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Griffiths phase on hierarchical modular networks with small-world edges
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The Griffiths phase has been proposed to induce a stretched critical regime that facilitates self-organizing of
brain networks for optimal function. This phase stems from the intrinsic structural heterogeneity of brain networks,
i.e., the hierarchical modular structure. In this work, the Griffiths phase is studied in modified hierarchical
networks with small-world connections based on the 3-regular Hanoi network. Through extensive simulations,
the hierarchical level-dependent inter-module wiring probabilities are identified to determine the emergence of
the Griffiths phase. Numerical results and the complementary spectral analysis of the relevant networks can be
helpful for a deeper understanding of the essential structural characteristics of finite-dimensional networks to
support the Griffiths phase.
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I. INTRODUCTION

The well-known criticality hypothesis suggests that biolog-
ical systems operate at the borderline between the sustained
active and the sustained inactive state. This has been observed
in various processes such as gene expression [1], cell growth
[2], and neuronal avalanches [3]. In different contexts, the
critical point enables optimal transmission and storage of
information [4,5], maximal sensitivity to stimuli [6], and opti-
mal computational capabilities [7]. Empirical studies on brain
networks [8–10], however, exhibit a stretched critical region.
The Griffiths phase, characterized by generic power laws over
a broad region in the parameter space, provides an alternative
mechanism for critical behavior in brain networks without fine
tuning [11,12]. It is confirmed numerically and analytically
that the structural heterogeneity induces the Griffiths phase,
which eventually enhances the self-organization mechanism
of brain networks.

Brain networks have been found to be organized into
modules across hierarchies [13–15]. Modules in each hier-
archy are grouped into larger modules, forming a fractal-
like structure. Previous work models brain networks with
finite-dimensional hierarchical modular networks (HMNs)
[11,12] and successfully confirms the existence of the Griffiths
phase using dynamical models, such as the susceptible-
infected-susceptible (SIS) model and the contact process. The
essential characteristic of previous network models is the
hierarchical level-dependent intermodule wiring probabilities.
It is conjectured that plain modular networks are not able to
support the Griffiths phase, and disorder in different scales
significantly influences the properties of critical behaviors
[11]. In this work, the idea of a Griffiths phase is extended to
other hierarchical structures encountered in previous studies
of dynamical processes on complex networks.

Certain hierarchical networks, with a self-similar structure
and small-world connections, have been shown to exhibit novel
dynamics [16–21]. In this work, the hierarchical models are
designed based on one such example with a finite topological
dimension, the 3-regular Hanoi network [16,18,22,23]. To
tune the modular feature that is present in brain networks,
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a single node of the original network is modified into a
fully connected clique with a varying size. By introducing
different classes of intermodule connections, the essential
heterogeneous connectivity pattern is explored to induce
the Griffiths phase on finite-dimensional networks. It turns
out that the hierarchical level-dependent intermodule wiring
probabilities play an important role, affecting the properties of
the phase transition at criticality.

As a complement to the computational approach, the
spectral analysis of the adjacency matrix and the Laplacian
matrix of networks is conducted. A localized principal
eigenvector of the network adjacency matrix indicates the
network heterogeneity, which has been used to quantify
the localization of activity on networks above the critical
propagation rate in the dynamical model [24]. This concept
has been applied to analytically explain the emergence of
rare regions and the Griffiths phase [11,12,25]. However,
the observation that a localized principal eigenvector is not
necessarily the fingerprint of the Griffiths phase has been
reported in highly connected networks with intrinsic weight
disorder or finite-size random networks with power-law degree
distributions [12,26]. As an extension to finite-dimensional
models, a class of networks is found here where the Griffiths
phase is absent although their principal eigenvectors are
localized. As the second approach of the spectral analysis
of the network connectivity matrix, the Lifschitz tails in
the spectral density of the Laplacian matrix is proposed to
predict the Griffiths phase analytically. Lifshitz tails have been
related to the Griffiths singularity in equilibrium systems [27].
For synchronization and spreading dynamics on networks,
simulation and quenched mean-field (QMF) approximation
indicate a connection between the Lifshitz tail and the slow
dynamics [11,28,29]. In this study, the tail distribution of the
Laplacian eigenvalues is presented to test how well it predicts
the Griffiths phase in the SIS model.

