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Role-separating ordering in social dilemmas controlled by topological frustration
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“Three is a crowd” is an old proverb that applies as much to social interactions as it does to frustrated
configurations in statistical physics models. Accordingly, social relations within a triangle deserve special
attention. With this motivation, we explore the impact of topological frustration on the evolutionary dynamics of
the snowdrift game on a triangular lattice. This topology provides an irreconcilable frustration, which prevents
anticoordination of competing strategies that would be needed for an optimal outcome of the game. By using
different strategy updating protocols, we observe complex spatial patterns in dependence on payoff values
that are reminiscent to a honeycomb-like organization, which helps to minimize the negative consequence of the
topological frustration. We relate the emergence of these patterns to the microscopic dynamics of the evolutionary
process, both by means of mean-field approximations and Monte Carlo simulations. For comparison, we also
consider the same evolutionary dynamics on the square lattice, where of course the topological frustration is
absent. However, with the deletion of diagonal links of the triangular lattice, we can gradually bridge the gap
to the square lattice. Interestingly, in this case the level of cooperation in the system is a direct indicator of the
level of topological frustration, thus providing a method to determine frustration levels in an arbitrary interaction
network.
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I. INTRODUCTION

The evolution of cooperation is still a major open problem
in biological and social sciences [1]. After all, why should
self-interested individuals incur costs to provide benefits to
others? This puzzle has been traditionally studied by means
of evolutionary game theory, and with remarkable success
[2–6]. The prisoner’s dilemma game [6,7], for example, is the
classical setup of a social dilemma. The population is best off
if everybody would cooperate, but the individual does best if
it defects, and that regardless of what other choose to do. In
classical game theory, the Nash equilibrium of the prisoner’s
dilemma game, indeed the rational choice, is thus to defect.
Nevertheless, cooperation flourishes in nature, and it is in fact
much more common as could be anticipated based on the
fundamental Darwinian premise that only the fittest survive.
Humans, birds, ants, bees, and even different species between
one another, all cooperate to a more or less great extent [8–10].

An important step forward in understanding the evolu-
tion of cooperation theoretically was to consider spatially
structured populations, modeled, for example, by a square
lattice, which has been done first by Nowak and May [11]
who discovered network reciprocity. In spatially structured
populations cooperators may survive because of the for-
mation of compact clusters, where in the interior they are
protected against the invasion of defectors. Other prominent
mechanisms that support the evolution of cooperation include
kin selection [12], mobility and dilution [13,14], direct and
indirect reciprocity [15,16], network reciprocity [11,17–19],
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group selection [20], and population heterogeneity [21–24].
In particular, research in the realm of statistical physics has
shown that properties of the interaction network can have
far reaching consequences for the outcome of evolutionary
social dilemmas [25–37] (for reviews see Refs. [38–44]),
and moreover, that heterogeneity in general, be it introduced
in the form of heterogeneous interaction networks, noisy
disturbances to payoffs, or other player-specific properties like
the teaching activity or the propensity to acquire new links over
time, is a strong facilitator of cooperation [22,37,45–63].

