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Despite the abundance of bipartite networked systems, their organizing principles are less studied compared
to unipartite networks. Bipartite networks are often analyzed after projecting them onto one of the two sets of
nodes. As a result of the projection, nodes of the same set are linked together if they have at least one neighbor
in common in the bipartite network. Even though these projections allow one to study bipartite networks using
tools developed for unipartite networks, one-mode projections lead to significant loss of information and artificial
inflation of the projected network with fully connected subgraphs. Here we pursue a different approach for
analyzing bipartite systems that is based on the observation that such systems have a latent metric structure:
network nodes are points in a latent metric space, while connections are more likely to form between nodes
separated by shorter distances. This approach has been developed for unipartite networks, and relatively little
is known about its applicability to bipartite systems. Here, we fully analyze a simple latent-geometric model
of bipartite networks and show that this model explains the peculiar structural properties of many real bipartite
systems, including the distributions of common neighbors and bipartite clustering. We also analyze the geometric
information loss in one-mode projections in this model and propose an efficient method to infer the latent pairwise
distances between nodes. Uncovering the latent geometry underlying real bipartite networks can find applications
in diverse domains, ranging from constructing efficient recommender systems to understanding cell metabolism.
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I. INTRODUCTION AND MOTIVATION

Many real-world networks have a bipartite structure:
Nodes can be separated into two disjoint sets and links
exist only between nodes of different sets. Real bipartite
networks are often characterized by two common properties:
(i) heterogeneity in distributions of node degrees and (ii) a
large number of common neighbors shared between pairs
of nodes. The heterogeneity of degree distributions has been
studied extensively in both traditional (unipartite) and bipartite
networks and comes as no surprise. In many bipartite systems
heterogeneous degree distributions can be approximated by
power laws, P (k) ∼ k−γ , which are observed for at least one
of the two sets of nodes [1–6]. The second property, on the
other hand, has not been studied extensively and deserves a
thorough investigation.

In Fig. 1(a) we show the distribution P (m) of the number m

of common neighbors between nodes in several real bipartite
systems: the actor-film network derived from the International
Movie Database (IMDb) [7], condensed matter (Condmat) and
high-energy physics (HEP) collaboration networks derived
from the arXiv [8], Wikipedia [9], and the network of metabolic
reactions [10] (see Appendix A). For each of these networks,
we calculated the distribution of the number of common
neighbors shared between pairs of nodes, P (m). We see that the
number of common neighbors in these networks is power-law
distributed,

P (m) ∼ m−τ , τ > 2, (1)

so significant fractions of node pairs share many common
neighbors. Similar observations have been made for other
bipartite systems. For instance, the probability of two insect

species pollinating m different kinds of flowers in common
has been shown to follow a truncated power law [11].
Similarly, a fat-tail distribution of the number of shared
requests between two users has been observed in peer-to-peer
networks [12].

To better understand the mechanisms leading to the abun-
dance of common neighbors in bipartite systems, we first
ask if the observed fat-tail distributions of P (m) are the
consequence of heterogeneous degree distributions P (k). To
answer this question, we randomly rewire our real bipartite
networks by preserving the degrees of individual nodes (see
Appendix B). We find that P (m) in the randomized networks
exhibits very fast decays, such that the maximum number of
common neighbors between nodes is very small, see Fig. 1(a).
This result suggests that the heterogeneity of P (m) is not
caused by the heterogeneity of P (k). Second, we also check
if the heterogeneous shape of P (m) is driven by all pairs of
nodes in the network or by a handful of high-degree nodes.
To this end, we focus on node pairs with a large number of
common neighbors. We create a heatmap by counting pairs
of HEP authors sharing at least m = 10 publications, and
whose publication record sizes, i.e., degrees, are k1 and k2.
As seen from Fig. 1(b), author pairs with m � 10 common
publications do not necessarily consist of authors that have
published a large number of papers, as one would expect from
a random collaboration pattern. On the contrary, we see that the
majority of author pairs with at least 10 common publications
involve authors who barely published over 10 publications
each. This observation is not specific to the HEP collaboration
network: We checked that in all considered networks both
small- and large-degree nodes can have a large number of
common neighbors.
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FIG. 1. Number of common neighbors and clustering in real
bipartite networks and in their degree-preserving randomized coun-
terparts. (a) The distribution of the number of common neighbors,
P (m), for pairs of top nodes in the Condmat and HEP collaboration
networks, the IMDb network, and the metabolic network. The results
for the original real networks are shown with squares, whereas those
for their degree-preserving randomized counterparts are shown with
circles. By the top nodes in each network we refer respectively to
authors, actors, and metabolites, whereas manuscripts, films, and
reactions are referred to as bottom nodes (Appendix A). (b) Number
of HEP author pairs having m � 10 common publications as a
function of their total number of publications k1 and k2. (c), Average
bipartite clustering coefficient of top nodes, ct

B , as a function of their
degree k for the same real networks (squares) as in panel (a) and
for their degree-preserving randomized counterparts (circles). The
bipartite clustering coefficient is significantly larger in the original
real networks compared to their randomized counterparts.

The heterogeneity in the observed number of common
neighbors implies the existence of a large number of 4-loops

FIG. 2. Schematic illustration of a synthetic bipartite network in
latent geometric space. The network consists of N = 100 top (red)
nodes and M = 200 bottom (blue) nodes, connected as described in
Sec. III. The nodes are placed on a disk of radius 1. Their angular
coordinates are random on [0,2π ]. The radial coordinates of all
bottom nodes are rj = 1, ∀j , so they all are at the disk edge, while
the radial coordinates of top nodes are ri = 1 − ln ki

ln kmax
, where ki is the

degree of node i and kmax is the largest node degree of the top domain.
Node sizes are proportional to the logarithm of node degrees.

in real bipartite networks. Indeed, a pair of nodes a,b sharing a
large number of common neighbors will have a large number
of 4-loops passing through them, that is, loops of the form
a → c → b → d → a. Supporting this observation, we also
find that real bipartite systems are characterized by strong
bipartite clustering, which quantifies the density of 4-loops
in the network, see the definition in Sec. III G. Bipartite
clustering is typically several orders of magnitude larger in
the original networks compared to their degree-preserving
randomized counterparts, Fig. 1(c). We also note that similar
clustering-related heterogeneity has also been observed in
unipartite networks. Many real unipartite networks have been
shown to exhibit power-law distributions of edge multiplicity,
defined as the number of triangles shared by edges [13].

A. Latent geometry of bipartite networks

Here we show that the observed common properties of
real bipartite networks can be explained by the existence
of latent geometric spaces underlying these networks. That
is, we assume that nodes in bipartite networks are points
in some geometric space underlying the system. The latent
coordinates of nodes in the space abstract node attributes,
while latent distances between nodes play the role of a
generalized similarity measure: The more similar the two
nodes, the smaller the latent distance between them, and the
higher the probability that the nodes are connected (Fig. 2).
To illustrate, consider the IMDb network for instance, where
actors are linked to films they starred in. Clearly, connections
in this network are not random. Both actors and films can
be characterized by numerous attributes, so connections are
the result of a certain mutual match between these attributes.
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These attributes include genres, geographic locations of films,
film release dates, etc. Similar parallels can be drawn for
other systems. For instance, connections between authors and
manuscripts in collaboration networks are driven by many
factors, including the expertise of the authors, their geographic
location, their methodology, and so on. Collectively these
attributes define similarity distances between nodes in a latent
space.

The large numbers of common neighbors and strong cluster-
ing observed in real bipartite systems are then a reflection of the
triangle inequality in the latent space. Consider, for example,
two actors A1 and A2 and a film F mapped to three points in
a metric space. The triangle inequality in the space prescribes
that d(A2,F ) < d(A1,A2) + d(A1,F ), where d(X,Y ) denotes
the distance between nodes X,Y in the space. If distances
d(A1,A2) and d(A1,F ) are small, then d(A2,F ) is also small,
so both actors A1,A2 are likely to costar in film F ; that is,
F is likely to be a common neighbor of A1 and A2. As the
number of common films between two actors A1,A2 increases,
so does bipartite clustering, that is, the number of loops of the
form A1 → F1 → A2 → F2 → A1. We stress the importance
of the metric property in a latent space: If latent distances do
not satisfy the triangle inequality, then bipartite networks built
using these distances do not have many common neighbors
and strong bipartite clustering (Appendix C).

B. Organization of the manuscript

To further support our geometric assumption we organize
the rest of the manuscript as follows.

We begin with the review of related work in Sec. II.
In Sec. III we conduct a detailed analysis of a model of
synthetic bipartite networks constructed in the latent space.
We show that the model generates bipartite networks with
either heterogeneous or homogeneous degree distributions in
a given node domain and with power-law distributions of the
number of common neighbors and strong bipartite clustering.
In Sec. IV, we investigate how the latent geometry of
bipartite systems is transformed under one-mode projections
and prove that one-mode projections cannot fully preserve
latent geometry. However, we also show that under certain
conditions latent geometry can be preserved approximately. In
Sec. V, we propose a procedure for efficient estimation of the
latent pairwise distances between pairs of nodes. Final remarks
are in Sec. VI.

II. RELATED WORK

Bipartite networks have been successfully used to model
a large array of complex systems including collaboration
networks [14,15], metabolic reactions [10,16,17], peer-to-
peer networks [12,18], and recommender systems [19–22].
Bipartite networks can be represented as hypergraphs, gener-
alizations of graphs where a single edge can connect multiple
nodes [23]. Hypergraphs, in their turn, are further generalizable
to multipartite hypergraphs, where hyperedges may connect
several nodes of different type. Recently, tripartite hypergraphs
have been proposed to model tagged social networks, also
known as folksonomies [24–28].

The concept of latent space has been initially introduced to
model homophily and similarity in social networks [29,30].
Lately, latent space models are attracting great interest in
many diverse fields including sociology [31–33], statistical
physics [34,35], and computer science [34–36]. Another
closely related research area is that on random geometric
graphs, well studied in mathematics and engineering [37–39],
particularly due to its relevance to wireless networks [39].

Two models of random bipartite geometric graphs have
been proposed recently. The first model is the AB random
geometric graph (AB RGG) [40], defined as the two sets
of points scattered as two independent Poisson processes
in Euclidean space with connections between points from
different sets established if distance between them is less then
the threshold distance. AB RGGs are motivated by wireless
networks where transmission and reception of a signal occurs
at different frequencies [41]. Thus, of primary interest in AB
RGGs are the connectivity and percolation properties [40,42].