This paper is organized as follows: Section II describes
the structural properties of hierarchical modular networks, in
which the SIS model and its critical behavior are studied;
Sec. III reviews the SIS model and the spectral analysis of the
adjacency matrix and the Laplacian matrix, and the analytical
tools are applied to all the networks considered in this work;
Sec. IV presents the numerical results for the SIS model
evolving in the networks; Sec. V concludes by highlighting
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FIG. 1. Depiction of the Hanoi network of generation g = 6. The
network features a regular geometric structure, in the form of a one-
dimensional backbone, and a distinct set of recursive small-world
links. The node degree is uniformly 3.

the significance of hierarchical level-dependent intermodule
wiring probabilities for the emergence of the Griffiths phase
and discussing the essential structural characteristics of the
Griffiths phase.

II. NETWORK STRUCTURE

Hanoi networks [16,18,22,23] are based on a simple
geometric backbone, a one-dimensional line of n = 2g nodes.
Each node is at least connected to its left and right nearest
neighbors on the backbone. To construct the hierarchy to
the gth generation, consider parameterizing any node x < n

(except for 0) uniquely in terms of two integers (i,j ), i � 1
and 1 � j � 2g−i , via

x = 2i−1(2j − 1). (1)

Here, i denotes the level of hierarchy, whereas j labels
consecutive nodes within each hierarchy. This parametrization
raises a natural pattern for long-range small-world edges
that are formed by the neighbors x = 2i−1(4j − 3) and
y = 2i−1(4j − 1) for 1 � j � 2g−i−1, as shown in Fig. 1.
Eventually, this procedure constructs a finite-dimensional
hierarchical network with a uniform finite node degree 3 and
a diameter of ∼√

n, which is denoted HN3 [16,18,22].
To construct a hierarchical structure that models the

modular property of real-world brain networks, each single
node x in HN3 is replaced by a fully connected clique that
contains a finite number m of nodes, thus forming a network
of size n × m. Maintaining the structural properties of HN3,
the self-similar structure, and the small-world connections,
I propose two connectivity patterns between modules in the
same hierarchy. In the first paradigm, the single edge in the
original HN3 is now formed by two randomly chosen nodes in
different cliques, which I denote HMN1. The second paradigm
is inspired by previous hierarchical modular models [11,12].
To distinguish it from HMN1, I denote it HMN2. Previous
models share common features, hierarchical construction of
modules and level-dependent wiring probabilities. Modules
are grouped to form larger modules on the next level. They are
connected in either a stochastic way with a level-dependent
probability pi or a deterministic way with a level-dependent
number of edges.

Since an infinite-dimensional network is predicted not
to support the Griffiths phase [11], to maintain a finite
fractal dimension, the number of intermodule connections
is stable across hierarchical levels. In this work, I use the
stochastic scheme to construct HMN2. As the size of modules
in the hierarchical level i increases exponentially with i,
the intermodule wiring probability decreases exponentially.
In HMN2, for the first hierarchy, modules on this level
are cliques themselves. Starting from the second hierarchy,
the clique labeled 2(2j − 1) is grouped with the neighbor
clique 2(2j − 1) − 1 and 2(2j − 1) + 1, forming a module.
For the third hierarchy, the clique labeled 22(2j − 1) is
grouped with three left neighbor cliques up to the clique
22(2j − 1) − 3 and three right neighbor cliques up to the clique
22(2j − 1) + 3. Repeating this procedure g generations, the
size of the module at the ith generation is m(2i − 1). The
number of all possible stochastic connections between two
modules is m2(4i − 2i+1 + 1). Thus, to ensure that at least one
edge exists between them, the level-dependent probability pi

is bounded by 1/(m2(4i − 2i+1 + 1)).

III. SUSCEPTIBLE-INFECTED-SUSCEPTIBLE MODEL
AND SPECTRAL ANALYSIS

Certain fundamental dynamical models, the susceptible-
infected-susceptible model and the contact process, have been
used to model the activity propagation in brain networks
[11,12]. Previous studies focus on the emergence of the
Griffiths phase in general complex networks using these
simplified models. Quenched disorder, either intrinsic to nodes
or topological, has been shown to smear the phase transition at
critical points and generate the Griffiths phase. The essential
disorder may stem from a node-dependent propagation rate
[30,31]. Recent results also present evidence that the Griffiths
phase emerges due to the quenched disorder on the edges, such
as a correlated weight pattern in tree networks [32] and an
exponentially suppressed weight scheme in random networks
[25].

