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Cross-symmetric dipolar-matter-wave solitons in double-well chains
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We consider a dipolar Bose-Einstein condensate trapped in an array of two-well systems with an arbitrary
orientation of the dipoles relative to the system’s axis. The system can be built as a chain of local traps
sliced into two parallel lattices by a repelling laser sheet. It is modeled by a pair of coupled discrete Gross-
Pitaevskii equations, with dipole-dipole self-interactions and cross interactions. When the dipoles are not polarized
perpendicular or parallel to the lattice, the cross interaction is asymmetric, replacing the familiar symmetric
two-component discrete solitons by two new species of cross-symmetric ones, viz., on-site- and off-site-centered
solitons, which are strongly affected by the orientation of the dipoles and separation between the parallel lattices.
A very narrow region of intermediate asymmetric discrete solitons is found at the boundary between the on- and
off-site families. Two different types of solitons in the PT -symmetric version of the system are constructed too,
and stability areas are identified for them.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) composed of dipolar
atoms and molecules are a broad research area in low-
temperature physics. This type of BEC, dominated by
anisotropic long-range magnetic or electric dipole-dipole in-
teractions (DDIs), is significantly different from usual conden-
sates, whose intrinsic dynamics is determined by point-blank
interatomic collisions. Studies of dipolar BECs have produced
a large number of specific experimental and theoretical results,
which have been summarized in Refs. [1–3].

In addition to the fact that the atomic or molecular dipoles
can be polarized by external dc electric or magnetic fields, the
sign of the DDI can be switched by the ac rotating field [4].
These features lend dipolar BECs a great deal of tunability. In
addition to the use of atoms or molecules carrying permanent
magnetic or electric moments, condensates can be made of
particles with dipole moments locally induced by the same dc
fields, which polarize the moments, the latter setting with spa-
tially nonuniform fields being especially interesting [5]. These
properties enhance the potential offered by dipolar BECs for
fundamental and applied studies. One significant direction in
these studies is the use of dipolar condensates for emulation of
various phenomena that occur in a more complex form in other
physical media, such as rotons [6], ferrofluidity [7,8], Faraday
waves [9], supersolids [10], anisotropic superfluidity [11],
anisotropic collapse [12], mesoscopic droplets stabilized by
quantum fluctuations [13], spin-orbit coupling in dipolar
media [14], and others [15–18].

Another noteworthy ramification is the use of collective
nonlinear modes in dipolar BECs for the creation of solitons in
nonlocal media. This topic was originally introduced in optics,
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where nonlocal nonlinearities of other types occur [19,20].
Various forms of bright [21], dark [22], vortex [23], and
discrete [24] solitons were predicted in dipolar condensates.
Recently, stable two-dimensional solitons were predicted in
the dipolar BEC with spin-orbit coupling [25]. In addition
to BECs, it was demonstrated that the DDI can create
solitons in the ultracold bosonic gas of the Tonks-Gigardeau
type [26].