The second model is inspired by the hidden variable
formalism [43,44]: Network nodes map to points in the
latent space and connections between them are drawn with
probabilities depending on distances between the nodes in
the underlying space. It was shown in Refs. [45–47] that if
latent geometry is hyperbolic, then random geometric graphs
in it reproduce common structural and dynamical properties
of unipartite networks—scale-free degree distribution, strong
clustering, community structure, and large-scale growth dy-
namics. Equivalent to hyperbolic random graphs are random
graphs in Euclidean space with power-law distributed hidden
variables [45]. This model has been recently generalized to
bipartite networks in Ref. [48], where it was called theS1 × S1

model and utilized to study cell metabolism.

III. TOPOLOGICAL PROPERTIES OF BIPARTITE
NETWORKS AS REFLECTIONS OF LATENT GEOMETRY

In this section we conduct a detailed analysis of theS1 × S1

model of a bipartite network in the simplest compact latent
space, circle S1.

A. Definitions and the S1 × S1 model

We refer to the two groups of nodes in a bipartite network
as top and bottom nodes, and denote their number by N and
M , respectively. Within the modeling framework we consider,
network nodes map to points in a latent geometric space, and,
as a result, every node of the network is characterized by its
coordinates in this space. Both top and bottom nodes belong
to the same space and, thus, distances are defined between all
pairs of nodes. Yet, to generate bipartite networks, connections
are allowed only between nodes of different domains. To
achieve heterogeneity in node degrees and to allow some nodes
to connect over large distances, every node is also assigned
a hidden variable. To distinguish top and bottom nodes, we
denote these hidden variables as {κi} and {λj }, respectively.

To form a bipartite network, every top-bottom pair of nodes
i,j is connected with a probability rij , which depends on the
distance between the nodes and their hidden variables,

rij = r

(
dij

dc(κi,λj )

)
, (2)
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where r(x) is the connection probability function, dij is
the distance between the nodes in the geometric space, and
dc(κi,λj ) is a characteristic distance scale, allowing one to vary
the importance of small distances depending on the nodes’
hidden variables. Even though any integrable function r(x)
can, in principle, serve as the connection probability function,
we use

r(x) = (1 + xβ )−1, β ∈ (1,∞). (3)

Our choice for the connection probability function is
dictated by the maximum entropy principle [45] and formalizes
one’s intuition that similar nodes are more likely to be
connected than dissimilar nodes. Indeed, r(x) is a decreasing
function of x, such that r(x) → 0 as x → ∞ and r(x) → 1
as x → 0+. Further, parameter β in Eq. (3) controls the
abundance of long-distance connections: The larger the β,
the less preferred the longer-distance connections.

We focus on the simplest realization of the model, where
top and bottom nodes are placed uniformly at random on a one-
dimensional Euclidean ring S1 of radius R, with probability
density functions (pdfs) ρt (θ ) = ρb(φ) = 1

2π
. Given R, the

densities of top and bottom nodes on the ring are δt = N
2πR

and δb = M
2πR

. The hidden variables of the top and bottom
nodes are drawn at random from pdfs ρt (κ) and ρb(λ). To
ease notation, in the rest of the paper we drop the indices
from the top and bottom hidden variable distributions, i.e.,
ρt (κ) ≡ ρ(κ) and ρb(λ) ≡ ρ(λ). To achieve heterogeneous
degree distributions, we choose the characteristic scale in
Eq. (2) as dc(κi,λj ) = μκiλj , which allows nodes with large
hidden variables to connect over large distances with higher
probability. Parameter μ > 0 rescales all latent distances and
controls the expected degrees of the top and bottom domains.
Without loss of generality, we set R = N

2π
, which corresponds

to the unit density of top nodes, i.e., δt = 1. We are interested in
large and sparse bipartite networks, E ∝ N ∝ M 	 1, where
E is the number of edges.

Even though nodes from both domains in the model belong
to the same Euclidean ringS1, we refer to the model as theS1 ×
S1 model to emphasize its bipartite structure and to distinguish
it from the S1 model for unipartite networks developed in Ref.
[49]. The model is fully specified by the number of top and
bottom nodes N and M , the connection probability function
r(x), and the pdfs ρ(κ) and ρ(λ). It can be summarized as
follows:

(1) Sample the angular coordinates of top nodes θi , i =
1,2, . . . ,N , uniformly at random from [0,2π ], and their hidden
variables κi , i = 1,2, . . . ,N , from the pdf ρ(κ);

(2) Sample the angular coordinates of bottom nodes φj ,
j = 1,2, . . . ,M , uniformly at random from [0,2π ], and their
hidden variables λj , j = 1,2, . . . ,M , from the pdf ρ(λ);

(3) Connect every top-bottom node pair with probability

r(κi,θi ; λj ,φj ) = 1

1 + [ d(θi ,φj )
dc(κi ,λj )

]β
,

d(θi,φj ) = R(π − |π − |θi − φj ||),
dc(κi,λj ) = μκiλj . (4)

The hidden variables in the S1 × S1 model allow long
distance connections among some nodes and are necessary

to achieve heterogeneous degree distributions. An alternative
approach to achieve heterogeneity in node degrees is to
consider latent spaces of nonzero curvature. Even though both
approaches are fully equivalent (see Appendix D), we utilize
the former approach as it is more convenient for calculations.

B. Basic properties

The basic topological properties of synthetic networks
constructed by the S1 × S1 model can be obtained in a
straightforward manner. Since angular node coordinates are
sampled uniformly at random from [0,2π ], the expected
degree of a top node with hidden variable κ and angular
position θ , k(κ,θ ), is given by

k(κ,θ ) = M

2π

∫
dλ ρ(λ)

∫ 2π

0
dφ r

(
d(θ,φ)

μκλ

)
. (5)

Notice that due to the uniform angular distribution of nodes
k(κ,θ ) is independent of θ , k(κ,θ ) = k(κ). The evaluation of
the inner integral in Eq. (5) leads to

k(κ) = μM

πR

∫
dλ λρ(λ)K2F1

(
1,

1

β
,1 + 1

β
, − Kβ

)
, (6)

K ≡ Rπ

μκλ
, (7)

where 2F1 is the hypergeometric function. For sufficiently
large networks, the expected degrees for nodes with κ values
satisfying M 	 κ can be approximated as

k(κ) ≈ μMI

πR
κλ, (8)

where

I ≡
∫ ∞

0
r(x) dx = (π/β)csc(π/β), (9)

and λ ≡ ∫
dλ λρ(λ). The expected degree of the entire top

node domain, k, is given by averaging k(κ) over all possible κ

values,

k =
∫

dκ ρ(κ)k(κ) ≈ μMI

πR
κλ, (10)

where κ ≡ ∫
dκ κρ(κ). Since the model is defined symmetri-

cally for top and bottom nodes, the expected degrees for the
bottom domain can be obtained by swapping top and bottom
node variables in Eqs. (8) and (10),

�(λ) ≈ μNI

πR
λκ, (11)

� ≈ μNI

πR
κλ. (12)

It can be seen from Eqs. (8) and (11) that μ is a dumb
parameter in the sense that for any particular value of μ, one
can always rescale the hidden variables assigned to top and
bottom nodes, {κi},{λj }, in order to obtain desired {ki(κi)} and
{�j (λj )} values. Therefore, to simplify notation we set

μ = πR

MIλ
= πR

NIκ
. (13)
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FIG. 3. Expected degree of the node, k, in the S1 × S1 model as
a function of its hidden variable κ . The k̄(κ) curves are shown for
different bottom domain sizes and ρ(λ) = (γb − 1)λγb−1

0 λ−γb with
γb = 2.5 and λ0 corresponding to λ = 10. Each point is the average
over 100 realizations. Note that k(κ) ≈ κ for κ � M , supporting
Eqs. (8) and (14). At the same time, k(κ) → M as κ → ∞. The
horizontal dashed lines show corresponding values of M .

The second equality in the above relation holds since the
expected number of links in the bipartite network is E =
M� = Nk. Using Eq. (13), we can rewrite Eqs. (8)–(12) as

k(κ) = κ, (14)

k = κ, (15)

�(λ) = λ, (16)

� = λ. (17)

Equations (14) and (16) indicate that the hidden variables
of nodes are their expected degree values in the resulting
topology, see Fig. 3. Figure 3 also illustrates how the
approximation in Eq. (8) becomes better for high values of
κ as the size of the network increases.

C. Degree distributions

To compute the degree distributions of the top and bottom
nodes we consider the propagators g(k|κ,θ ) and g(�|λ,φ). The
propagator g(k|κ,θ ) (g(�|λ,φ)) is defined as the probability
that a top (bottom) node with hidden variables κ,θ (λ,φ) forms
exactly k (�) connections to bottom (top) nodes. Since the
angular coordinates of nodes are uniformly distributed, the
propagators do not depend on the node angles θ and φ, and in
the case of sparse bipartite networks they can be approximated
by the Poisson distribution [50], that is,

g(k|κ,θ ) = g(k|κ) ≈ e−κ [κ]k/k!, (18)

g(�|λ,φ) = g(�|λ) ≈ e−λ[λ]�/�!. (19)

The degree distributions of the top and bottom domains are
obtained by averaging the corresponding propagators over the
possible values of the hidden variables,

P (k) =
∫

dκ ρ(κ)g(k|κ), (20)

P (�) =
∫

dλ ρ(λ)g(�|λ). (21)

It can be seen from Eqs. (18)–(21) that P (k) and P (�)
are independent of one another—they only depend on ρ(κ)
and ρ(λ), respectively. Furthermore, the Poissonian character
of the propagators g(k|κ) and g(�|λ) indicates that the
resulting degree values of nodes in both domains are narrowly
distributed around their hidden variables. This means that
the functional forms of P (k) and P (�) will be similar to
those of ρ(κ) and ρ(λ), allowing one to construct different
degree distributions by engineering proper pdfs of hidden
variables ρ(κ) and ρ(λ). Even though real bipartite systems are
characterized by different degree distributions, of our primary
interest are scale-free and Poissonian distributions, which we
discuss in Sec. III E below.