Special rare regions emerge in the dynamical process
evolving in networks with quenched disorder. Statistically,
the active state lingers in these rare regions for a typical
time that grows exponentially with their sizes and eventually
ends up in the absorbing state [11,33]. The exponential size
distribution of rare regions induces power-law decays with
continuously varying exponents, i.e., the Griffiths phase. Not
only in the spreading dynamics, rare regions have also been
shown to affect the properties in classical phase transitions in
quenched disordered systems, such as the randomly diluted
Ising model and Ising model with planar defects, and quantum
phase transitions in itinerant magnets with Heisenberg spin
symmetry, leading to an essential singularity, the Griffiths
singularity [34,35].

In the absence of quenched disorder, the Griffiths phase
can also be a consequence of the structural heterogeneity
of finite-dimensional networks, which is expected to play a
role similar to that of the quenched disorder [11,30]. The
QMF approximation applies a spectral analysis of the network
adjacency matrix that analytically explains emerging rare
regions and the Griffiths phase in networks with quenched
disorder [24,25]. This analytical procedure successfully
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confirms the Griffiths phase in finite-dimensional hierarchical
modular networks in previous work [11]. The spectral analysis
of the network Laplacian matrix provides another approach
to predicting the Griffiths phase, which is confirmed in [11]
and [29]. In this section, I focus on the SIS model and apply
the spectral analysis of all the relevant finite-dimensional
structures.

A. SIS model and the simulation

In the SIS model, each node in networks is described by
a binary state, active (σ = 1) or inactive (σ = 0). An active
node is deactivated at a unit rate; otherwise, it propagates the
active state to its inactive neighbors at a rate λ. The evolution
equation for the probability ρx(t) that node x is active at time
t is

d

dt
ρx(t) = −ρx(t) + λ[1 − ρx(t)]

N∑
y=1

Axyρy(t), (2)

in which A is the network adjacency matrix. Axy is 1 if nodes
x and y are connected by an edge; otherwise, it is 0. The
Laplacian matrix of a graph is defined with the adjacency
matrix as

Lxy = δxy

∑
z

Azy − Axy, (3)

where Lxy is equal to −Axy when x �= y, and Lxx is equal
to

∑
y �=x Axy , i.e., the degree of node x. Denote eigenvalues

and eigenvectors of the adjacency matrix A and the Laplacian
matrix L, respectively, as �A, f A(�A) and �L, f L(�L).

I here briefly introduce the method used to perform the
simulation for the SIS model. The large-scale numerical
simulation method for the SIS model developed in [36]
determines the critical propagation rate λc efficiently for
various networks. This algorithm considers the SIS model
in continuous time. At each time step, one randomly chosen
active node deactivates with the probability Ni/(Ni + λNn),
where Ni is the number of active nodes at time t and Nn is the
number of edges emanating from them. With complementary
probability λNn/(Ni + λNn), the active state is transmitted to
one inactive neighbor of the randomly selected node. Time is
incremented by �t = 1/(Ni + λNn). This process is iterated
after updating the system.

B. Spectral analysis for the SIS model

In this subsection, I review the derivation of the spectral
analysis of the adjacency matrix and the Laplacian matrix and
apply it to all the relevant networks. Considering the adjacency
matrix, the criterion for localization of the steady active state in
networks is based on the evaluation of the inverse participation
ratio (IPR) of the principal eigenvector corresponding to the
largest eigenvalue. Following the notations in [24], eigenvalues
of the adjacency matrix are ordered as �A

1 � �A
2 � . . . � �A

N .
The probabilities ρx for each node at the steady state can
be written as a linear superposition of the N orthogonal
eigenvectors [24],

ρx =
N∑

i=1

c
(
�A

i

)
f A

x

(
�A

i

)
. (4)

If the largest eigenvalue �A
1 is significantly larger than all the

others, the QMF approximation predicts the critical point λc

as 1/�A
1 , and the steady state probability as

ρx ∼ c
(
�A

1

)
f A

x

(
�A

1

)
. (5)

