a
modification that also destroys the intermediate state in of
the BML model on square lattices [25,28,29]. Figure 4(a)
compares the critical density of the model as function of
1 — P on a rhombic torus with the one on a square lattice.
The BML on a square lattice follows a power law behavior,
with p. oc (1 — P)~%22(D_and behaves better only for a narrow
interval. Below P = 0.96, the honeycomb lattice overcomes
the square one and behaves better, that is with a higher critical
density.

Second, we have also studied the effect of increasing the
traffic-light periods, that is cars on each direction have the
chance to advance in t consecutive time steps (r = 1 for
the original model), maintaining the parallel updating scheme.
This also destroys the intermediate states on the original BML
model and, furthermore, produces a spatial phase separation
with small global speeds at intermediate densities [30]. Again,
rhombic tori show higher critical densities than square lattices,
even for T = 2 or T = 4 [Fig. 4(b)]. These results suggest that
the model on a honeycomb is more resilient against small
perturbations than on a square lattice.

Discussion. We have shown that the BML model with two
flow directions behaves isotropically on honeycomb networks.
There are no intermediate states, and a sharp transition from
the moving phase to the jamming phase is observed at a critical
vehicle density. Despite the fact that there is a preferred flow
direction, the correlation length shows to be isotropic. This
surprising result may be a consequence of the symmetries
of the honeycomb. Indeed, it has been shown that high-order
tensors on a hexagonal lattice (the dual lattice of a honeycomb)
are isotropic up to second order in the grid size [44]. Whether
this is the reason for such isotropy or not will be an interesting
subject of future research.

By performing a classical scaling analysis, we characterized
completely the transition, measuring the critical density and
three critical exponents. Although the model shows a lower
critical density than on square lattices, this issue is reversed
by introducing small and simple perturbations, like increasing
the traffic light periods or including a random update with
very low probabilities to brake. Street patterns based upon
hexagonal blocks were proposed by several planners in the
early 20th century [16]. Despite urban designers demon-
strating the economic advantages and efficient land use of
hexagonal plans, this idea never ceased to be a theoretical
alternative to the rectangular grid, never implemented in urban
street patterns. Furthermore, the contemporary movements of
new urbanism claims that square grid layouts increase the
connectivity,” dispersing traffic and reducing driving times,
because they are assumed to be mixed use, walkable, and
more pedestrian friendly. However, such assumptions are
criticized by practical considerations [16]. Indeed, empirical
data about safety [45,46] suggest that four-leg intersections,
ubiquitous in square grids, increase both the number of
crashes and injuries significantly, suggesting to reconsider
urban residential layouts where T junctions and dead ends
predominate (cul de sac, radburn, fused grid). This is why city
planners use to restrict flow direction emulating T junctions,
even at the cost of reducing connectivity. Although those
issues are usually thought of in a highways network, they
also apply to residential neighborhoods, because residential
and working areas mix as cities become denser and, real-time
traffic applications push cars into residential areas to avoid
jams. This is the case in many Latin American cities. Thus,
honeycomb grids emerge as a unifying idea, i.e., T junctions
plus connectivity.

Our results suggest that the BML model on hexagons
under perturbations is more robust than on squares. Since
the included perturbations, i.e., traffic lights and disorder,

2See http://www.newurbanism.org/.
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are crucial in real traffic, this work questions the real role
of square gridlike designs and supports honeycombs as
an interesting alternative for urban densification processes.
Regarding practical applications, a honeycomb lattice can be
mapped into a brick-wall lattice [see Fig. 1(e)] which, in turn,
can be derived from the square lattice by eliminating bonds.
Thus, instead of an improbable reconstruction of the city, we
could emulate the honeycomb topology by restricting the flow
in certain road segments. Of course, our model oversimplifies
the city, as most previous BML models do. A real city is

PHYSICAL REVIEW E 95, 032320 (2017)

an open system, with cars entering and leaving the flux all the
time, as described by empirical origin-destination matrices and
the incoming flux as control parameter. Testing a honeycomb
network against a square one in that context would be a
beautiful subject of future work and a further contribution
of statistical physics to the urbanism theory.
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