D. Degree-degree correlations

Degree-degree correlations can be quantified using the
average nearest neighbor degree, defined as the average
degree of all neighbors of nodes with given degree k [51].
It is straightforward to verify that the S1 × S1 model is
characterized by random degree-degree correlations due to
the uniform placement of nodes on S1:

�nn(k) = �2

�
, (22)

knn(�) = k2

k
. (23)

Indeed, the connection probability between two nodes with
fixed hidden variables κi and λj is proportional to the product
of these hidden variables:

r(κi,λj ) = 1

4π2

∫∫
dθi dφj r(κi,θi ; λjφj ) ∝ λiκj . (24)

Then, since hidden variables are equal to expected node
degrees, this result can be regarded as the soft equivalent
of p(ki,�j ) ∝ ki�j in uncorrelated bipartite networks, where
p(ki,�j ) is the probability that randomly chosen nodes with
degrees ki and �j are connected. The rigorous proof of
Eqs. (22) and (23) can be obtained following the hidden
variable formalism for bipartite networks [50].

E. Categories of bipartite networks

Based on the degree distributions of the top and bottom
domains, real bipartite networks often fall into two categories.
The first category corresponds to networks with scale-free
degree distribution in both top and bottom domains (sf-sf).
The second category corresponds to networks with scale-
free degree distribution in one domain and Poisson degree
distribution in the other domain (sf-ps). Among the real
networks that we consider, IMDb, Wikipedia, and the HEP
collaboration network fall into the first category. The Condmat
collaboration network and the network of metabolic reactions
fall into the second category (see Appendix A).

Since P (k) and ρ(κ) are expected to be of similar functional
form, one can see that a scale-free degree distribution P (k) ∼
k−γ can be obtained by using the continuous power-law
distribution of κ on [κ0,∞)

ρ(κ) = (γ − 1)κγ−1
0 κ−γ (25)
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with the desired (“target”) value of exponent γ of degree
distribution P (k). Indeed, it follows from Eqs. (18) and (20)
that in this case

P (k) ≈ (γ − 1)κγ−1
0

[k − γ + 1,κ0]

[k + 1]
∼ k−γ . (26)

Parameter κ0 > 0 is the smallest κ value, i.e., the expected
minimum node degree, which also controls the mean value
of κ ,

κ̄ = κ0(γ − 1)/(γ − 2), (27)

and the expected averaged degree k̄ = κ̄ (15).
The Poisson degree distribution can be obtained by choos-

ing ρ(κ) = δ(κ − κ), where δ(x) is the Dirac δ function and κ

is the expected degree of the domain. The degree distribution
P (k) in this case is given by

P (k) = g(k|κ) = e−κ [κ]k/k!. (28)

Due to the symmetry of the model, the degree distribution
of the bottom domain can be obtained similarly through the
proper choice of ρ(λ). The independence of P (k) and P (�)
allows one to construct bipartite networks with an arbitrary
combination of degree distributions for the top and bottom
domains.

For illustration, we visualize in Fig. 2 a toy sf-ps network
consisting of N = 100 and M = 200 nodes. The hidden
variables of the top nodes are drawn from the pdf ρ(κ) =
(γ − 1)κ−γ , γ = 2.1, κ ∈ [1,∞), κ̄ = (γ − 1)/(γ − 2), while
the bottom node hidden variables are chosen as λi = λ for
all nodes i, where λ satisfies Nκ = Mλ. The connections
are drawn with probability r(x) prescribed by Eq. (4) with
β = 1.5.

F. Number of common neighbors

The number of common neighbors is the most basic
nonbinary network-based measure of similarity between two
nodes in a bipartite network—the smaller the similarity
distance between two nodes, the more similar the nodes are,
and the larger the number of neighbors they are expected to
share. This makes the number of common neighbors a crucial
measure, allowing one to estimate the similarity distance
between two nodes in a bipartite network, Sec. V. Below,
we analyze this measure in the S1 × S1 model.

Consider two top nodes characterized by hidden variables
κ1 and κ2 and angular coordinates θ1 and θ2. The probability
p12 that these two nodes are simultaneously connected to a
bottom node with hidden variable λ and angular coordinate
φ is

p12 = r(κ1,θ1; λ,φ)r(κ2,θ2; λ,φ), (29)

where r(κ,θ ; λ,φ) is the connection probability in Eq. (4). The
expected number of common neighbors between these two
top nodes, m(κ1,θ1; κ2,θ2), can be calculated by averaging p12

over all possible positions φ and hidden variables λ of bottom
nodes,

m(κ1,θ1; κ2,θ2)

= M

2π

∫∫
ρ(λ)r(κ1,θ1; λ,φ)r(κ2,θ2; λ,φ) dλ dφ. (30)

Due to the uniform distribution of angular coordinates,
m(κ1,θ1; κ2,θ2) depends on the angular (similarity) distance
between the two top nodes, �θ12 = π − |π − |θ1 − θ2||,
and not on their individual coordinates θ1 and θ2. That
is, m(κ1,θ1; κ2,θ2) ≡ m(κ1,κ2,�θ12). It is straightforward to
verify (see Appendix E 1) that m(κ1,κ2,�θ12) is independent
of the network size N ∝ M . It depends only on the node
hidden variables κ1,κ2 and the distance between the nodes
d12 = R�θ12 ∝ N�θ12. It follows from Eq. (30) that for
any values of κ1,κ2, m(κ1,κ2,�θ12) decreases as the angular
distance �θ12 increases, for both domains of sf-sf and of sf-ps
bipartite networks, following a power law,

m(κ1,κ2,�θ12) ∼ �θ
−β

12 , (31)

where the exponent β > 1 is the parameter in the connection
probability function in Eq. (4), see Fig. 4(a) and Eq. (G13)
in Appendix G. The conditional probability for two nodes
with hidden variables κ1,κ2 separated by angular distance
�θ12 to have m common neighbors, is narrowly distributed
around its ensemble average m(κ1,κ2,�θ12), and in the case of
sparse bipartite networks can be approximated by the Poisson
distribution

P (m|1,2) ≈ e−m(κ1,κ2,�θ12)[m(κ1,κ2,�θ12)]m/m!, (32)

where P (m|1,2) is the shorthand notation for P (m|κ1,κ2,

�θ12), see Fig. 4(b) and Appendix E 2.
Finally, the unconditional distribution of the number of

common neighbors, P (m), is obtained by averaging P (m|1,2)
over all possible hidden variables κ1,κ2 and angular distances
�θ12,

P (m) = 1

π

∫∫∫
P (m|1,2)ρ(κ1)ρ(κ2) dκ1 dκ2 d�θ12. (33)

As before, the corresponding expressions for the bottom
domain nodes can be obtained by swapping the variables (κ,θ )
with (λ,φ) and following the same analysis. The solution
of the integral in Eq. (33) depends on the functional form
of P (m|1,2), which in turn depends on the pdfs of the
hidden variables and on the value of parameter β. While in
general there is no closed-form solution to Eq. (33), different
closed-form solutions can be obtained for integer values of β.
For instance, when β = 2 and ρ(κ) ∼ κ−γ ,ρ(λ) = δ(λ − λ)
(sf-ps networks), we can show that P (m) for the top domain
scales as

P (m) ∼ m−τ , (34)

with τ = 2γ − 3/2 (see Appendix E 2). Our numerical exper-
iments indicate that a similar power-law scaling of P (m) also
holds for a range of β values and for both domains of sf-sf
networks, cf. Figs. 4(c) and 8(c)–8(h) in Appendix E 2.

The power-law scaling of P (m) means that a large number
of node pairs have many common neighbors, and, therefore,
many 4-loops passing through them, which as explained in
Sec. I implies strong bipartite clustering. We focus on bipartite
clustering below.

G. Bipartite clustering

To quantify bipartite clustering, we consider the bipartite
clustering coefficient cB(i) introduced by Zhang et al. [52],
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FIG. 4. Number of common neighbors and bipartite clustering in the S1 × S1 model. Plots (a)–(c) correspond to sf-ps bipartite networks
with N = M = 105 nodes, ρ(κ) ∼ κ−2.1 with κ = 11.0, and ρ(λ) = δ(λ − 1). The results for the degree-preserving randomized counterparts
of the networks are marked as Random. (a) The average number of common neighbors m as a function of the angular distance �θ between
two top nodes with κ1 = κ2 = 100, i.e., m ≡ m(100,100,�θ ). m is calculated numerically for different values of β using Eq. (30). Higher
values of β favor connections at smaller angular distances, i.e., between more similar top-bottom nodes. Shown in the inset, is the same
plot in log-log scale. m decreases asymptotically as a power-law function of �θ , m ∼ �θ−β . (b) Conditional distribution of the number of
common neighbors, P (m|κ1,κ2,�θ ), for two top nodes with κ1 = κ2 = 400 separated by different angular distances �θ . From left to right:
�θ = π/32, �θ = π/64, �θ = π/128, �θ = 0. The inset shows P (m|κ1,κ2,�θ ) for two top nodes with different values of κ1, κ2, separated
by �θ = π/32. Solid lines are corresponding analytical results using (32). (c) The distribution of the number of common neighbors, P (m),
for different values of β, calculated across all pairs of top nodes. (d) Average bipartite clustering coefficients, c

t,b
B , as a function of the network

size N for sf-ps modeled networks (squares) and for their degree-preserving randomized counterparts (circles). All modeled networks have
the same number of top and bottom nodes, N = M . The network parameters γt (power-law exponent of the top domain) and β are marked on
the plot. The average degrees of the top and bottom domains are k = � = 11 for γt = 2.1, and k = � = 3 for γt = 2.5. A maximum degree
cutoff, kmax = N 1/2, was imposed in all generated networks in order to avoid structural correlations. c

t,b
B in the original networks are large and

independent of their size, while in their randomized counterparts are small and vanish as c
t,b
B ∼ N−δ , with δ = γt,b−1

2 . The plot also shows top
and bottom clustering c

t,b
B for the real bipartite networks (IMDb network, the Condmat and HEP collaboration networks, Wikipedia, and the

metabolic network) and for their degree-preserving randomized counterparts. We use the same symbols and colors for each real network and
for its randomized counterpart, and we observe a similar behavior as in the modeled networks. Clustering in the original real networks is always
orders of magnitude larger than clustering in the corresponding randomized networks.

which aims at quantifying the density of 4-loops adjacent to a
node i,

cB(i) =
∑

j �=l(mjl − 1)∑
j �=l[kj + kl − mjl − 1]

. (35)

The summation
∑

j �=l goes over all pairs of neighbors j,l

of node i, mjl is the number of common neighbors between

j and l, and kj and kl are the degrees of j and l. As seen
from Eq. (35), cB(i) is essentially a normalized measure of the
density of common neighbors in the vicinity of node i.

cB(i) has also the following simple and intuitive similarity-
based interpretation. Let Aj and Al be the sets of neighbors
of nodes j and l excluding node i. Then mjl − 1 is the size of
the intersection of Aj and Al , mjl − 1 = ‖Aj

⋂
Al‖, while

kj + kl − mjl − 1 = ‖Aj

⋃
Al‖ is their union. Therefore,
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Eq. (35) can be written as

cB(i) =
∑

j �=l ‖Aj

⋂
Al‖∑

j �=l ‖Aj

⋃
Al‖ . (36)

The ratio of the intersection and union of two sets is known
as the Jaccard similarity coefficient [53]. cB(i) is given by the
ratio of the sums of intersections and unions for all pairs of i’s
neighbors [Eq. (36)]. Therefore, cB(i) can be interpreted as a
combined or effective Jaccard similarity of i’s neighbors.