The order parameter ρ(t) is defined as the average
1
N

∑N
x=1 ρx(t) over all the nodes. At the critical λc, the order

parameter ρ at the steady state can be expanded as,

ρ ∼ a1� + a2�2 + · · · , (6)

in which � = λ�1 − 1 � 1 with the coefficients

ai =
∑N

x=1 f A
x

(
�A

i

)
N

∑N
x=1

[
f A

x

(
�A

i

)]3 . (7)

With the dominant largest eigenvalue and the principal
eigenvector, the order parameter ρ can be approximated with
ρ ∼ a1�. In the limit N → ∞, for a localized principal
eigenvector f A(�A

1 ), the components f A
x (�A

1 ) are of the order
of O(1) only at few nodes, and then a1 ∼ O(1/N ) and ρ ∼
O(1/N ). Thus, the active state is localized on the a few nodes
of the network. On the other hand, for a delocalized principal
eigenvector f A(�A

1 ), we usually have f A
x (�A

1 ) ∼ O( 1√
N

), and
then a1 ∼ const and ρ ∼ const . The active state extends over
a finite fraction of nodes of the network. The localization of
eigenvectors is quantified by their inverse participation ratio
(IPR) (shown in [24]),

IPR(�) =
N∑

x=1

[fx(�)]4. (8)

A finite IPR value of the principal eigenvector corresponds to a
localized eigenvector, while an IPR approaching 0 corresponds
to a delocalized principal eigenvector. I apply the concept of
the IPR to all the relevant networks to examine whether a
localized principal eigenvector exists, which may suggest the
emergence of rare regions and the Griffiths phase in the QMF
approximation [11,12].

As shown in Fig. 2(a), the IPR of the principal eigenvector
increases with the clique size m towards a finite value for
different maximum generation g of HMN1. This suggests
that the principal eigenvectors for HMN1 configurations are
localized. Additionally, localized eigenvectors corresponding
to the largest eigenvalues are also found, shown in Fig. 2(b).
For HMN2, I focus on level-dependent intermodule wiring
probabilities, pi = 4−(i+1) and pi = 4−i , in this work. The
backbone as well as the first-level intermodule wiring proba-
bility is fixed at 1/4, where the modules are the basic cliques
described in Sec. II. Values of IPR are shown in Fig. 3(a). The
largest value comes from the network configuration where
the single clique contains two nodes, and the probability is
pi = 4−(i+1). In this case, the network is statistically almost
fragmented. Numerical results in Sec. IV indeed show the
emergence of the Griffiths phase as a trivial consequence of
the network disconnectedness. To examine the Griffiths phase
in a connected network with a finite fractal dimension, the
network configuration m = 3 and pi = 4−(i+1) is also chosen
for the numerical simulation. For the stochastically constructed
HMN2, as the clique size m or level-dependent probability
increases while the other factor is kept fixed, modules become

032306-3



SHANSHAN LI PHYSICAL REVIEW E 95, 032306 (2017)

0 2 4 6 8 10 12 14 16 18

(a)

(b)

20 22 24 26 28 30 32
m

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

IP
R

g=10
g=11
g=12

0 0.5 1 1.5 2 2.5 3 3.5
x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

f x(
)

FIG. 2. (a) IPR vs m for HMN1 network configurations with
different maximum generation g. Red squares show values of IPR for
g = 10; black circles, for g = 11; blue diamonds, for g = 12. Each
data point averages values of IPR over 100 independent realizations of
the HMN1 configuration. (b) Localized eigenvectors corresponding
to the five largest eigenvalues of the adjacency matrix of one graph
realization of the HMN1 configuration with g = 11, m = 16.

more and more connected with other modules in the same level,
and the value of IPR decreases, shown in Fig. 3(a). The regime
over the parameter m and the level-dependent pi that possibly
supports the Griffiths phase is narrow. It is not surprising to
see that the localized principal eigenvector exists for HMN2
network configurations with a finite value of IPR. In Figs. 3(b)
and 3(c), I illustrate the localized eigenvectors corresponding
to large eigenvalues in two network configurations.