A specific phenomenon that can be realized in dipolar BECs
is the spontaneous symmetry breaking (SSB), and the related
phase transition, alias the symmetry-breaking bifurcation, of
modes created by such long-range anisotropic interactions.
The SSB is a ubiquitous effect, which occurs in all areas
of nonlinear physics [27]. Because the nonlinearity often
creates solitons, a natural subject of the analysis is the SSB of
solitons in symmetric systems. In particular, many theoretical
and experimental results on this subject have been reported
in photonic and matter-wave settings, where the nonlinearity
is an inherent feature, and symmetry is frequently provided
by dual-core or double-well structures [28]. The SSB for
solitons in systems with local nonlinearity has been studied
in detail theoretically [29–46], including discrete systems,
which represent parallel arrays of coupled waveguides [47].
The study of the SSB for solitons in systems with nonlocal
interactions is a problem of considerable interest too, as the
nonlocality strongly affects the outcome of the competition
between the nonlinear self-focusing of the fields and linear
mixing between them, which leads to the SSB when the
nonlinearity strength exceeds a critical value [28]. Thus far,
only few works have addressed this topic. In particular,
the SSB transformation of solitons in the dual-core coupler
with nonlocal optical nonlinearity of the thermal type was
considered in Ref. [48]. Unlike the optical systems, dipolar
BECs feature not only the intracore nonlocal nonlinearity, but
also the intercore DDI, which makes the situation essentially
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FIG. 1. (a) The system: a chain of tunnel-coupled traps for BEC,
sliced by a repelling laser sheet into a stack of double wells, i.e., a
pair of parallel lattices. (b) The orientation of dipoles in the system. D
is the distance between the parallel lattices. (c) A typical example of
the setting for the asymmetric nonlocal cross interaction. In this case,
the m ↔ n and m′ ↔ n DDI is attractive and repulsive, respectively,
at ϕ1 < 54.7◦ and ϕ2 > 54.7◦.

different, as was first shown in the model for the effectively
one-dimensional (1D) dual-core coupler filled by the dipolar
condensate [49]. In that work, different types of SSB, sub-
critical and supercritical ones (i.e., symmetry-breaking phase
transitions of the first and second kinds, respectively) were
demonstrated, as the result of the competition of the DDIs
with strong or weak hopping between the cores. However,
the analysis was performed in Ref. [49] only for a single
polarization of the dipoles, namely, along the cores. However,
the external magnetic field can polarize the dipoles in any
direction; once the dipoles are not parallel or perpendicular
to the core, nonlocal cross interaction induced by the DDIs
becomes asymmetric, breaking the usual type of the solitons’
symmetry.

The aim of the present work is to explore what kind of
symmetry may be featured by two-component discrete solitons
for oblique orientation of the dipoles. We demonstrate that,
unless the dipole moments are oriented strictly perpendicular
or parallel to the system’s axis, the solitons’ shapes become
uneven (spatially asymmetric), which makes it necessary to
modify the definition of the symmetry between the soliton’s
components, replacing it by cross symmetry. Actually, two
types of cross symmetry are found for different sets of the
system’s parameters, see Eqs. (9) and (11) below. Here we
study discrete solitons with such types of the symmetry.

The rest of the paper is structured as follows. The two-
component discrete model is introduced in Sec. II, and the
cross symmetry of solitons in it, controlled by the orientation
of the dipoles, is studied in Sec. III. In Sec. IV, we introduce
a further generalization of the system, by lending it the PT
symmetry (represented by spatially separated and mutually
balanced gain and loss). The paper is concluded by Sec. V.

II. MODEL

We consider a chain of two-well systems, into which the
dipolar BEC is loaded, as schematically shown in Fig. 1(a).
It can be built as the usual quasi-one-dimensional lattice [50],
split into a pair of parallel ones by an additional repulsive
(blue-detuned) laser sheet. We consider configurations with
different angles θ of the orientation of the dipoles with respect
to the lattice, as shown in Fig. 1(b).

In the tight-binding approximation [51,52], the mean-field
dynamics of the condensate in this system is governed by the
two-component discrete Gross-Pitaevskii equation for wave
functions ψ̃n and φ̃n of particles trapped in local potential
wells:

i
d

dt
ψ̃n = −C

2
(ψ̃n+1 + ψ̃n−1)

+
⎡
⎣σ |ψ̃n|2 +

∑
m�=n

(Fnm|ψ̃m|2 + Gnm|φ̃m|2)

⎤
⎦

× ψ̃n − J φ̃n,

i
d

dt
φ̃n = −C

2
(φ̃n+1 + φ̃n−1)

+
⎡
⎣σ |φ̃n|2 +

∑
m�=n

(Fnm|φ̃m|2 + Gmn|ψ̃m|2)

⎤
⎦

× φ̃n − J ψ̃n. (1)