The average bipartite clustering coefficients ct
B,cb

B for the
top and bottom node domains can be written as

ct
B = 1

N

∑
i∈�t

cB(i), (37)

cb
B = 1

M

∑
j∈�b

cB(j ), (38)

where �t and �b are the sets of all top and bottom nodes.
Expressions for the expected bipartite clustering coefficients
in the S1 × S1 model are derived in Appendix F. Qualitatively,
ct
B,cb

B are large in the S1 × S1 model and independent of
the number of top and bottom nodes N,M , see Fig. 4(d).
This result follows from the fact that the expected number
of common neighbors m(κi,κj ,�θij ) between two nodes i,j is
independent of the network size (Appendix E 1). In contrast, in
the degree-preserving randomized counterparts of the modeled
networks, the bipartite clustering coefficient is orders of
magnitude smaller, and vanishes with the network size as
c
t,b
B ∼ N−δt,b , with δt,b = (γt,b − 1)/2 [see Fig. 4(d)], which is

the expected behavior for uncorrelated bipartite networks [50].
A similar behavior holds for the real bipartite networks we
consider [Fig. 4(d)].

Another important property of bipartite clustering coeffi-
cient in sf-sf networks is its self-similarity with respect to
a degree-thresholding renormalization procedure [49]. Non-
iterative removal of top and bottom nodes with degrees smaller
than certain thresholds (kT ,�T ) does not affect the functional
form of degree-dependent bipartite clustering coefficients,
which follow the same master-curve when plotted as a function
of the node degree normalized by the average degree of the
corresponding domain (see Fig. 9 and Section F).

Taken together, our results in this section indicate that the
S1 × S1 model can generate a variety of bipartite network
topologies, whose main characteristics are consistent with
those of real bipartite systems. A natural question then is
whether it is possible to reverse the synthesis, and given
a bipartite network, to infer the geometric coordinates and
hidden variables of its nodes in a way congruent with the
S1 × S1 model. A tempting approach would be to first project
the bipartite network onto one of its node domains, apply
existing maximum-likelihood estimation techniques [54–56]
to map the resulting one-mode projection, and then use the
obtained unipartite map to infer the node coordinates of the
other domain [48]. A necessary condition for this approach to
work is that the geometry of the bipartite network is properly
preserved in its one-mode projections. We next examine to
what extend this is the case.

IV. ONE-MODE PROJECTIONS

In one-mode projections we project a bipartite network
onto one of its node domains, such that nodes of the domain
are connected if they have at least one common neighbor
in the bipartite network. Even though one-mode projections
allow one to study bipartite networks using tools developed
for unipartite networks, projections can lead to significant
loss of information and artificial inflation of the projected
network with fully connected subgraphs. Historically, different
approaches have been proposed to deal with the loss of
information. One approach, for instance, is to weigh pro-
jected links using common neighbor statistics in the original
network [57–60]. Another approach to quantify the extent
at which information is lost in one-mode projections and to
identify circumstances under which one-mode projections are
still acceptable is to reduce noise by identifying and removing
insignificant links in the projected network [61–64].

Here, we analyze the effects of one-mode projections in the
context of the S1 × S1 model. Specifically, we ask if the latent
geometry of a bipartite network is preserved in its one-mode
projections. Answering this question is important, as it can
shed light on how well latent geometry beneath bipartite
networks can be inferred using algorithms developed for
unipartite networks such as those in Refs. [54–56]. In the fol-
lowing, we analyze the projections onto the top node domain.
As before, the results for the bottom domain can be obtained by
swapping the corresponding top and bottom domain variables.

The probability ru(i,j ) that two top domain nodes i and j

are connected in the one-mode projection is the probability that
the nodes have at least one common neighbor in the bottom
domain,

ru(i,j ) = 1 −
∏

1�k�M

[1 − r(κi,θi ; λk,φk)r(κj ,θj ; λk,φk)],

(39)

where k = 1 . . . M enumerates the nodes of the bottom domain
and r(κ,θ ; λ,φ) is the connection probability in Eq. (4).

We say that the latent geometry of the bipartite network is
preserved in its one-mode projection if ru(i,j ) preserves the
functional form prescribed by Eq. (2):

ru(i,j ) = f

(
dij

du(κi,κj )

)
,

dij ∝ �θij ,

du(κi,κj ) ∝ ku(κi)ku(κj ) ∝ κiκj , (40)

where f (x) is a monotone decreasing function of x, which may
or may not coincide with our choice for r(x) in Eq. (3), and
du(κi,κj ) is the characteristic distance scale for a pair of nodes
with κi and κj in the projected network. In the case ru(i,j )
takes the form of Eq. (40) one could map projections of real
bipartite networks to latent spaces using methods developed
for unipartite networks. If, on the other hand, ru(i,j ) is not in
the form of Eq. (40), these techniques may not map correctly
bipartite networks, and they either need to be adjusted or
different techniques need to be developed.

To test if latent geometry is preserved in one-mode
projections, we compute ru(i,j ) below. We first note that
since r(κi,θi ; λk,φk) and r(κj ,θj ; λk,φk) depend on κi,θi and
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κj ,θj , ru(i,j ) also depends on κi,θi,κj ,θj . Due to the uniform
distribution of the φk , ru(i,j ) does not depend on the individual
values of θi and θj per se but on the angular distance between
the nodes, �θij = π − |π − |θi − θj ||. Thus, we can set,
without loss of generality, θi = 0 and θj = �θij . Assuming
a sufficiently large number of bottom nodes M , we can rewrite
Eq. (39) as

ln[1 − ru(i,j )] = M

2π

∫∫
dφ dλ ρ(λ)

× ln[1 − r(κi,0; λ,φ)r(κj ,�θij ; λ,φ)].

(41)

Then we replace the logarithm on the right-hand side of
Eq. (41) with its Taylor series expansion,

−ln[1 − ru(i,j )] =
∞∑

n=1

M

2πn

∫
dλ ρ(λ)

×
∫

dφ [r(κi,0; λ,φ)r(κj ,�θij ; λ,φ)]n.

(42)

We note that the first term of the sum in the above relation,
i.e., the term corresponding to n = 1, is the expected number
of common neighbors between nodes i and j , m(κi,κj ,�θij ).
Second, we perform the change of integration variable x ≡

Rφ

μ
√

κiκj λ
, to obtain

−ln[1 − ru(i,j )] ∝ √
κiκj

∫
λ dλ ρ(λ)

×
∞∑

n=1

1

n

∫ ∞

−∞
dx

[
r

(√
κj

κi

|x|
)

r

(√
κi

κj

∣∣∣∣x − R�θij

μ
√

κiκjλ

∣∣∣∣)]n

.

(43)

The leading contributions to the inner integrals in Eq. (43)
come from the two maxima of each integrand at x1 = 0 and
x2 = �θ̃ij ≡ R�θij

μ
√

κiκj λ
. Specifically, for large �θ̃ij , connection

probability ru(i,j ) can be approximated, to the leading order, as

−ln[1 − ru(i,j )] ∼ λ1+β

Mβ

[
�θij

du(κi,κj )

]−β

,

du(κi,κj ) = (
κ

β

i κj + κiκ
β

j

) 1
β , (44)

where λ1+β ≡ ∫
λ1+βρ(λ) dλ (Appendix G). The functional

form of ru(i,j ) in Eq. (44) clearly differs from that in Eq. (40)
since the characteristic scale du(κi,κj ) differs, indicating that
latent geometry is not preserved in one-mode projections, as
one could intuitively expect.

At the same time, it is important to note certain similarity
between one-mode projection connection probability ru(i,j )
and original bipartite connection probability r(x). Both are de-
creasing functions of the angular distance �θij normalized by
characteristic scales du(κi,κj ), albeit these scales differ in the
two cases. Yet since in both cases du(κi,κj ) is larger for pairs
of nodes with larger hidden variables, nodes characterized by
larger κ values are more likely to connect over large distances
and, therefore, are expected to have larger degrees not only
in the bipartite network but also in its one-mode projection,

consistent with our findings in Ref. [50]. Furthermore, as seen
from Eq. (44), for sufficiently large �θij

du(κiκj ) values ru(i,j ) as a
function of �θ has the same asymptotic behavior as r(x),

ru(i,j ) ≈ −ln[1 − ru(i,j )] ∼ �θ
−β

ij . (45)

Our observation that latent geometry is not exactly pre-
served in one-mode projections is not specific to our choice
of r(x) as the connection probability function in the S1 × S1

model. We show below that the latent geometry cannot be fully
preserved in one-mode projections, regardless of the functional
form of r(x) in Eq. (3). Indeed, assuming that ru(i,j ) is given
by Eq. (40), we can write

−ln[1 − ru(i,j )] = g

(
�θij

κiκj

)
, (46)

where g(x) ≡ −ln[1 − f (x)]. Next, we observe that the right-
hand side of Eq. (43) is a sum of convolutions and can be
transformed into products of Fourier transforms, yielding

g(w) ∝
∫

dλ λ2ρ(λ)
∞∑

n=1

1

n

[
rn

(
μωλ

Rκi

)
rn

(
μωλ

Rκj

)]
, (47)

where g(w) ≡ ∫ ∞
−∞ dx g(x)eiwx and rn(w) ≡ ∫ ∞

−∞ dx ×
[r(|x|)]neiwx . Since the left-hand side of Eq. (47) does
not depend on κi and κj while the right-hand side does,
the only admissible solution is rn(w) = const. This solution
corresponds to r(x) = δ(x), where δ(x) is the Dirac δ function
and cannot be interpreted as a connection probability function.