However, the impact of a structured population is not
always favorable for the evolution of cooperation. If the
interaction network links three individuals into a triangle, it
may be challenging, or even impossible, to come up with a
distribution of strategies that ensures everybody is best off
(even if one assumes away the constrains of the evolutionary
competition) [64]. In the snowdrift game, anticoordination of
the two competing strategies is needed for an optimal outcome
of the game. Clearly, in a triangle, if one individual cooperates
and the other defects, the third player is frustrated because
it is impossible to choose a strategy that would work best
with both its neighbors. Similarly frustrated setups occur in
traditional statistical physics, and have in fact been studied
frequently in solid-state physics [65,66]. In antiferromagnetic
systems, for example, spins seek the opposite state of their
neighbors, and again, it is clearly impossible to achieve this in
a triangle. As noted above, the snowdrift game is in this regard
conceptually identical, and thus one can draw on methods of
statistical physics and on the knowledge from related systems
in solid-state physics to successfully study the evolutionary
dynamics of cooperation in settings that constitute a social
dilemma.
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The manifestation of topological frustration in the snowdrift
game, however, can depend strongly on how the players update
their strategies during the evolutionary process. In the light
of recent human experiments [38,67–72], we here consider
not only the generally used imitation dynamics, but also the
so-called logit rule (also known as myopic dynamics) [73–75].
The latter can be considered as more innovative, allowing
players to choose strategies that are not within their neigh-
borhood if they provide a good response to the strategies of
their neighbors. Although the long-term evolution in animals
is best described by imitation dynamics, humans tend to be
more inventive, and thus their behavior aptly described also by
innovative dynamics [6,38,70–72,76–82]. Indeed, the impact
of the logit rule and of closely related strategy updating
protocols on the outcomes of evolutionary games on the square
lattice has been studied extensively [74,79,80,83–85], but there
the topological frustration is absent.

In what follows, we fill this gap by studying the snowdrift
game on the triangular lattice, as well as the transition from
the square to the triangular lattice, both by means of mean-
field approximations and Monte Carlo simulations. Our main
objective is to reveal how an inherent topological frustration
affects the evolutionary outcomes. We observe fascinating
honeycomb-like patterns, and we devise an elegant method
to determine the level of frustration in an arbitrary interaction
network through the stationary level of cooperation. Before
presenting the main results, we first describe the mathematical
model, and we conclude with a discussion of the wider
implications of our findings.

II. MATHEMATICAL MODEL

In our model, players have only two possible strategies,
namely cooperation (C) and defection (D), and the game is
played in a pairwise manner as defined by the interaction
network. During each pairwise interaction players receive a
payoff according to the payoff matrix [6,38],

C D

C

D

(
R S

T P

)
, (1)

where T ∈ [0,2], S ∈ [−1,1] and R = 1, P = 0. This
parametrization is useful as it spans four different classes
of games, namely the prisoner’s dilemma game (PD), the
snowdrift game (SD), the stag-hunt game (SH), and the
harmony game (HG) [38,75,83,86]. After players collect their
payoff, they may change their strategies based on a particular
strategy updating rule. In this paper, we consider the logit rule
and compare it with the classical imitation rule.

The logit rule is based on the kinetic Ising model of
magnetism (also known as Glauber dynamics [66,87]). The
site will change its strategy with probability

p(�ui) = 1

1 + e−(ui∗−ui )/K
, (2)

where ui is the site current payoff, ui∗ is the site’s payoff
if it changed to the opposite strategy, and the states of
neighborhood remain unchanged. Finally, K is a parameter
that measures the irrationality of players. In the literature, K

is usually set between K ∈ [0.001,0.4] to simulate a small,

but nonzero, chance of making mistakes [6,38]; we set it
to be 0.1. Mathematically, the model is equivalent to the
statistics used in physics to describe the dynamics of spins in
a Fermi-Dirac distribution and is widely used in evolutionary
dynamics [88]. In the context of game theory, this kind of
update rule (also know as myopic best response [74]) is
regarded as a player asking himself what would be the benefits
of changing his strategy (even when there is no neighbor
with different strategy). This means that the logit rule is an
innovative dynamic, since new strategies can spontaneously
appear. Recently, the logit rule has been the focus of many
works [38,67–69,74,79,80,83–85] as it leads to very different
results compared to imitation models. As we see, this rule is
closely related to rational analysis of a situation, instead of the
reproduction of the “fittest” behavior. Although evolutionary
game theory has its bases rooted in biological populations
dynamics, recent works shows that the modeling of humans
playing games can have more in common with innovative
dynamics [67–69,79,89].