Here, C and J are, respectively, the coupling constants
(determined by the respective hopping rates) along the lattice
and between the parallel ones, σ is the strength of the
contact nonlinearity, while Fnm and Gnm are DDI kernels,
which account, severally, for the nonlocal self-interactions
and cross interactions in the coupled Gross-Pitaevskii

FIG. 2. A typical example of a cross-symmetric soliton for (P,D,θ ) = (3,0.4,0.196π ). (a) Shapes of two components of the solitons. (b)
Juxtaposition of their density profiles. The blue and red curves are mirror images of each other. (c) Simulations of weakly perturbed evolution
of the cross-symmetric soliton, which makes its stability evident. (d) A top view of the configuration displayed in (c).
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FIG. 3. (a), (b) The cross-symmetry measure �S, defined as per Eq. (10), versus D and θ for discrete solitons featuring the cross symmetry
of the on-site type, at a fixed total power, P = 1.9. (c) �S versus P (black solid curve) when D = 0.5 and θ = 0.196π . Here, the line
�S(P ) traverses areas populated by three types of the discrete solitons: on-site cross-symmetric (red), intermediate state (gray), and off-site
cross-symmetric (the yellow area). (d) Dependence μ(P ) for D = 0.5 and θ = 0.196π , which clearly satisfies the Vakhitov-Kolokolov (VK)
criterion, dμ/dP < 0.

equations:

Fnm =
{

0, (m = n)

(1 − 3 cos2 θ )/|m − n|3 (m �= n)
, (2)

Gnm =

⎧⎪⎨
⎪⎩

(1 − 3 sin2 θ )/D3 (m = n)

[1 − 3 cos2 ϕ1]/[D2 + (m − n)2]3/2 (m < n)

[1 − 3 cos2 ϕ2]/[D2 + (m − n)2]3/2 (m > n)

,

(3)

where D is the scaled separation between the parallel lattices,
ϕ1 = β − θ , and ϕ2 = π − (β + θ ) [see in Fig. 1(c)], with
β ≡ arccos (|m − n|/

√
D2 + (m − n)2). Recently, a similar

configuration was considered as an Ising model with long-
range interactions, which does not include the transverse
hopping, i.e., with C = 0 [53].

Stationary states are looked for in the usual form,

(ψ̃n,φ̃n) = (ψn,φn)e−iμt , (4)

where (ψn,φn) are stationary wave functions, and μ is a real
chemical potential. Two-component solitons are characterized
by their total norm,

P = Pψ + Pφ ≡
n=N/2∑

n=−N/2

(|ψ̃n|2 + |φ̃n|2), (5)

which is a dynamical invariant of Eq. (1).
For θ = 0 or π/2, matrix Gnm given by Eq. (3) is symmetric,

with Gnm = Gmn. When 0 < θ < π/2, this property is broken,
which makes nonlocal cross interaction asymmetric, see

Fig. 1(c). Obviously, at θ = 0 vertical (alias interlattice)
interactions, i.e., the onsite DDI between condensate droplets
trapped in the two potential wells belonging to the parallel
lattices, is repulsive, while the horizontal DDI along each
lattice is attractive. With the increase of θ , the vertical
interaction vanishes at

θ1 = arcsin(1/
√

3) ≈ 0.196π ≈ 35.3◦ (6)

while the horizontal DDI remains attractive. Another special
angle,

θ2 = arccos(1/
√

3) ≈ 0.304π ≈ 54.7◦, (7)

corresponds to the vanishing of the horizontal interaction,
while the vertical DDI is attractive.

Obviously, at θ = 0 and π/2, symmetric discrete solitons
obey the spatial-symmetry condition,

φ−n = φn, ψ−n = ψn. (8)

However, when θ is different from 0 and π/2, shapes of the
two components are not spatially even because, as mentioned
above, Gnm is not a symmetric matrix anymore. In the
following section we introduce another type of symmetry,
which two-component discrete solitons may feature in this
case. Here we present the asymmetric cross interactions
corresponding to asymmetric Gnm.