We thus find that latent geometry cannot be fully preserved
for any functional form of the connection probability function
r(x). At the same time, our results indicate that connection
probability in one-mode projections behaves similarly to that
in the original network for large angular distances. This
result implies that it may be possible to infer approximately
the latent geometry of real bipartite networks from their
one-mode projections. Yet it remains unclear how accurate
such inferences can be, especially in small bipartite networks
whose one-mode projections are overinflated with cliques
of sizes comparable to the network size. Such problems
can render geometry inference using one-mode projections
highly inaccurate, especially in sf-sf networks with power-law
exponents γ close to 2, as discussed at the end of Appendix G.

V. INFERRING LATENT GEOMETRY

We have seen that the S1 × S1 model can construct
synthetic bipartite networks that resemble real networks across
a range of nontrivial structural characteristics, which include:
(i) heterogeneity in distributions of node degrees for at least
one of the two domains of nodes; (ii) power-law distribution
of the number of common neighbors shared between pairs
of nodes; and (iii) strong bipartite clustering. These results
imply that we should be able to reverse the synthesis, and
given a bipartite network, to infer the hidden variables of its
nodes as well as their latent distances. Below, we show that
hidden variables and latent distances can be estimated from
the observed node degrees and the common neighbors shared
by nodes, respectively.

Recall from Sec. III B that the resulting node degree ki

corresponding to a particular hidden variable κi is Poisson
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FIG. 5. Inferring hidden variables and latent distances from the network topology. The plots correspond to an sf-ps modeled network with
N = M = 105 nodes, ρ(κ) ∼ κ−2.1, κ = 11, ρ(λ) = δ(λ − 11.0), and β = 2. (a) The heat map displays the correlation between node degrees
and hidden variables. The colors reflect the density of the nodes as shown in the legend. (b) The angular distances between the top nodes can be
inferred by solving Eq. (52). The accuracy of the inference is higher for pairs of nodes that share a larger number of common neighbors. The
figure shows the inferred angular distances �θ̃ as a function of the true angular distances �θ for pairs of top nodes with κ � 10 and number
of common neighbors m � 5. The colors in the heat map reflect the density of the nodes as shown in the legend.

distributed with expected value ki(κi) = κi . Thus, the node
hidden variables can be estimated by the observed node
degrees as

κi = ki(κi) ≈ ki. (48)

Since the variance of the Poisson distribution is equal to its
mean, this estimation works better for higher-degree nodes
and can be used in the case of a scale-free degree distribution
in the domain, see Fig. 5(a). In the case of a Poisson degree
distribution in the domain, all nodes have identical hidden
variables that can be estimated as

κi = κ = k, (49)

where k is the observed average degree in the domain.
The angular distance separating two nodes can be estimated

using the observed number of common neighbors between
the nodes. As shown in Sec. III F, the number of common
neighbors m12 shared by two nodes 1,2 is Poisson distributed
with an expected value m12(κ1,κ2,�θ12) given by Eq. (30),
which depends on the nodes’ hidden variables κ1,κ2 and their
angular distance �θ12. If the observed number of common
neighbors m12 is sufficiently large, we can approximate
m12(κ1,κ2,�θ12) as

m12(κ1,κ2,�θ12) ≈ m12. (50)

The angular distance �θ12 can be estimated using Eq. (50),
which can be solved analytically for integer values of the
model parameter β ∈ (1,∞) or numerically otherwise.

To test the accuracy of the proposed estimation we consider
an sf-ps modeled network with β = 2. In this case, m12 for the
top domain is given by

m12(κ1,κ2,�θ12) ≈ κ1κ2(κ1 + κ2)

(κ1 + κ2)2 + (
M�θ12

2

)2 (51)

(see Appendix E 1), allowing us to estimate �θ12 as

�θ12 ≈ 2

M

√
k1k2(k1 + k2)

m12
− (k1 + k2)2. (52)

We note that the above relation is an approximation and may
yield angular distances outside the expected range �θ12 ∈
[0,π ] if m12 is too large or too small. This estimation procedure
works well for pairs of nodes with large m12 values, see
Fig. 5(b), and it can be used for a fast estimation of the
pairwise latent similarity distances between such nodes, e.g.,
in recommender systems.

VI. DISCUSSION

Understanding the organizing principles determining the
structure and evolution of real bipartite networks can lead to
significant advances in many challenging problems including
community detection [65–72], understanding signaling path-
ways in gene regulatory networks [73], multicast search [74],
and construction of efficient recommender systems [75–78].

We have shown that three common properties of many
real bipartite networks—heterogeneous degree distributions,
power-law distributions of the number of common neighbors,
and strong bipartite clustering—appear as natural reflections
of latent geometric spaces underlying these networks, where
nodes are points in these spaces, while connections preferen-
tially occur at smaller distances. The distances between nodes
in the latent space can be regarded as generalized similarity
measures, arising from projections of properly weighted
combinations of node attributes, controlling the appearance
of links between node pairs.

For our analysis, we have used the simplest possible bipar-
tite network model with latent geometry (S1 × S1 model) [48].
Within the model, both the power-law distribution of the
number of common neighbors and the strong bipartite clus-
tering emerge naturally as reflections of the metric property,
i.e., the triangle inequality, of the latent space. To achieve
heterogeneous degree distributions we have assigned hidden
variables to both top and bottom node domains, so nodes
with larger hidden variables connect over larger distances with
higher probability and, as a result, establish more connections
than nodes with smaller hidden variables.
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Although not fully geometric, the S1 × S1 model is equiv-
alent to the H2 × H2 model in Appendix D, which is fully
geometric, not using any hidden variables (other than node
coordinates). In the H2 × H2 model, heterogeneous degree
distributions are consequences of the exponential expansion
of space in H2, coupled with proper boundary conditions.

As with unipartite networks, a particularly pertinent ques-
tion is the possibility to infer latent geometries underlying
real bipartite systems. Through the analysis of one-mode
projections, we have shown that latent geometry cannot be
fully preserved but can be approximately preserved in one-
mode projections of both sf-ps and sf-sf bipartite networks
in the S1 × S1 model. This result supports the possibility of
inferring latent geometries underlying real bipartite systems by
inferring the geometries of their one-mode projections using
existing techniques [54–56], as in Ref. [48]. However, since
geometry is not preserved exactly but only approximately,
using one-mode projections can render geometry inference
inaccurate, especially in smaller networks with weaker bipar-
tite clustering. Such inaccuracies are particularly high in sf-sf
networks with power-law exponents γ close to 2, calling for
the development of proper methods to infer latent coordinates
that do not use one-mode projections. We have shown that if
instead of coordinates only pairwise latent distances between
nodes with large numbers of common neighbors are to be
inferred, e.g., in recommender systems [19–22] or in soft
community detection [47,79], then such inferences can be
made quickly and reliably based on the common neighbor
statistics.
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APPENDIX A: REAL-WORLD BIPARTITE
NETWORK DATA

Here we provide details on the considered real-wold
bipartite networks.

(a) Actor-film network (IMDb). The bipartite actor-film
network is constructed from the Internet Movie Database
(IMDb) [7]. The network consists of two sets of nodes: actors
(top nodes) and films (bottom nodes). Every actor is connected
to all films in which she or he performed. We have excluded all
films whose genre is labeled by IMDb as “Adult.” The excluded

“Adult” films represent a largely isolated subset of the original
actor-film network. The considered network corresponds to
the period from 1960 to 2010.

(b) Condensed matter (Condmat) collaboration network.
The Condensed matter (Condmat) collaboration network is
constructed from the arXiv e-Print archive [8]. The top and
bottom nodes in the network are respectively authors and
manuscripts published in the cond-mat section of the arXiv
repository. Every manuscript is connected to all of its authors.
The network includes all manuscripts published in the cond-
mat section of the arXiv as of 2009.

(c) HEP collaboration network. The HEP collaboration
network is also constructed from the arXiv e-Print archive [8].
The top and bottom nodes in the network are respectively
authors and manuscripts published in the HEP section of the
arXiv repository. Every manuscript is connected to all of its
authors. The network includes all manuscripts published in the
high-energy physics section of the arXiv as of 2009.

(d) Metabolic Network. The Metabolic network is based
on the dataset of metabolic reactions of 107 organisms
constructed by H. Ma and A.-P. Zeng [10]. The bipartite
network consists of metabolic reactions (bottom nodes) and
metabolites (top nodes) that are connected through these
reactions.

(e) Wikipedia. The constructed bipartite network of
Wikipedia [9] consists of users (top nodes) and articles (bottom
nodes). Users are connected to all articles they have edited. In
order to eliminate random edits, we connect users to articles
which were edited by them at least 3 times. We consider users
of the English Wikipedia who have created an account and
have a user discussion page as of April 2, 2007. The data have
been collected and processed in Ref. [80].

The basic topological properties of the considered networks
are outlined in Table I and their degree distributions are shown
in Fig. 6.

APPENDIX B: DEGREE-PRESERVING RANDOMIZATION

To randomize a bipartite network while preserving the node
degrees, we employ a modification of the degree-preserving
randomization algorithm for unipartite networks [2]. Specifi-
cally, we first remove all connections in the original network.
Then, we assign to every node a number of open connections
equal to its degree in the original network. Finally, we add links
to the network one by one by connecting a randomly selected
top-bottom node pair with open connections. Every time a
new link is established, the number of open connections of
the two nodes connected by the link are decreased by one.
We note that the probability to select a particular node is

TABLE I. Basic properties of the considered real bipartite networks. N is the number of top nodes, M is the number of bottom nodes, E is
the number of edges, k is the average top-node degree, and � is the average bottom-node degree.

Network name Type N M E k �

Actor-film network (IMDb) sf-sf 1 602 914 418 696 6 368 717 4.0 15.2
Condensed matter (Condmat) collaboration network sf-ps 63 799 79 081 246 351 3.9 3.1
High Energy Physics (HEP) collaboration network sf-sf 44 267 108 907 255 306 5.8 2.3
Metabolic network sf-ps 2732 3568 7750 2.8 2.2
Wikipedia sf-sf 45 875 407 543 874 942 19.1 2.1
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FIG. 6. Degree distributions of top and bottom nodes of (a) IMDb, (b) Condmat collaboration network, (c) HEP collaboration network,
(d) metabolic network, and (e) Wikipedia. Data have been binned logarithmically to reduce noise.

proportional to the number of its open connections. As a result,
the randomized network is characterized by the same degree
distribution as the original network and random degree-degree
correlations.