The imitation rule, or imitation dynamics, is one of the
most common update rules in iterated evolutionary game the-
ory [6,38] and is based on the concept of the fittest strategy re-
producing to neighboring sites. Here we will use it as a baseline
for comparison with our results. Site i will update its state by
randomly choosing one of its neighbors, j , and then comparing
their payoff. Site i adopts the strategy of j with probability

p(�uij ) = 1

1 + e−(uj −ui )/K
, (3)

where ui,j is the total payoff of site i,j [90]. Note that
player i can only change its strategy to the ones available in its
neighborhood. This means that new strategies can never appear
once extinguished and players never “explore” new strategies,
which can be interpreted as a noninnovative dynamic. This
model is associated with biological processes, where each
strategy is regarded as a specie, and once extinguished it will
never reappear [2,6,38,91]. We note that this is not always
the case when modeling human interactions, who can change
behaviors depending also on other external, and to a large
degree unpredictable, factors. We also note that many works
have shown that the strategy updating rule can have profound
influence on the evolution of strategies, even changing the
impact of the topology of interaction network [38,40,68,89].

A. Triangular lattice

We make a quick review here to clarify some properties of
the triangular lattice. This topology has an important property:
every closed loop is composed of an even number of steps,
which gives rise to frustration phenomena [65]. The snowdrift
game, which is also known as anticoordination game since
choosing the opposite strategy of the partner is a Nash equi-
librium, is strongly affected by network inherent frustration.
In square lattices, the logit rule yields a population displaying
a very stable checkerboard pattern, as everyone can choose
to do the opposite of all neighbors [38,74,80,85,89,92–94]. In
contrast, this spatial ordering is impossible in the triangular
lattice, as shown in Fig. 1. Every pair of different strategies
will share at least one third neighbor that will be frustrated.
This phenomenon is well explored in magnetic models, where
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FIG. 1. The minimal frustration configuration in the triangular
lattice. Every blue (dark gray) site (cooperator) receives the best
payoff, although defectors, marked red (light gray), have only half
of their connections leading to the best payoff. Frustrated bonds are
drawn by dashed lines and bonds that maximize the payoff are drawn
by full lines.

many interesting “spin-glass” phenomena can arise [65,95]. In
spin models we see that the “minimum energy” configuration
would be similar to the pattern shown in Fig. 1. We wish to
analyze this situation in evolutionary game dynamics. One
type of player is surrounded by a honeycomb structure of the
opposite type, repeated infinitely for a large lattice. Notice that
the central site (blue) does not have any frustrated connections,
while the other type (red) is frustrated in half of its connections.

III. RESULTS

We start showing that, mathematically, the formal relation
between anticoordination games and antiferromagnetic sys-
tems [38,74,75,80,84,85,89,93,94,96] is not an identity. Let us
consider a matrix for the energy of a single spin in a magnet
with coupling constant J and an external magnetic field B,
similar to the payoff matrix 1:

↑ ↓
↑
↓

(−J − B J − B

J + B −J + B

)
. (4)

The spins in the antiferromagnet (J < 0) tend to point in the
opposite direction as their neighbors, as in anticoordination
games individuals tend to do the opposite of their neighbors.
However, equating the payoff matrix to the energy matrix
(−J − B = R, J − B = S, J + B = T , and −J + B = P )
and requiring the snowdrift payoff condition (T > R > S >

P ) yield

J + B > 0, 0 > J, and J > B, (5)

which is a mathematical absurd. There is no combination of
parameters that obey both the physical symmetry of magnetic
system and the dilemma hierarchy of game theory for a
general case. In other words, the magnetic system obeys a
diagonal symmetry in the matrix, whereas the game theory
obeys a linear hierarchy of the parameters in the matrix, both
cannot be fulfilled simultaneously. It is important to stress
that, although we will see many phenomena in the simulations

that are analogous to antiferromagnetism, the systems are not
formally identical.