As the second approach of the spectral analysis to further
confirm the Griffiths phase, I study the spectral density of the
network Laplacian at the lower edge, the Lifshitz tail. The
Laplacian matrix is positive semidefinite, i.e., �L

i � 0 and
�L

1 = 0, following the notations in [29]. The smallest nonzero
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FIG. 3. (a) IPR vs m for HMN2 network configurations with
different g values. Red squares show values of the IPR with
g = 10; black circles, for g = 11. The hierarchical level-dependent
intermodule probability is pi = 4−(i+1). Compared to them, blue
diamonds are IPRs for g = 10 with a level-dependent probability
pi = 4−i . Each data point averages IPRs over 100 independent
realizations of the HMN2 configuration. (b) Localized eigenvectors
corresponding to the five largest eigenvalues of the adjacency matrix
of one graph realization of the HMN2 configuration with g =
14, m = 2, pi = 4−(i+1). (c) Localized eigenvectors corresponding
to the five largest eigenvalues of the adjacency matrix of one graph
realization of HMN2 with g = 14, m = 3, pi = 4−(i+1).
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�L
2 is defined as the spectral gap. Near the critical point, in

the inactive phase, the evolution equation of the SIS model,
Eq. (2), can be approximated as

d

dt
ρx(t) = −ρx(t) + λ

N∑
y=1

Axyρy(t), (9)

which can be rewritten using the Laplacian matrix as

d

dt
ρx(t) =

(
λδxy

N∑
z=1

Ayz − 1

)
ρx(t) − λ

N∑
y=1

Lxyρy(t).

(10)

A linear stability analysis is performed [29], similar to the
synchronization process [37]. The normal modes of the
perturbations above the absorbing state can be written

d

dt
ρx(t) = −λ

∑
y

Lxyρy(t). (11)

Using the Laplacian spectrum, ρx(t) can be expressed as the
expansion with the Laplacian eigenvalues and eigenvectors,

ρx(t) =
∑
iy

e−λ�L
i tf L

x

(
�L

i

)
f L

y

(
�L

i

)
ρy(0), (12)

and the total density is determined by the lowest eigenvalues
of the spectrum,

ρ(t) ∼
N∑

i=2

e−λ�L
i t . (13)

In the continuum limit,

ρ(t) ∼
∫ �L

c

�L
2

d�P (�)e−λ�t , (14)

10-4 10-3 10-2 10-1
10-2

10-1

100

101

P
(

)

HMN1 (g=11,m=8)
HMN2 (g=12,m=3)
HMN2 (g=13,m=2)

~ 0.8226...

~ 0.6828...

FIG. 4. Lifshitz tails for HMN1 and HMN2. Red circles show the
tail distribution for the HMN1 configuration with g = 11 and m = 8;
black squares, the distribution for the HMN2 configuration with g =
13, m = 2, and pi = 4−(i+1), fitted with a power law P (�) ∼ �0.6828...;
and blue diamondsfor the tail distribution for the HMN2 configuration
with g = 12, m = 3, and pi = 4−(i+1), fitted with P (�) ∼ �0.8226....

in which �L
c is the experimentally determined end of the tail

value. A power-law distribution P (�) of the lower edge of the
Laplacian spectrum suggests Griffiths phase behavior above
the absorbing state [29]:

ρ(t) ∼
∫ �c

�2

d��ae−λ�t (15)

∼ t−λ(a+1). (16)

For comparison I calculated the Lifshitz tails for HMN1 and
HMN2, shown in Fig. 4. In the plot, the probability distribution
P (�) is calculated with the bin size δ� = 0.0001 over 100
independent graph realizations. The Lifshitz tail for the HMN2
configuration with g = 13, m = 2, pi = 4−(i+1) and with
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log(t)
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ln
(

)

(a)

(b)

FIG. 5. (a) ρ vs t for the HMN1 network configuration with
g = 11, m = 8. Lines from bottom to top are for λ = 0.1650, 0.1651,
0.1652, and 0.1653. (b) ln (ρ) versus ln (t). The straight black line is
the fitted curve with ρ ∼ t−0.2849.... The critical propagation rate is
λc ≈ 0.1652.
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g = 12, m = 3, pi = 4−(i+1) are fitted with power laws as

P (�) ∼ �0.6828... (17)

and

P (�) ∼ �0.8226..., (18)

while the Lifshitz tail for HMN1 slightly deviates from a power
law, suggesting the lack of the Griffiths phase according to
[29].

IV. SIMULATION RESULTS FOR THE SIS MODEL
IN HMN1 AND HMN2

In this section, I present results from numerical study of
the SIS model in all the network configurations of HMN1 and
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-3.5
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-0.5

0

ln
(

)

(a)

(b)

FIG. 6. (a) ρ vs t for the HMN1 network configuration
with g = 11, m = 16. Lines from bottom to top are for λ =
0.07475,0.07480,0.07485,0.0749. (b) ln (ρ) versus ln (t). The
straight black line shows the fitted curve with ρ ∼ t−0.3127.... The
critical propagation rate is λc ≈ 0.074 85.