APPENDIX C: BIPARTITE NETWORKS IN SPACES
WITH BROKEN METRIC STRUCTURE

The key property of any metric space is the triangle
inequality: for any triplet of points (A,B,C)

d(A,C) � d(A,B) + d(B,C), (C1)

where d(A,B) is the distance between points A and B. As
explained in the main text, the triangle inequality in the
underlying space leads to high clustering and power-law
distribution of the number of common neighbors in the
observed topology of the bipartite network.

To highlight the key role of the triangle inequality, here we
consider bipartite networks built in spaces with broken metric
structure. To this end, we construct a bipartite network follow-
ing steps 1–3 of theS1 × S1 model (Sec. III A of the main text),
with the difference that before connecting top-bottom nodes
we randomize their distances. Specifically, we first assign node
hidden variables and coordinates following steps 1 and 2 of the
S1 × S1 model. Then we construct the distance matrix {dij } =
d(θi,φj ) and randomize its values. To this end, we remove all
distance values from the matrix and arrange them into a list
of values. We then fill in the randomized matrix by drawing
distance values from this list at random without replacement.
Finally, we connect top-bottom nodes as in step 3 of the
S1 × S1 model using the randomized distance matrix {dij }.

The above modified model preserves the values of the
node hidden variables and the distribution of distances be-
tween the nodes but breaks the triangle inequality. As seen
from Fig. 7(a), the degree distribution in bipartite networks
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k
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FIG. 7. Bipartite networks in metric spaces vs. spaces with broken metric structure. (a) Degree distribution; (b) average bipartite clustering
coefficient as a function of node degree; and (c) distribution of the number of common neighbors. Both networks are sf-sf bipartite networks
with N = M = 105, γ1 = γ2 = 2.1, k = � = 11, and β = 2.0. All plots correspond to the top node domain. The bottom node domain has
similar properties.

032309-12



LATENT GEOMETRY OF BIPARTITE NETWORKS PHYSICAL REVIEW E 95, 032309 (2017)

constructed by the model with broken metric structure (non-
metric) is the same as that constructed by the original S1 × S1

model (metric). At the same time, however, the model with
broken metric structure fails to reproduce the strong bipartite
clustering coefficient and the fat-tail distribution of the number
of common neighbors observed in the original S1 × S1 model
[Figs. 7(b) and 7(c)].

APPENDIX D: H2 × H2 MODEL

In the main text we formulate the S1 × S1 bipartite model
on the Euclidean ring S1. The choice of S1 as the latent space
is made primarily for simplicity, and generalizations to other
spaces are possible. Here we formulate the latent space model
using a two-dimensional hyperbolic disk of constant negative
curvature K = −ζ 2 < 0 and radius RH 	 1. In the model,
nodes map to points within the hyperbolic disk: angular coordi-
nates of both node types are chosen uniformly at random, while
radial coordinates are drawn from corresponding pdf functions
ρt (r) and ρb(r). Connections between top and bottom nodes are
established with probabilities depending on distances between
the nodes in the hyperbolic disk. The resultingH2 × H2 model
can be summarized as follows:

(1) Sample the angular coordinates of top nodes θi , i =
1,2, . . . ,N , uniformly at random from [0,2π ], and their radial
coordinates ri , i = 1,2, . . . ,N , from the pdf ρt (r) defined in
[0,RH ];

(2) Sample the angular coordinates of bottom nodes φj ,
j = 1,2, . . . ,M , uniformly at random from [0,2π ], and their
radial coordinates rj , j = 1,2, . . . ,M , from the pdf ρb(r)
defined in [0,RH ];

(3) Connect every top-bottom node pair with probability

p(ri,θi ; rj ,φj ) = p(xij ), (D1)

cosh(ζxij ) = cosh(ζ ri) cosh(ζ rj )

− sinh(ζ ri) sinh(ζ rj )cos(�θij ). (D2)

Unlike its counterpart, the H2 × H2 model is purely
geometric and desired degree distributions can be engineered
with a proper choice of ρt,b(r) and ρt,b(θ ), without introducing
external hidden variables. Yet, as we demonstrate below, both
models are fully equivalent due to a one-to-one mapping
between radial coordinates in the H2 × H2 model and hidden
variables in the S1 × S1 model:

ri = RH − 2

ζ
ln(κi/κ0), (D3)

rj = RH − 2

ζ
ln(λj/λ0). (D4)

It is straightforward to verify that this mapping transforms
the S1 × S1 connection probability function into that of the
H2 × H2 model,

r

(
R�θij

μκλ

)
= p(x̃ij ), (D5)

where

x̃ij ≡ ri + rj + 2

ζ
ln(�θij /2) (D6)

is a close approximation for xij in Eq. (D2) for sufficiently
large ζ ri , ζ rj , and �θij > 2

√
exp(−ζ ri) + exp(−ζ rj ). Equa-

tion (D5) establishes the equivalence between the two models
since any pair of nodes {i,j} is equally likely to be connected
or disconnected in both models.

Since the two models are equivalent, the H2 × H2 model
produces networks with the same topological properties as in
theS1 × S1 model. In particular, sf-sf bipartite networks can be
generated using ρt,b(r) ∝ exp(αt,br) with αt,b = ζ

2 (γt,b − 1)
and sf-ps bipartite networks can be generated using ρt (r) ∝
exp(αtr), αt = ζ

2 (γt − 1), and ρb(r) = δ(r − RH ).
First, it is important to note that the correspondence between

theH2 × H2 and theS1 × S1 formulations is approximate and
holds only for a sufficiently large hyperbolic disk, RH 	 1.
Indeed, when establishing the correspondence between the
two models, we relied on the approximation (D6), which
works well for large radial node coordinates. This is indeed
the case for the majority of nodes in both sf-sf and sf-ps
networks. In the case of sf-sf networks γt,b > 1, and therefore,
αt,b > 0, implying that the majority of nodes is located near
the periphery of the hyperbolic disk, ri,j → RH 	 1. The
situation is the same for the top nodes of the sf-ps networks,
while bottom nodes of sf-ps are all located at the edge of
the hyperbolic disk, rj = RH 	 1. Second, radial coordinates
of all nodes must be positive, which is satisfied as long as
RH � 2

ζ
ln(κmax/κ0) and RH � 2

ζ
ln(λmax/λ0), where κmax and

λmax are the largest hidden variable values, respectively, in the
top and bottom domains of the S1 × S1 model. Since expected
degree values in the S1 × S1 model are proportional to their
hidden variables, Eqs. (14) and (16), κmax ∼ N and λmax ∼ M ,
leading to

RH ∼ ln(N ) ∼ ln(M). (D7)

APPENDIX E: NUMBER OF COMMON NEIGHBORS

Here we derive approximate analytic expressions for the
average number of common neighbors and the distribution of
the number of common neighbors in the S1 × S1 model. To
ease notation, we sometimes write the node hidden variables
and angular coordinates in vectorlike form: xi = {κi,θi} and
yj = {λj ,φj }. In this case, we define the probability distri-
bution ρ(x) (ρ(y)) as the probability that a randomly chosen
top (bottom) node is characterized by x ≡ {κ,θ} (y ≡ {λ,φ}).
Since the hidden variables are independent of the angular
coordinates, ρ(x) = ρ(κ)ρ(θ ) and ρ(y) = ρ(λ)ρ(φ). Thus, the
integration (summation) over x or y corresponds to integra-
tion (summation) over both attributes:

∫
dx ≡ ∫

dκ
∫

dθ ,∫
dy ≡ ∫

dλ
∫

dφ.

1. Average number of common neighbors

The average number of common neighbors between two
nodes of the same domain can be calculated from Eq. (30)
in the main text. By substituting the connection probability
function from Eq. (4) into Eq. (30), we obtain that for large
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networks

m(κ1,κ2,�θ12) =
√

κ1κ2

Iλ

∫
λ dλ ρ(λ)

∫ +∞

−∞
dx r

(√
κ2

κ1
|x|

)
r

(√
κ1

κ2
|x − �θ̃12|

)
, (E1)

where �θ̃12 ≡ NIk�θ12/(π
√

κ1κ2λ), �θ12 = π − |π −
|θ1 − θ2||, and I is given by Eq. (9). It can be seen from
Eq. (E1) that regardless of the functional form of r(x),
m(κ1,κ2,�θ12) depends on the distance between the nodes
R�θ12 ∝ N�θ12 and not on domain size N , M per se.

The inner integral of Eq. (E1) can be taken by residues.
However, the number of poles of the integrand depends on β.
A relatively simple solution exists for β = 2. Specifically, in
this case we get

m(κ1,κ2,�θ12) ≈ κ1κ2(κ1 + κ2)

(κ1 + κ2)2 + (
M�θ12

2

)2 (E2)

for sf-ps bipartite networks and

m(κ1,κ2,�θ12)

≈ κ1κ2

(κ1 + κ2)
2F1

[
1,

γb − 2

2
,
γb

2
, −

(
Nk�θ12

2λ0(κ1 + κ2)

)2]
(E3)

for sf-sf bipartite networks with ρ(λ) = (γb − 1)λγb−1
0 λ−γb ,

λ ∈ [λ0,∞), where γb is the power-law degree distribution
exponent of the bottom domain and λ0 is the expected
minimum bottom domain degree. The function 2F1 is the
Gauss hypergeometric function.

2. Distribution of the number of common neighbors

We now consider the distribution of the number of common
neighbors. First, we calculate the probability that two nodes
with hidden variables κ1 and κ2 and angular coordinates θ1

and θ2 have m common neighbors. To this end, we define the
probability px1,x2 (m|y) that two top nodes with vectors x1 =
{κ1,θ1} and x2 = {κ2,θ2} have m common neighbors among
bottom nodes with vector y = {λ,φ}. Since pairs of nodes are
connected independently with probability r(x; y), px1,x2 (m|y)
is given by the binomial distribution

px1,x2 (m|y) = CM(y)
m [r(x1; y)r(x2; y)]m

× [1 − r(x1; y)r(x2; y)]M(y)−m, (E4)

where M(y) is the total number of bottom nodes with vector y
and Ck

l = (kl) is the binomial coefficient. The probability that
two nodes with vectors x1 and x2 have m common neighbors
can be calculated as

Px1,x2 (m) =
∑

∑
mi=m

∏
i

px1,x2 (mi |yi), (E5)

where the product goes over the entire set of the yi vectors, and
the summation is performed over all possible combinations of
mi such that their sum equals m.