A. Master equation

Let us analyze the logit model using mean-field approxi-
mation at nearest-neighbor level [38,97,98]. For simplicity we
set S = 0 in this section. If T > 1, we have the so-called weak
prisoner’s dilemma. Consider a central site i on a lattice. It
interacts only with its four (square lattice) or six (triangular
lattice) nearest neighbors (� neighborhood). In this setup,
we present the master equation for the average fraction of
cooperators, ρ (note that ρ is a function of t):

ρ̇ = (1 − ρ)�+(C→D) − ρ�−(D→C), (6)

where �± is the probability for the central player to change
its strategy to C (D). We obtain

(
N

n

)
different neighborhood

configurations where N is 4 for the square lattice and 6 for the
triangular lattice and n is the number of cooperative neighbors
for each neighborhood configuration. Therefore,

�± =
N∑

n=0

(
N

n

)
ρn(1 − ρ)(N−n)P±(ui,u�). (7)

Here,
(
N

n

)
are the binomial coefficients and weights the

repetitions of identical configurations. Note that while n varies
in the summation, N is fixed for each lattice type. The term
ρn(1 − ρ)(N−n) weighs the probability of such a configuration,
and P±(ui,u�) is the probability, in a specific configuration,
that the central site will turn into a cooperator (P+) or a
defector (P−). This probability is the only term that is directly
dependent on the update rule chosen (logit or imitation). For
the logit rule the focal site changes the state comparing its
current payoff (ui) with its future payoff if the state was
changed, (u∗). Calculating P+(ui,u�), for the case where the
central site is D and changes to C, we have

P+(ui,u�) = 1

1 + e−(u∗−ui )/K
. (8)

Analytically, one of the advantages of the logit model is
that the probability does not depend explicitly on the payoffs
of the neighborhood �. If the central site is D (C), the payoff
difference, for any configuration, will be

(u∗ − ui)D→C = n(1 − T ), (9)

(u∗ − ui)C→D = n(T − 1). (10)

Using A = (1 − T )/K to simplify, we get

P±(ui,u�) = 1

1 + e∓nA
. (11)

Remember that the solution for the master equation of the
imitation model can be found in the literature [6,38,56]. The
master equation for the logit model becomes

ρ̇ =
N∑

n=0

(
N

n

)
ρn(1 − ρ)(N−n)

(
1

1 + e
−n(1−T )

K

− ρ

)
. (12)

This yields a sixth-order polynomial that analytically have
at least one root in the region 0 < ρ∗ < 1. This is independent
of T , meaning that at the nearest-neighbor level there exist
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FIG. 2. The fraction of cooperators in equilibrium as a function
of T . The results refer to Monte Carlo simulations (symbols) and the
master equation ODE (lines) in the logit model for both lattices. Note
that simulation and analytical results agree well and reproduce the
main characteristic of the system, namely a nonvanishing cooperation
level.

at least some minimum cooperation level independently
of the value of temptation. The existence of a minimum
level of cooperation is an interesting result, agreeing with
other approaches on innovative dynamics that found similar
results using Monte Carlo simulations and experiments with
humans [67–69,74,79,84,85,99,100].

To obtain the time-independent solution of the master
equation we use a fourth-order Runge-Kutta integrator. As
in other models, the system reaches a stable state after some
time. In our model the behavior of ρ(t)t→∞ is independent
of the initial fraction of cooperation. This is an important
feature, as not every update rule will have an equilibrium
state independent of the initial conditions [79,86,101,102].
Figure 2 shows the cooperation level for the stable equilibrium
(ρ(t)t→∞) as a function of T . We compare the Monte
Carlo simulation (further analyzed bellow) with the numerical
solution for the master equation in both topologies. The
mean-field approach agrees with the simulation results and,
most importantly, both approaches report a basal cooperation
level for any T .

The mean-field technique is a good approximation to obtain
insights and confirm the prediction of other methods. Even so,
it does not always return the same results as in the structured
population [38,75], it is only an approximation. In our case,
it is interesting to notice that both methodologies (Monte
Carlo and mean field) report the minimal level of cooperation
that is independent of the value of temptation. This kind of
basal cooperation level was also found in other studies using
innovative dynamics, even with different update rules and
topologies [74,84,85].