HMN2 using the simulation method introduced in Sec. III A.
The network is initialized as a fully active graph. The system is
updated each step until the maximum time tmax(106) is reached
or in the case of activity extinction. Simulations for each
propagation rate λ are repeated on 1000–5000 independent
network realizations. The order parameter ρ(t) for each λ is
the average of all the runs. I also derive the effective decay
exponent by fitting critical power laws ρ(t) ∼ t−αeff with the
efficient exponent defined as [12,25]

αeff = − ln[ρ(t)/ρ(t ′)]
ln(t/t ′)

. (19)

FIG. 7. (a) ρ vs t for HMN2 network configurations with
g = 13, m = 2 and with g = 14, m = 2. Lines from bottom to
top are for λ = 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, and 0.53.
(b) ln (ρ) versus ln (t), the black straight lines are the fitted curves
with ρ ∼ t−0.9094..., ρ ∼ t−0.6989..., ρ ∼ t−0.5356..., ρ ∼ t−0.3962..., and
ρ ∼ t−0.3054... from bottom to top for λ = 0.49, 0.50, 0.51, 0.52, and
0.53.
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Figures 5 and 6 present the simulation results for net-
work configurations of HMN1 with g = 11, m = 8 and
g = 11, m = 16 and the fit with the effective decay exponent
at the critical point. This shows that the Griffiths phase is
absent in HMN1, and we see a trivial phase transition at a
single critical point. For the HMN2 network configuration
with m = 2 and pi = 4−(i+1), the size-independent Griffiths
phase emerges, shown in Fig. 7. However, the Griffiths phase
is a trivial consequence of the disconnectedness of HMN2 as
discussed in Sec. III B. For network configurations of HMN2
that are connected, I choose the case of m = 3, pi = 4−(i+1),
at which the corresponding value of IPR is sufficiently large.
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FIG. 8. (a) ρ vs t for HMN2 network configurations with g =
13, m = 3 and with g = 12, m = 3. Lines from bottom to top are
for propagation rates λ = 0.258, 0.259, 0.260, 0.261, and 0.262.
(b) ln (ρ) versus ln (t). The straight black lines from bottom to top are
the fitted curves with ρ ∼ t−0.5339..., ρ ∼ t−0.4325..., and ρ ∼ t−0.3605...

for λ = 0.260, 0.261, and 0.262.
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FIG. 9. Dynamic susceptibility �, measured for the HMN2
network configurations with g = 11, m = 3 (red diamonds), g =
12, m = 3 (blue circles), and g = 13, m = 3 (black squares) with
pi = 4−(i+1). The overall response increases significantly near and
in the Griffiths phase (from λ = 0.260 to λ = 0.262) and decreases
away from the critical region.

Since intermodule connections are established stochastically,
there is a chance that all the possible intermodule edges fail
to be connected. To avoid this case, at least one intermodule
connection is enforced to exist by repeating the construction
of graphs in the simulation. Numerical results for a connected
HMN2 are presented in Fig. 8. We see a nearly size-
independent power law in a stretched regime of λ. Comparing
Fig. 7 with Fig. 8, as m increases while pi is kept fixed, and vice
versa, the regime in the parameter space of λ for the Griffiths
phase is expected to become narrow until it disappears when
HMN2 becomes highly connected.

As introduced in Sec. I, one significant advantage of
biological systems operating at criticality is the diverging
reaction to highly diverse stimuli. From the perspective
of statistical mechanics, this is caused by the divergence
of susceptibility at criticality. To measure the divergence of
response in the Griffiths phase, here I use the concept of
dynamic susceptibility, which is applied to gauge the overall
response to a continuous localized stimulus in [11]. This
dynamic susceptibility is defined as

�(λ) = N [ρf (λ) − ρs(λ)], (20)

where ρs(λ) is the stationary density in the absence of stimuli
and ρf (λ) is the steady-state density reached when one single
node is constrained to remain active. As shown in Fig. 9, �

becomes large in the region of the Griffiths phase, and more
importantly it grows with the network size N , which implies
a divergent response over an extended region.