Next, we define the generating functions [81] for
px1,x2 (mi |yi) and Px1,x2 (m),

p̂x1,x2 (z|y) ≡
∑
m

zmpx1,x2 (m|y), (E6)

P̂x1,x2 (z) ≡
∑
m

zmPx1,x2 (m). (E7)

Since Px1,x2 (m) is given by the convolution of px1,x2 (mi |yi)
[Eq. (E5)], its generating function can be expressed as the
product of the generating functions of the px1,x2 (mi |yi),

P̂x1,x2 (z) =
∏

i

p̂x1,x2 (z|yi). (E8)

It is easy to see that p̂x1,x2 (z|y) = [1 − (1 − z)r(x1; y)
r(x2; y)]M(y). By substituting this expression into Eq. (E8) and
taking the logarithm of both sides, we get

ln[P̂x1,x2 (z)] = M

∫
dy ρ(y)ln[(1−(1−z)r(x1; y)r(x2; y)].

(E9)

One can verify that the expression for the average number of
common neighbors m(x1; x2) [Eq. (30) in the main text] can be
obtained by evaluating the derivative of P̂x1,x2 (z) with respect
to z at z = 1,

m(x1; x2) = M

∫
dy ρ(y)r(x1; y)r(x2; y), (E10)

as expected. In the case of sparse bipartite networks, Eq. (E9)
can be approximated as (see Ref. [50])

ln
[
P̂x1,x2 (z)

] ≈ (z − 1)m(x1; x2), (E11)

Px1,x2 (m) ≈ e−m(x1;x2)[m(x1; x2)]m/m!, (E12)

proving Eq. (32) in the main text.
The distribution of the number of common neighbors P (m)

is obtained by averaging Px1,x2 (m) over x1 and x2,

P (m) =
∫∫

dx1 dx2 ρ(x1)ρ(x2)Px1,x2 (m). (E13)

While in general there is no closed-form solution to Eq. (E13),
different closed-form solutions can be obtained for integer
values of β. Below, we derive P (m) in the case of sf-ps
networks with β = 2. In this case, m(x1,x2) = m(κ1,κ2,�θ12)
is given by Eq. (E2). The first step towards computing P (m)
is to evaluate Pκ1,κ2 (m) by averaging Px1,x2 (m) in Eq. (E12)
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over �θ12,

Pκ1,κ2 (m) ≡ 1

π

∫ π

0
d� θ12Px1,x2 (m)

∝ (κ1 + κ2)√
mm!

e
− κ1κ2

κ1+κ2

[
κ1κ2

κ1 + κ2

]m

. (E14)

The second step is to average Pκ1,κ2 (m) over all κ1, κ2 values.
In the case of sf-ps networks ρ(κ) ∼ κ−γ , and after a series of
straightforward but tedious steps, we obtain

P (m) =
∫∫

dκ1 ρ(κ1) dκ2 ρ(κ2)Pκ1,κ2 (m)

∝ [m + 3 − 2γ,κ0]

m1/2[m + 1]
∼ m3/2−2γ , (E15)

proving Eq. (34) in the main text.

The analytical evaluation of P (m) for arbitrary β values is
intractable due to the nontrivial dependence of m(x1; x2) on
β. However, we can verify numerically that P (m) is power-
law distributed for different β values, similarly to real-world
bipartite networks, see Fig. 8.

APPENDIX F: BIPARTITE CLUSTERING COEFFICIENT

The expected value of the bipartite clustering coefficient can
be derived using the hidden variable formalism for bipartite
networks [50]. In particular, the expected bipartite clustering
coefficient cB(x) of a top node with vector x = {κ,θ} is given
by

cB(x) =
∫∫

dy1 dy2 P (y1|x)P (y2|x)m(y1; y2)

2
∫

dy P (y|x)�(y) − ∫∫
dy1 dy2 P (y1|x)P (y2|x)m(y1; y2)

, (F1)

where P (y|x) is the conditional probability that a node with
vector x is connected to a node with vector y = {λ,φ};
m(y1; y2) is the average number of common neighbors between
nodes with vectors y1,y2; and �(y) ≡ N

∫
r(x′; y)ρ(x′)dx′ is

the expected degree of a bottom node with vector y. The
expected number of common neighbors m(y1; y2) can be
obtained from Eq. (30) in the main text by swapping variables
(κ,θ ) with (λ,φ), while P (y|x) is given by

P (y|x) = M
ρ(y)r(x; y)

k̄(x)
= ρ(y)r(x; y)∫

r(x; y′)ρ(y′) dy′ , (F2)

where k̄(x) ≡ M
∫

r(x; y′)ρ(y′) dy′ is the expected degree of
a top node with vector x. We note that, due to the rotational
symmetry of the model, cB(x) depends only on the node’s
hidden variable κ and not on its angular position θ , that is,
cB(x) ≡ cB(κ). We also note that cB(x) is independent of
the network size (N ∝ M) since neither P (y|x) nor m(y1; y2)
depend on it. Furthermore, N in �(y) = N

∫
r(x′; y)ρ(x′) dx′

cancels out after performing the integration
∫

r(x′; y)ρ(x′) dx′

that yields a factor 1/R ∼ 1/N , so �(y) in the denomi-
nator of Eq. (F1) does not depend on the network size
either.

Finally, the average bipartite clustering of the top domain
can be obtained by averaging the bipartite clustering coefficient
over all nodes in the domain,

c̄t
B =

∫
cB(x)ρ(x) dx, (F3)

and is also independent of network size. Similar results hold
for the bottom node domain.

An important property of real sf-sf bipartite networks and
the S1 × S1 model is self-similarity of bipartite clustering co-
efficient with respect to a degree-thresholding renormalization
procedure. Noniterative removal of top and bottom nodes
with degrees smaller than certain thresholds (kT ,�T ) does
not affect bipartite clustering coefficient. In contrast, bipartite
clustering coefficient of randomized networks increases as the

threshold increases [Fig. 9(a)]. Moreover degree-dependent
bipartite clustering coefficients preserve their functional form,
following the same master curve when plotted as a function
of the node degree normalized by the average degree of the
corresponding domain:

ct
B(k|kT ,�T ) = ft

(
k

k(kT ,�T )

)
, (F4)

cb
B(�|kT ,�T ) = fb

(
�

�(kT ,�T )

)
, (F5)

see Fig. 9(b). Here ft,b(x) are the master curves for the top
and bottom domain degree-dependent clustering coefficients,
while k(kT ,�T ) and �(kT ,�T ) are the average degrees of top and
bottom domains after degree thresholding. In contrast, as seen
from Fig. 9(c), bipartite clustering coefficients of randomized
versions of real and modeled bipartite networks are not self-
similar.

Since expected node degrees in the S1 × S1 model are
tuned to be equal to their hidden variables, Eqs. (14) and (16),
the degree thresholding procedure is equivalent to removal of
nodes with hidden variables less than threshold (kT ,�T ). Then,
the number of top and bottom nodes in thresholded network
G(kT ,�T ) decreases as

N (kT ) = N

(
kT

κ0

)1−γt

, M(�T ) = M

(
�T

λ0

)1−γb

, (F6)

where N and M are the number of nodes in original network
G. Power-law distributions of hidden variables ρ(κ) and ρ(λ)
of nodes in G(kT ,�T ) are unchanged but start at kT and �T ,
respectively,

ρ(κ|kT ) = (γt − 1)kγt−1
T κ−γt , (F7)

ρ(λ|�T ) = (γb − 1)�γb−1
T λ−γb . (F8)
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FIG. 8. Distribution of the number of common neighbors P (m)
in real [(a) and (b)] and modeled [(c)–(h)] bipartite networks. The
properties of the real networks are outlined in Table I. Panels (a), (c),
(e), (g), and (h) correspond to pairs of nodes in top domains, while
panels (b), (d), and (f) correspond to pairs of nodes in bottom domains.
The distributions P (m) are not normalized for the real networks in
panels (a) and (b) (i.e., they correspond to number of nodes instead of
percentage of nodes) to improve visibility. All modeled networks are
characterized by N = M = 105. Panels (c) and (d) correspond to sf-ps
networks with top-domain power-law exponent γt = 2.5, average top-
domain degree k = 3.0, and different values of β. Panels (e) and (f)
correspond to sf-ps networks with β = 2.0 and different values of γt ,
where k is chosen as k = γt −1

γt −2 . Panels (g) and (h) correspond to sf-sf
networks. Panel (g) depicts P (m) for the top domain of networks that
have different γt values, k = 10, bottom-domain power-law exponent
γb = 2.5, and β = 2.0. Panel (h) depicts P (m) for the top domain of
networks that have γt = 2.1, k = 10, γb = 2.5, and different values
of β.

As a result, expected degrees of individual nodes and
network domains scale as

k(κ|kT ,�T ) =
(

�T

λ0

)2−γb

κ, (F9)

�(λ|kT ,�T ) =
(

kT

κ0

)2−γt

λ, (F10)

k(kT ,�T ) =
(

kT

κ0

)(
�T

λ0

)2−γb

k, (F11)

�(kT ,�T ) =
(

�T

λ0

)(
kT

κ0

)2−γt

�. (F12)

Scaling relationships for degree-dependent bipartite clus-
tering coefficients follow from (F1). Through a number of
straightforward but tedious steps, which we omit here for
brevity, we obtain

ct
B(κ|kT ,�T ) = f̃t (κ/kT ) = ft

(
k

k(kT ,�T )

)
, (F13)

cb
B(λ|kT ,�T ) = f̃b(λ/�T ) = fb

(
�

�(kT ,�T )

)
, (F14)

proving the self-similarity of sf-sf S1 × S1 models. Finally,
it is now easy to check, using Eqs. (F13) and (F14), that the
average bipartite clustering coefficients of the top and bottom
node domains take finite values independent of the threshold
(kT ,�T ):

ct
B(kT ,�T ) =

∫
dκ ρ(κ)ct

B(κ|kT ,�T ) = ct
B, (F15)

cb
B(kT ,�T ) =

∫
dλ ρ(λ)cb

B(κ|kT ,�T ) = cb
B. (F16)

Unlike in sf-sf networks, bipartite clustering in sf-ps networks
is self-similar only with respect to degree thresholding of the
scale-free domain, (kT ,λ0).