B. Monte Carlo simulations

We use the asynchronous Monte Carlo procedure to
simulate the evolutionary dynamics. First, a randomly chosen
player, i, is selected. The cumulative payoff of i and of
its nearest neighbors payoffs are calculated. Then player i

changes its strategy based on the update probability defined

0 0.5 1 1.5 2
T

0

0.2

0.4

0.6

0.8

1

ρ

imitation, triangular
imitation, square
logit, triangular
logit, square

FIG. 3. The fraction of cooperators in equilibrium as a function
of T , as obtained by means of Monte Carlo simulations (for S = 0).
Note that the difference between the logit and the imitation model
is significant for T > 1, where the logit model exhibits a minimal
cooperation level. Also note that the sharp drop in cooperation occurs
in the same region.

in Eq. (2) for logit or in Eq. (3) for imitation dynamics. One
Monte Carlo step (MCS) consists of this process repeated
L2 times, where L is the lattice linear size (here we set
L = 100). For a detailed discussion on Monte Carlo methods
in evolutionary dynamics we suggest Refs. [38,103–105]. We
ran the algorithm until the equilibrium state (104–105 MCS’s);
then we average over 1000 MCS’s for 10–20 different initial
conditions. We used periodic boundary conditions and random,
homogeneous initial strategy distribution.

Starting with the weak prisoner’s dilemma (S = 0), we
compare the logit with the imitative dynamics. Figure 3 shows
ρ as a function of T . The logit model has a sharp decay in
cooperation, almost at the same point where the imitation
model has a transition [38,75]. This is valid for both square
and triangular lattices. Also, it is remarkable that for large T a
minimal global value of cooperation survives, confirming the
prediction of our mean field approach.

Figure 4 shows the fraction of cooperation in the entire T -S
plane in the imitation and logit models, for both triangular and
square lattices. Notice how similar the outcomes are in the HG,
PD, and SH games. The difference appears in the snowdrift
game. Imitation dynamics yields similar results in both square
and triangular lattices, but logit dynamics yields different
results. More specifically, while in the logit model on the
square lattice there is a flat plateau of 50% cooperation (deeply
studied in Refs. [74,84,85]), in the triangular lattice there are
basically two phases separated by a straight diagonal line (S =
T − 1). Notice that on the square lattice the whole SD region is
associated with a static checkerboard pattern, corresponding
to the Nash equilibrium, which is the most efficient way of
increasing the population payoff, as previously stressed in
Refs. [74,80,83–85,93,100]). It is also interesting to notice
that for the logit model, cooperation survives independently of
T for some range of S (around S 	 −0.15) in the PD region.

Studying the SD region for triangular lattice in the logit
dynamics, we find a plateau of ρ 	 0.35 below the diagonal

032307-4



ROLE-SEPARATING ORDERING IN SOCIAL DILEMMAS . . . PHYSICAL REVIEW E 95, 032307 (2017)

FIG. 4. Heat maps encoding the cooperation level for the whole
T -S plane. The top row, (a) and (b), shows results obtained on
the square lattice, while the bottom row, (c) and (d), shows results
obtained on the triangular lattice. The left column, (a) and (c), shows
results obtained with the imitation dynamics, and the right column,
(b) and (d), shows the results obtained with the logit rule. When
imitation dynamics is used, there is little difference inferable that
would be due to the differences in the interaction lattice. For the
logit model, the level of cooperation is higher in the SD region for
both topologies. Most interestingly, for the triangular lattice, we can
observe two different phases that are separated by a straight line.