III. CROSS-SYMMETRIC SOLITONS

To focus on effects induced by the DDIs, we drop the
contact nonlinearity in the system, by setting σ = 0 in

FIG. 4. A typical example of discrete solitons featuring the cross symmetry of the off-site type, see Eq. (11), for (P,D,θ ) = (4,0.4,0.196π ).
Panels have the same meaning as in Fig. 2.
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FIG. 5. Existence regions of stable discrete cross-symmetric
discrete solitons of the on- and off-site are shown in parameter
planes by red and yellow colors, respectively. In (a), orientation
θ = 0.196π is fixed, and the off-site (yellow) area exists between
D = 0.1 and 0.62. The inset in (a) displays a zoom around D = 0.4,
with the minuscule gray area representing the intermediate state. In
(b), D = 0.4 is fixed. In the green region, asymmetric solitons are
found. The off-site solitons exist in the region between θ = 0.177π

and 0.206π , which is displayed at a larger scale in (c). (d) is a zoom
of a very small gray area, where the intermediate solitons are found
at 0.198π < θ < 0.206π .

Eq. (1), and assume equal horizontal and vertical hopping
rates, scaling both to be unity: C = J = 1. The remaining
control parameters are P , D, and θ , i.e., the total norm of the
solitons [see Eq. (5)], separation between the lattices, and the
orientation of the dipoles, respectively. Here, we consider the
case of 0 < θ < π/2, in which Gnm is not symmetric, as said
above.

The only feasible approach to the study of the present
system may be based on numerical methods. Discrete solitons
in models with nearest-neighbor interactions can be explored
by means of a variational approximation [54]; however, it
cannot be developed in an analytically tractable form for
lattices with long-range interactions.

Figure 2 displays a typical example of a two-component
discrete soliton, with (P,D,θ ) = (3,0.4,0.196π ), obtained

numerically by means of the imaginary-time method [55–57].
The figure corroborates that the two components of the soliton
indeed do not obey symmetry conditions (8); nevertheless,
they satisfy the definition of the cross symmetry:

φn = ψ−n, ψn = φ−n, (9)

which is compatible with Eq. (1) in the case of asymmetric
cross-interaction matrix Gnm. Note that locations of maxima
of both components coincide in Fig. 2.

It is relevant to stress that all the soliton families considered
below, which may be characterized by the respective de-
pendences μ(P ), satisfy the well-known Vakhitov-Kolokolov
(VK) criterion [58], dμ/dP < 0 [a typical example of depen-
dence μ(P ) is displayed in Fig. 3(d)], which is a necessary
condition for stability of solitons against small perturbations.
While this criterion was originally established for solitons in
continuum media [58], its generalization for two-component
discrete solitons is known too [59]. In fact, the results reported
below demonstrate that the VK criterion is sufficient for the
stability of discrete solitons in the present system (except for
its PT -symmetric extension, which is introduced in Sec. IV).
In this connection, it is relevant to mention that, although
configurations with dipoles oriented perpendicular to the
system’s direction tend to be the most stable [60], we here
demonstrate that the discrete solitons with oblique orientations
are stable too.

It follows from Eq. (9) that cross-symmetric solitons
have equal norms of their components, Pψ = Pφ . The cross
symmetry is quantified by the on-site mismatch between the
components, defined as

�S = 1

P

n=N/2∑
n=−N/2

|(|ψn|2 − |φn|2)|. (10)

For usual symmetric solitons Eq. (10) yields �S = 0, as it
follows from Eq. (8). A larger magnitude of �S corresponds
to a stronger mismatch between the two components.

The cross symmetry may suffer spontaneous breaking,
similar to the above-mentioned SSB phenomena. This effect
will be signaled by emergence of soliton solutions with
Pψ �= Pφ , and will be considered elsewhere.