V. CONCLUSION

The Griffiths phase induced purely by structural disorder
suggests an alternative self-organizing mechanism for brain
function. Brain networks are shown to have strong modularity,
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and densely connected modules are organized in a hierarchical
pattern. Another important feature found empirically is the
small-world topology, which ensures the efficient information
transfer between modules. To solve the the conundrum
between small-world topology and large-world architecture
of brain networks, incorporating progressively weaker inter-
module connections while maintaining well-defined modules
is proposed as a solution [38]. In this work, I construct
two classes of synthetic hierarchical modular networks that
incorporate weak intermodule connections in distinguished
ways. The first model, HMN1, builds the hierarchical small-
world connections into planar modular networks. The second
model, HMN2, organizes the modules into hierarchies, and
the intermodule wiring probability is level dependent. Both
of them possess a self-similar structure and small-world
long-range connections, based on the 3-regular Hanoi network
[23].

I study the Griffiths phase by evolving the fundamental
SIS model in the HMNs designed. As a further exploration
into the Griffiths phase caused by the structural heterogeneity
of networks, I present numerical results for two classes of
networks. The results suggest the essential role of the level-
dependent intermodule wiring probability in the emergence of
the Griffiths phase. The first class of hierarchical networks,
HMN1, is not able to support the Griffiths phase, although
they satisfy the structural criteria, such as the finite fractal
dimension, the modular structure, and the hierarchical hetero-
geneity. The second class of hierarchical networks, HMN2, is
constructed to possess a hierarchical pattern in the intermodule
wiring probabilities, which therefore require a delicate tuning
to maintain a connected, finite-dimensional network. The
hierarchical pattern of intermodule connections results in
more heterogeneous HMN2 networks, while HMN1 network
configurations are more homogeneous. This can be shown
by considering the Lifshitz tails for HMN1 and HMN2 in
Fig. 4. The Lifshitz tail of HMN1 deviates from that of HMN2,

and compared to HMn2, the spectrum of HMN1 is closer
to the original network HN3 [39]. Although HN3 possesses
a hierarchical structure, it is not sufficiently disordered to
induce the Griffiths phase. The difference in the hierarchical
patterns of HMN1 versus HMN2 significantly affects the phase
transition and existence of the Griffiths phase.

As a complement to the computational efforts, the spectral
analysis proposed in the quenched mean-field approximation
suggests that a finite IPR of the principal eigenvector of the
adjacency matrix can be considered to indicate the localization
of activity that may result in the emergence of rare regions and
the Griffiths phase under certain circumstances. Although all
the network configurations of HMN1 prove to have a finite
IPR and localized eigenvectors corresponding to the largest
eigenvalues, only when the structural disorder of intermodule
connections is sufficient as in HMN2 does the Griffiths phase
appear. As a counter example to previous finite-dimensional
models with localized principal eigenvectors that support the
Griffiths phase [11,12], a class of finite-dimensional networks
with a localized principal eigenvector is found where the
Griffiths phase is absent. This raises questions about a more
generalized theoretical analysis of the network adjacency
matrix that applies to all networks considered previously and
currently. Besides the spectral analysis of the adjacency matrix,
the Lifshitz tail of the Laplacian spectrum presents a power-law
probability distribution at the lower edge of the spectrum of
HMN2 networks, while the tail distribution in HMN1 deviates
from a power law. Numerical results confirm that the property
of the phase transition may be related to this difference in the
Lifshitz tails of HMN1 versus HMN2.
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[25] G. Ódor, Phys. Rev. E 88, 032109 (2013).