line and ρ 	 0.65 above it, with minor fluctuations of ±0.05.
We further refer to Refs. [74,84,85,93] for the analysis of the
square lattice, where such plateau is also found with a single
phase (ρ = 0.5). In principle, there would be two “ground
states” exhibiting a honeycomb pattern: a concatenation of
cells with a central D surrounded by C’s and a concatenation
of cells with a central C surrounded by D’s. Let us consider
the first “ground state,” where the central site in each cell
of the honeycomb configuration is a defector surrounded by
six cooperators. Each one of these six cooperators is shared
by three distinct cells. The fraction ρ in an infinite lattice is
calculated as the fraction of cooperators in the cell, weighting
each site by the number of blocks that share it. So we have

ρ = 6/3

6/3 + 1
= 2

3
. (13)

The calculation for the other “ground state” is analogous,
yielding ρ = 1/3. Most interestingly, the system is driven to
one of the two “ground states” configurations depending on
the payoff parameters. To make this point clearer, in Fig. 5
we show the fraction of cooperation for parameters along a
straight line orthogonal to the line that divides the plateaus
observed in the SD region. We can clearly see the two plateaus
and the transition point where the roles of C and D players are
exchanged, as shown in the incept of the patterns.

The logit model seems to drive the system to the maximum
attainable global payoff (related to the minimum energy level).
To further study this hypothesis, we quantify the frustration,
φ, defined as the fraction of frustrated links. In SD games
the frustrated links are the CC and DD pairs. Note that

FIG. 5. The fraction of cooperators in equilibrium along the line
defined by T = 2 − S in the logit model on a triangular lattice. Here
the payoff values are varied via the control parameter r , where T =
1 + r and S = 1 − r . Instead of a homogeneous state, like on the
square lattice, we observe two different phases with honeycomb-like
spatial patterns. The insets illustrate the typical honeycomb cell that
is characteristic of each phase.

our definition of frustration is a good measurement of the
“homogeneity” and global spatial structure of the lattice:
the frustration is 1 for any homogeneous state, regardless
of the cooperation level, and can be zero, for example, in the
chess board pattern configuration of cooperators and defectors
on square lattices. In both “ground states” configuration
of the triangular lattice, we can easily show that the frus-
tration is equal to 1/3. In Fig. 6 we compare the lattice
frustration of logit and imitation rules for the SD region
(frustration is meaningless outside this parameter range). The
imitation model maintains a high frustration, around 60%,
whereas the logit model maintains a moderate frustration,
around 35%, independently of payoff values of T or S, which
is very close to the analytical solution of the honeycomb
structure. Note that on triangular lattices the minimum achiev-
able frustration is 1/3, as there is an inevitable topological
frustration. Also note how frustration quickly rises to almost 1
in the borders of the diagram, where there is full cooperation
or full defection.

FIG. 6. The level of frustration, φ, in the snowdrift region of the
T -S diagram for the imitation (a) and logit (b) strategy updating rules
on the triangular lattice. The imitation model has many frustrated
links, around 60%, while the logit model maintains the low and
homogeneous frustration of around 35%.
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FIG. 7. Typical snapshots of the square lattice in the top row,
(a) and (b), and the triangular lattice in the bottom row, (c) and (d),
in the SD region. The left column, (a) and (c), shows the results
for imitation model while the right column, (b) and (d), shows the
results for the logit model. In the logit model on the square lattice
a checkerboard pattern quickly emerges. In the logit model on the
triangular lattice, on the other hand, we see the honeycomb pattern.
Here we use T = 1.2 and S = 0.5.