The dependence of the cross-symmetry degree Eq. (10) on
the interlattice separation D and orientation θ is displayed
in Fig. 3, which shows that �S attains a maximum at finite
values of D and θ . According to the figure, the cross symmetry
is well pronounced around the maximum, in parameter

FIG. 6. A typical example of a stable asymmetric discrete soliton, intermediate between cross-symmetric ones of the on- and off-site types,
for (P,D,θ ) = (3.15,0.4,0.196π ). Panels have the same meaning as in Figs. 2 and 4.
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FIG. 7. (a) In the green area of the plane of (P,�n), two in-phase solitons with identical powers P , separated by initial distance �n, merge
into a single excited mode [as shown in (b) for P = 4,�n = 8], while in the red area the solitons stay put [see (c), for P = 4,�n = 16]. Other
parameters are D = 0.4, θ = 0.196π .

intervals 0.35 < D < 0.55 and 0.18π < θ < 0.22π . Further
consideration of solitons in this area with the increase of
the total norm reveals another variety of the cross symmetry,
different from that defined by Eq. (9). A typical example of
the new variety is displayed in Fig. 4. Comparing it with the
counterpart displayed above in Fig. 2, we find that maxima of
the two components are separated in Fig. 4 by one lattice site,
with the respectively modified cross symmetry defined as

φn = ψ1−n, ψn = φ1−n, (11)

cf. Eq. (9). It is possible to say that cross-symmetry axes,
corresponding to definitions (9) and (11), are set, severally,
on-site and off-site (at the midpoint between two sites in the
latter case), therefore we refer to these two varieties as on- and
off-site cross symmetries, respectively.

Existence areas of the cross-symmetric discrete solitons of
these two types in the (P,D) and (P,θ ) planes are displayed
in Fig. 5, which shows that the off-site cross-symmetric
solitons exist in finite areas [their boundaries are vertical in
Figs. 5(b)–5(d) up to the accuracy of the numerical results].
Along the border between these areas, there is a very narrow
band, shown as a gray strip, which is filled by discrete solitons
of an intermediate type. They do not feature any explicit
symmetry, except for the equality between the total norms of
the two components, Pψ = Pφ , see a typical example in Fig. 6.
The asymmetric intermediate states account for a continuous
transition between the cross-symmetric discrete solitons of the
on- and off-site types, being as stable as their cross-symmetric
counterparts are. The continuity of the transition is made
evident in Fig. 3(c) by the dependence of the cross-symmetry
degree, �S [defined by Eq. (10)], on the total norm, going

across areas occupied by these three types of the discrete
solitons.

We have also studied interaction between two cross-
symmetric solitons, originally separated by distance �n. If
�n is smaller than a certain critical value, (�n)cr, which
corresponds to the boundary between green and red areas in
Fig. 7(a), the solitons with zero phase shift between them
attract each other and merge into a single excited (oscillating)
state, as shown in Fig. 7(b). At �n > (�n)cr, the pinning force
from the underlying lattice is stronger than the attraction, and
the solitons stay in the initial positions [see Fig. 7(c)]. It is easy
to understand why (�n)cr strongly grows with the decrease of
P , as seen in Fig. 7(a): for small P , the broad solitons are
quasicontinuum modes, for which the force of pinning to the
lattice is exponentially small [61].