032306-8

https://doi.org/10.1073/pnas.0711525105
https://doi.org/10.1073/pnas.0711525105
https://doi.org/10.1073/pnas.0711525105
https://doi.org/10.1073/pnas.0711525105
https://doi.org/10.1103/PhysRevLett.108.208103
https://doi.org/10.1103/PhysRevLett.108.208103
https://doi.org/10.1103/PhysRevLett.108.208103
https://doi.org/10.1103/PhysRevLett.108.208103
http://www.jneurosci.org/content/23/35/11167
https://doi.org/10.1016/j.tins.2007.01.005
https://doi.org/10.1016/j.tins.2007.01.005
https://doi.org/10.1016/j.tins.2007.01.005
https://doi.org/10.1016/j.tins.2007.01.005
https://doi.org/10.1098/rsta.2007.2092
https://doi.org/10.1098/rsta.2007.2092
https://doi.org/10.1098/rsta.2007.2092
https://doi.org/10.1098/rsta.2007.2092
https://doi.org/10.1038/nphys289
https://doi.org/10.1038/nphys289
https://doi.org/10.1038/nphys289
https://doi.org/10.1038/nphys289
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.1016/j.neunet.2007.04.017
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.3389/fphys.2012.00015
https://doi.org/10.1371/journal.pcbi.1002038
https://doi.org/10.1371/journal.pcbi.1002038
https://doi.org/10.1371/journal.pcbi.1002038
https://doi.org/10.1371/journal.pcbi.1002038
https://doi.org/10.1088/1367-2630/14/2/023005
https://doi.org/10.1088/1367-2630/14/2/023005
https://doi.org/10.1088/1367-2630/14/2/023005
https://doi.org/10.1088/1367-2630/14/2/023005
https://doi.org/10.1038/ncomms3521
https://doi.org/10.1038/ncomms3521
https://doi.org/10.1038/ncomms3521
https://doi.org/10.1038/ncomms3521
https://doi.org/10.1038/srep14451
https://doi.org/10.1038/srep14451
https://doi.org/10.1038/srep14451
https://doi.org/10.1038/srep14451
https://doi.org/10.1016/j.tics.2004.07.008
https://doi.org/10.1016/j.tics.2004.07.008
https://doi.org/10.1016/j.tics.2004.07.008
https://doi.org/10.1016/j.tics.2004.07.008
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.3389/fnins.2010.00200
https://doi.org/10.1016/j.neuroimage.2011.05.025
https://doi.org/10.1016/j.neuroimage.2011.05.025
https://doi.org/10.1016/j.neuroimage.2011.05.025
https://doi.org/10.1016/j.neuroimage.2011.05.025
https://doi.org/10.1103/PhysRevE.80.041115
https://doi.org/10.1103/PhysRevE.80.041115
https://doi.org/10.1103/PhysRevE.80.041115
https://doi.org/10.1103/PhysRevE.80.041115
https://doi.org/10.1103/PhysRevE.80.041118
https://doi.org/10.1103/PhysRevE.80.041118
https://doi.org/10.1103/PhysRevE.80.041118
https://doi.org/10.1103/PhysRevE.80.041118
https://doi.org/10.1103/PhysRevE.83.021103
https://doi.org/10.1103/PhysRevE.83.021103
https://doi.org/10.1103/PhysRevE.83.021103
https://doi.org/10.1103/PhysRevE.83.021103
https://doi.org/10.1038/ncomms1774
https://doi.org/10.1038/ncomms1774
https://doi.org/10.1038/ncomms1774
https://doi.org/10.1038/ncomms1774
https://doi.org/10.1103/PhysRevE.90.012117
https://doi.org/10.1103/PhysRevE.90.012117
https://doi.org/10.1103/PhysRevE.90.012117
https://doi.org/10.1103/PhysRevE.90.012117
https://doi.org/10.1103/PhysRevE.90.052119
https://doi.org/10.1103/PhysRevE.90.052119
https://doi.org/10.1103/PhysRevE.90.052119
https://doi.org/10.1103/PhysRevE.90.052119
https://doi.org/10.1088/1751-8113/41/25/252001
https://doi.org/10.1088/1751-8113/41/25/252001
https://doi.org/10.1088/1751-8113/41/25/252001
https://doi.org/10.1088/1751-8113/41/25/252001
https://doi.org/10.1088/1751-8113/48/41/415001
https://doi.org/10.1088/1751-8113/48/41/415001
https://doi.org/10.1088/1751-8113/48/41/415001
https://doi.org/10.1088/1751-8113/48/41/415001
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1103/PhysRevLett.109.128702
https://doi.org/10.1103/PhysRevE.88.032109
https://doi.org/10.1103/PhysRevE.88.032109
https://doi.org/10.1103/PhysRevE.88.032109
https://doi.org/10.1103/PhysRevE.88.032109


GRIFFITHS PHASE ON HIERARCHICAL MODULAR . . . PHYSICAL REVIEW E 95, 032306 (2017)

[26] W. Cota, S. C. Ferreira, and G. Ódor, Phys. Rev. E 93, 032322
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