To further support our claims, we present snapshots of the
lattices in dynamic equilibrium on the SD region. The Monte
Carlo method is of course probabilistic, and accurate results
are dependent on sufficiently large averages [38,103–105].
Even so, it is insightful to see the images of the lattice after
the system has reached a dynamical equilibrium. Figure 7
shows typical snapshots of logit and imitation update rules
for square and triangular lattices. It is clear the differences
in spatial organization exhibited in each model. We see that
in both topologies the imitation update tends to maintain
cooperators in clusters, whereas the logit model tends to
distribute strategies more homogeneously. Specifically, the
logit model on square lattice tends to form a checkerboard
pattern, a behavior that has been consistently reported in
different innovative rules [74,80,83–85,93,100] and is usually
attributed to the population rearranging itself to receive the
highest total payoff achievable. For the triangular lattice we
can see that the expected frustrated pattern illustrated in
Fig. 1 indeed emerges. It is worth mentioning that it is the
absence of clustering that makes the mean-field approximation
a good one for the logit dynamics. Such phenomena suggests
a general behavior exhibited by innovative dynamics that
leads to the emergence of specific spatial structures, other
than cooperation islands. We note that, while clustering has a
strong effect on everyday cooperative interactions [106,107],
the emergence of diluted patterns in our model suggests that
some role-separating structure may also emerge in human
population, where members have different roles to obtain a
higher collective income.

FIG. 8. Leading microscopic processes that guide pattern forma-
tion in a frustrated topology. (a) A cooperator surrounded by defectors
is very stable, since the change in payoff here would be −6S. (b)
Defectors in the vertices, now shown in the center, may change their
strategy, depending on the parameters. The payoff difference would
be 3(S − T + 1). If S > T − 1 the chance that defector becomes a
cooperator is high. S = T − 1 is the line dividing the two phases seen
in Fig. 4.

Last, we analyze the representative microscopic mech-
anisms that explain how strategy evolution accommodates
to topological frustration. In Fig. 8(a) we present a local
strategy distribution where the central site is highly unlikely
to change its strategy that makes the honeycomb configuration
very stable. Conceptually similar stable local distribution can
be drawn where a defector is surrounded by cooperators.
However, the sites around the central stable site are not
fully satisfied because they have some frustrated bonds. This
situation is illustrated in Fig. 8(b) where a frustrated node is in
the center. Here the central site has a higher chance to change
its strategy depending on the difference between (3T ) and
(3 + 3S). The threshold value is at the line S = T − 1, which
agrees perfectly with the border line we observed in Fig. 4. The
frustrated sites have a pivotal role in the separation of phases
illustrated in Fig. 5. For low T values, that is for S > T − 1,
cooperators fare better than defectors, allowing them to stay
in “frustrated” sites of the honeycomb configuration. This
results in a large number of cooperators, as every defector will
be surrounded by six cooperators (ρ ∼ 2/3 in the infinitely
repeated limit). The opposite is also true for S < T − 1,
namely, the defectors have a high payoff, allowing them to
stay in the frustrated positions of the honeycomb patches. As a
result, a stable cooperator will be surrounded by six defectors
yielding a relatively low cooperation level (ρ ∼ 1/3 in the
infinite limit).

We found that frustration can induce two distinct organized
patterns on triangular lattices. As we noted, square lattice
topology can be considered as the opposite extreme case
where there is no frustrated bonds between players. We wonder
how these extreme cases can be bridged by an appropriately
modified topology where the frustration level can be tuned
gradually. To generate such an intermediate level of inherent
frustration we modify the triangular lattice by removing two
diagonal connections of each site. When we alter the originally
triangular lattice then the control parameter is the X fraction
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FIG. 9. The effect of link deletion on the cooperation level along
the T = 2 − S line in the logit model. Here the payoff values
are varied via the control parameter r , where T = 1 + r , while
S = 1 − r . The topology is modified gradually where a fraction X

of diagonal links are removed from a triangular lattice. Accordingly,
X = 0 corresponds to the triangular lattice and X = 1 to the square
lattice topology. If the topological frustration is mitigated by deleting
just a few links, then the steep transition between ordered phases
vanishes. Alternatively, when we add a tiny frustration to the
interaction graph by leaving X = 1 then the antiferromagnetic order
disappears immediately.

of sites that have their diagonal links removed. Accordingly,
X = 0 corresponds to the triangular lattice, while at X = 1 the
resulting topology agrees with the square lattice. Note that the
network remains static throughout the evolutionary process
and we study how the strategy evolution may change due to
the intermediate level of topological frustration.