IV. TWO-COMPONENT DISCRETE SOLITONS
IN THE SYSTEM WITH CROSS-PT SYMMETRY

Theoretical studies of many linear- and nonlinear-wave sys-
tems may be naturally extended by adding the PT symmetry,
i.e., spatially symmetric distributions of globally balanced gain
and loss terms [62,63]. In particular, much interest has been
drawn to solitons in PT -symmetric systems [64]. In term of
matter waves, the gain and loss represent symmetrically placed
and mutually balanced sources and sinks of coherent atoms.
Although the experimental realization of sources in BECs
may not be easy, the theoretical analysis of BEC-PT systems
has attracted considerable interest, see, e.g., Refs. [65–68].
In particular, a model applying the PT symmetry to dipolar
BECs trapped in a symmetric double-potential well was

FIG. 8. A typical example of stable cross-PT -symmetric solitons of the on-site type, for (P,D,θ,κ) = (2,0.4,0.196π,0.2). (a) displays the
real and imaginary parts of both field components. (b), (c), and (d) have the same meaning as in Figs. 2, 4, and 6.
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FIG. 9. A typical example of stable cross-PT -symmetric solitons of the off-site type, for (P,D,θ,κ) = (5,0.4,0.196π,0.1). Panels have
the same meaning as in Fig. 8.

proposed recently [69]. In this section, we aim to develop
the PT -symmetric version of the system based on Eq. (1),
which, in particular, will provide an example of a discrete
PT -symmetric system with long-range interactions.

Thus, Eq. (1) is replaced by

i
d

dt
ψ̃n = −C

2
(ψ̃n+1 + ψ̃n−1)

+
⎡
⎣σ |ψ̃n|2 +

∑
m�=n

(Fnm|ψ̃m|2 + Gnm|φ̃m|2)

⎤
⎦

× ψ̃n − J φ̃n + iκψ̃n,

i
d

dt
φ̃n = −C

2
(φ̃n+1 + φ̃n−1)

+
⎡
⎣σ |φ̃n|2 +

∑
m�=n

(Fnm|φ̃m|2 + Gmn|ψ̃m|2)

⎤
⎦

× φ̃n − J ψ̃n − iκφ̃n. (12)

where κ > 0 is the coefficient accounting for the gain and
loss of atoms in the first and second components, respectively.
The continuum limit of Eq. (12), with dominant local nonlin-
earity, resembles known models of nonlinear PT -symmetric
couplers, in which the P transformation amounts to swapping
the two coupled cores, one carrying gain and the other being
lossy [70–72]. In the general case of 0 < θ < π/2 considered
in this work, which corresponds to the asymmetric interaction
matrix Gnm, Eq. (12) realizes the cross-PT symmetry, in
the sense of the cross symmetry defined as Eq. (16) below.
Because the latter definition is actually tantamount to the P
transformation along discrete coordinate n, Eq. (12) effectively
defines a 2D PT -symmetric system (cf. the definition of CPT
symmetry proposed in Ref. [66]).

In the continuous model of thePT -symmetric coupler with
cubic intra-core nonlinearity, stationary symmetric solutions
take the general form of [70,72]

ψ̃(x) = e−iμtf (x) exp[(i/2) arcsin κ],

φ̃(x) = e−iμtf (x) exp[−(i/2) arcsin κ], (13)

where μ is a real chemical potential of the solutions, and real
f (x) is a solution of the single continuous equation without
the PT terms, for the same μ. Accordingly, a PT -symmetric

solution of the discrete system is looked for as

ψ̃n = e−iμtfn exp[(i/2) arcsin κ] ≡ e−iμtψn,

φ̃n = e−iμtfn exp[−(i/2) arcsin κ] ≡ e−iμtφn. (14)

Equation (14) suggests that PT -symmetric states exist
when κ < 1, satisfying the following relations:

Re[ψn] = Re[ψ−n] = Re[φn] = Re[φ−n],

Im[φn] = Im[φn] = −Im[φn] = −Im[φ−n],

|ψn|2 = |ψ−n|2 = |φn|2 = |φ−n|2, (15)

cf. Eq. (8). In our system, Eq. (15) holds when the nonlocal
cross interaction is symmetric, i.e., with a symmetric matrix
Gnm, which is correct for the orientation angles θ = 0 or π/2.
As said above, in the case of asymmetric Gnm, i.e., for 0 < θ <