APPENDIX G: ONE-MODE PROJECTIONS

Here we fill in the details on the estimation of the
effective connection probability between nodes in one-mode
projections. We consider the top node domain—similar results
hold for the bottom domain. Any two nodes i,j in the top
domain are connected in their one-mode projection if they
share at least one neighbor in the original bipartite network.
Equation (43) in the main text allows us to estimate (up to a
proportionality coefficient) the connection probability of the
two nodes in the one-mode projection, ru(i,j ), as

−ln[1 − ru(i,j )] ∝ √
κiκj

∫
λ dλ ρ(λ)

∞∑
n=1

1

n

∫ ∞

−∞
dx

[
r

(√
κj

κi

|x|
)

r

(√
κi

κj

∣∣∣∣x − R�θij

μ
√

κiκjλ

∣∣∣∣)]n

. (G1)

Note that the first term in the sum of Eq. (G1), i.e., the term with n = 1, is proportional to the expected number of common
neighbors between nodes i and j . The inner integral in Eq. (G1) has two maxima at x = 0 and x = �θ̃ij ≡ R�θij

μ
√

κiκj λ
. Below,

we estimate ru(i,j ) for large �θ̃ij (recall that R ∝ N ∝ M). To evaluate Eq. (G1), we split the integration interval into the five
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FIG. 9. Bipartite clustering is self-similar under degree-thresholding renormalization. (a) Average bipartite clustering coefficient, ct
B , as

a function of the threshold parameters kT = �T for the Wikipedia network (green squares), the IMDb network (blue squares), and an sf-sf
modeled network (red squares) with N = M = 105, γt = γb = 2.5, k = � = 3.0, and β = 2.0. Shown with triangles are the results for the
corresponding degree-preserving randomized versions of these networks. Note that ct

B is nearly independent of kT in the real and modeled
networks, while in their degree-preserving randomized versions it increases with kT . (b) Average bipartite clustering of top nodes as a function
of their normalized degree for the same real and modeled networks as in plot (a), calculated for different values of thresholds kT = �T .
(c) Average bipartite clustering of top nodes as a function of their normalized degree for the degree-preserving randomized versions of the
networks in plot (b), calculated for different threshold values kT = �T .

subintervals: (−∞,−δ), (−δ,δ), (δ,�θ̃ij − δ), (�θ̃ij − δ,�θ̃ij + δ), and (�θ̃ij + δ,∞) by choosing δ > 0 such that δ � �θ̃ij

and δ ∼ �θ̃ij , i.e.,

δ = c�θ̃ij , (G2)

where constant c � 1.
We start by evaluating the inner integral for the nth term of Eq. (G1) in the second subregion. We denote this integral by J2.

To ease notation, we drop the indices i,j from the angular distance, i.e., �θij ≡ �θ , �θ̃ij ≡ �θ̃ . When �θ̃ 	 δ, within the
integration interval |x − �θ̃ | ≈ �θ̃ , and J2 can be approximated as

J2 =
∫

λ dλ ρ(λ)
∫ δ

−δ

dx

[
1

1 + (√ κj

κi
|x|)β

]n[ 1

1 + (√
κi

κj
|x − �θ̃ |)β

]n

≈
2λ1+nβ

√
κi

κj
In

(
β; δ

√
κj

κi

)
(

R�θ
μκj

)nβ
, (G3)

where In(β; a) ≡ ∫ a

0
dx

(1+xβ )n and λ1+nβ ≡ ∫
λ1+nβρ(λ) dλ. In(β; a) increases as a function of a and it is bounded from above as

In(β; a) � In(β; ∞) = [n − 1/β][1 + 1/β]

[n]
, (G4)

where [x] is the γ function. Depending on ρ(λ), λ1+nβ may depend on M . Since R ∝ M and the other terms in Eq. (G4) are
independent of the network size, we can write

J2 ∼ λ1+nβM−nβ. (G5)

The evaluation of the integral in the fourth subregion, J4, is the same as J2 but with the κi and κj variables swapped,

J4 =
∫

λρ(λ) dλ

∫ �θ̃+δ

�θ̃−δ

dx

⎡⎣ 1

1 + (√ κj

κi
|x|)β

⎤⎦n⎡⎣ 1

1 + (√
κi

κj
|x − �θ̃ |)β

⎤⎦n

≈
2λ1+nβ

√
κj

κi
In

(
β; δ

√
κi

κj

)
(

R�θ
μκi

)nβ
. (G6)

Therefore, similarly to J2,

J4 ∼ λ1+nβM−nβ. (G7)

The integrals in the fifth and third subregions, J5, J3, are evaluated below

J5 =
∫

λρ(λ) dλ

∫ ∞

�θ̃+δ

dx

[
1

1 + (√ κj

κi
|x|)β

]n[ 1

1 + (√
κi

κj
|x − �θ̃ |)β

]n

∝
∫

λρ(λ) dλ

∫ ∞

�θ̃+δ

d x

xnβ (x − �θ̃)nβ
�

∫
λρ(λ) dλ

∫ ∞

�θ̃+δ

dx

xnβδnβ
�

∫
λρ(λ) dλ

∫ ∞

�θ̃

dx

xnβδnβ
∼ λ2nβM1−2nβ, (G8)
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where the last scaling holds due to Eq. (G2), and

J3 ∝
∫

λρ(λ) dλ

∫ �θ̃−δ

δ

dx

xnβ (�θ̃ − x)nβ
�

∫
λρ(λ) dλ

∫ �θ̃−δ

δ

dx

δ2nβ
∼ λ2nβM1−2nβ . (G9)

The integral in the first subregion, J1 can be approximated similarly to J5, resulting in

J1 ∼ λ2nβM1−2nβ. (G10)

In the case of sf-ps networks ρ(λ) = δ(λ − λ) and therefore all moments of ρ(λ) are independent of M . In the case of sf-sf
networks ρ(λ) ∼ λ−γ , γ > 2, and sufficiently high moments of ρ(λ) are size dependent. In a finite sample of randomly drawn λ

values, the maximum value λmax can be estimated with the natural cutoff, λmax ∼ M
1

γ−1 [82]. The natural cutoff allows one to
estimate size-dependent moments of ρ(λ) as

λ1+nβ ∝ λ2+nβ−γ
max ∼ M

2+nβ−γ

γ−1 , (G11)

λ2nβ ∝ λ1+2nβ−γ
max ∼ M

1+2nβ−γ

γ−1 . (G12)

It is straightforward to verify using Eqs. (G5), (G6), (G8), (G9), and (G10) that J1, J3, and J5 decrease faster than J2 and
J4 as M increases, for both sf-ps and sf-sf bipartite networks. Therefore, to the leading order, ru(i,j ) can be approximated as

−ln[1 − ru(i,j )] ∝ λ1+β

(M�θij )β

[
κi(κj )βI1

(
β; δ

√
κj

κi

)
+ κj (κi)

βI1

(
β; δ

√
κi

κj

)]
, (G13)

where λ1+β ≡ ∫
λ1+βρ(λ) dλ. It is important to note that since

this leading order corresponds to the n = 1 term in Eq. (G1),
and since this term is proportional to the expected number of
common neighbors between the two nodes,

−ln[1 − ru(i,j )] ∝ m(κi,κj ,�θij ), (G14)

the right-hand side of Eq. (G13) is proportional to the expected
number of common neighbors between nodes i and j , proving
Eq. (31) in the main text.

Finally, since δ ∼ �θ̃ 	 1, I1(β; δ
√

κj

κi
) ≈ I1(β; δ

√
κi

κj
) ≈

I1(β; ∞), and therefore

−ln[1 − ru(i,j )] ∼ λ1+β

Mβ

[
�θij

du(κi,κj )

]−β

,

du(κi,κj ) ≡ (
κ

β

i κj + κiκ
β

j

) 1
β , (G15)

proving Eq. (44) in the main text.

Equation (G15) allows us to analyze the behavior of
−ln[1 − ru(i,j )] as the system size M ∝ N increases. In the
case of sf-ps networks λ1+β = λ̄1+β is finite and independent
of M , leading to

−ln[1 − ru(i,j )] ∼ M−β. (G16)

In the case of sf-sf networks, λ1+nβ is given by Eq. (G11) and
results in

−ln[1 − ru(i,j )] ∼ M
− (γ−2)(1+β)

γ−1 . (G17)

As can be seen from Eqs. (G16) and (G17), the connection
probability ru(i,j ) of top nodes in the one-mode projection
decreases as M increases, and scales as M−η, where exponent
η = β in sf-ps networks and η = (γ−2)(1+β)

γ−1 in sf-sf networks.
This result implies that one-mode projections of sufficiently
large bipartite networks are sparse. However, we note that
η → 0 in sf-sf networks as the power-law exponent of the
bottom domain γ → 2. This result implies that one-mode
projections of finite sf-sf networks characterized by γ close to
2 and small β values may be very dense and overinflated with
fully connected subgraphs. This effect can render geometry
inference using the one-mode projections inaccurate.
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[35] M. Barthélemy, Spatial networks, Phys. Rep. 499, 1, (2011).
[36] P. Sarkar, D. Chakrabarti, and A. W. Moore, Theoretical

justification of popular link prediction heuristics, IJCAI Proc-
Intl. Joint Conf. Artif. Intell. 22, 2722 (2011).

[37] M. Penrose, Random Geometric Graphs (Oxford University
Press, Oxford, 2003).

[38] P. Balister, A. Sarkar, and B. Bollobás, Percolation, connec-
tivity, coverage and colouring of random geometric graphs, in
Handbook of Large-Scale Random Networks (Springer, Berlin,
2008), pp. 117–142.

[39] M. Franceschetti and R. Meester, Random Networks for Com-
munication: From Statistical Physics to Information Systems
(Cambridge University Press, Cambridge, 2008).

[40] S. K. Iyer and D. Yogeshwaran, Percolation and connectivity
in AB random geometric graphs, Adv. Appl. Probab. 44, 21
(2012).

[41] D. Tse and P. Viswanath, Fundamentals of Wireless Communi-
cation (Cambridge University Press, Cambridge, 2005).

[42] M. D. Penrose, Continuum AB percolation and AB random
geometric graphs, J. Appl. Probab. 51, 333 (2014).

[43] G. Caldarelli, A. Capocci, P. De Los Rios, and M. Muñoz, Scale-
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