Figure 9 shows the resulting cooperation level in depen-
dence on the payoff values for differently frustrated topologies
as characterized by the value of X. As we start mitigating the
maximal frustration by increasing X, the steep transition point
separating the two plateaus vanishes immediately verifying
that the two ordered phases can only be observed when
maximal level of frustration is present in the topology. As
we increase X further then the resulting ρ(r) function will
approximate the ρ = 0.5 plateau only at the X → 1 limit.
It simply means that the long-range antiferromagnetic order
of competing strategies disappears immediately when we
leave the X = 1 point and introduce some frustration into the
perfectly frustration-free square lattice topology. In between
these extreme cases the shape of the ρ(t) function may inform
us about the frustration level of the unknown interaction graph.

IV. DISCUSSION

In social interactions the “best response” is often chal-
lenging, especially if the interaction involves a triangle. In
general, frustrated situations can arise as a consequence of the
type of game played, due to specific interaction topologies,
but also because of other external factors. Motivated by
this phenomenon, we considered the snowdrift game on a
triangular lattice where the topological frustration inhibits the
expected optimal anticoordination of strategies. By means of

master-equation approximations and Monte Carlo simulations,
we have studied the logit strategy updating protocol, the
classical imitation dynamics, and we have compared the
evolutionary outcomes obtained on the triangular lattice,
the square lattice, and on an abridged transition between
the two that was achieved by randomly adding links to the
next-nearest neighbors of the square lattice. Our principal
interest was to reveal how topological frustration influences
the strategy ordering in a spatial system.

In stark contrast to the square lattice where anticoordination
ordering can emerge, the frustrated topology of triangular
lattice generates two ordered phases in the snowdrift quadrant.
These states are separated by the S = T − 1 line. While for low
T values cooperators occupy 2/3 of the available sites and the
rest is occupied by defectors, their roles are exchanged for high
T values. In both phases the system evolves into a state which
is reminiscent to a honeycomb-like pattern that helps to min-
imize the negative consequence of the topological frustration.
We have identified the microscopic mechanisms that compose
these patterns, and we have found that such formations are
very stable. By comparing them with the outcome of imitation
dynamics, we have found that the logit rule allows the whole
system to evolve into the least frustrated strategy distribution
that is achievable on each lattice, which also provides the
highest population payoff. This state is reached via a strategy
distribution where cooperators are less clustered comparing to
the patterns constructed by imitation dynamics.

The striking difference between frustration-free (square)
and frustrated (triangle) lattices raises a question on what we
shall expect if the interaction graph is disordered and the level
of topological frustration is unknown. What kind of behavior
is expected in such a case? To clarify this, we have introduced
a method that allowed us to modify the level of topological
frustration gradually. Starting from a triangular lattice, we have
randomly deleted a fraction of diagonal links, which decreased
the frustration between neighboring bonds. If all diagonal
links were deleted, then we arrive at the square lattice. We
found that the two ordered phases in the snowdrift quadrant
disappear as we mitigate the frustration level. On the other
hand, the well-known antiferromagnetic-like checkerboard
pattern observed on a square lattice, which is valid for the
whole scan of the mentioned quadrant of the T -S plane,
evaporates immediately as we introduce a tiny frustration into
the interaction topology. These phenomena highlight how frus-
tration can drive individuals to form complex global patterns,
and more importantly, how innovative dynamics can drive the
system to the best, i.e., least frustrated, evolutionary outcome.

As the strategy updating rule can drastically alter population
dynamics, it is important to study how different protocols
deal with frustration and which kind of patterns can spon-
taneously emerge from the applied dynamic. This is even
more interesting in the light of emergence of complexity as
individuals interact. The studied logit rule model is essential to
the emergence of the patterns shown here, and recent research
shows the importance of integrating innovative dynamics in
game theoretical models, especially since humans seem to use
different rules than simply imitating the best when playing
evolutionary games [67–69,79,108–111]. We hope that this
paper will motivate further research along this area in the
future.
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