π/2, the spatial symmetry is replaced by the on-site or off-site
cross symmetry, i.e., discrete cross-PT -symmetric solitons
should be subject to constraints

Re[ψn] = Re[φ−n], Im[φn] = −Im[φ−n],

|ψn|2 = |φ−n|2, (16)

or

Re[ψn] = Re[φ1−n], Im[φn] = −Im[φ1−n],

|ψn|2 = |φ1−n|2. (17)

FIG. 10. (a) The stability map for discrete solitons in the cross-
PT -symmetric system for (D,θ ) = (0.4,0.196π ). The red and yellow
areas represents stability regions for the cross-PT -symmetric solitons
of the on- and off-site types, respectively. The intermediate gray
stripe, 3 < P < 3.3, is populated by unstable asymmetric solitons.
All solutions are unstable in the white area. (b) The cross-symmetry
measure (10) vs D, for the solitons of the on-site cross-PT -symmetric
type with (P,θ ) = (1.5,0.196π ), cf. Fig. 3(a) for the conservative
system.
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FIG. 11. A typical example of an unstable asymmetric soliton found in the cross-PT -symmetric system for (P,D,θ,κ) =
(3.15,0.4,0.196π,0.05). Panels have the same meaning as in Figs. 8 and 9. (c) clearly demonstrates that the instability turns the stationary
solitons into an effectively stable moving breather.

Figures 8 and 9 display several typical examples of cross-
PT -symmetric solitons of the of the on- and off-site types.
Similar to their counterpart in the conservative system, the
off-site cross-PT -symmetric solitons exist, as stable states,
only in a narrow area in a vicinity of θ = 0.196π and D = 0.4.
Further, Fig. 10(a) displays a stability area of these two types
of solitons in the (κ,P ) plane for θ = 0.196π and D = 0.4.
Sandwiched between the two stability areas is a narrow
(gray) stripe, where asymmetric solitons of the intermediate
type are found in the cross-PT -symmetric system, see a
typical example in Fig. 11. Unlike their counterparts in the
conservative system, the asymmetric solitons are unstable.
However, on the contrary to unstable solitons in the usual
PT -symmetric systems [64], they do not suffer a blowup, as
a result of the instability development. Instead, the instability
turns these solitons into robust moving breathers, as shown in
Fig. 11(c)

The influence of the strength of the gain-loss coefficient
on the degree of the cross symmetry, �S [defined by the
same expression (10) as above] was studied too, as shown in
Fig. 10(b), which displays �S(D) dependences for different
fixed values of κ , at fixed θ = 0.196π and P = 1.5. It is
seen that the increase of κ slightly enhances the cross-PT

FIG. 12. (a) An example of robust oscillations of a stable
cross-PT -symmetric soliton of the on-site-centered type, excited by
adding a white-noise perturbation to the initial conditions, with a
2% relative amplitude. Parameters of this soliton are (P,D,θ,κ) =
(2,0.4,0.196π,0.1). (b) The frequency of the intrinsic oscillations of
the randomly perturbed solitons of both on-site and off-site-centered
types, which corresponds to the maximum of the respective power
spectrum, versus the total power of the soliton. The other parameters
are (D,θ,κ) = (0.4,0.196π,0.1).

symmetry, by making �S somewhat larger than in the case of
κ = 0.

Stable cross-PT -symmetric solitons feature robust oscilla-
tions under the action of random perturbations, see an example
displayed in Fig. 12(a). As shown in Fig. 12(b), the peak
frequency of the power spectrum of the intrinsic oscillations
of stable solitons of both the on-site and off-site centered types
increases with the growth of the soliton’s total power. Actually,
it identifies the frequency of a dominant internal mode of the
stable cross-PT -symmetric solitons.

V. CONCLUSION

We have introduced the model of the chain of double-well
potential traps for dipolar BEC. In the tight-binding
approximation, it amounts to a system of two coupled discrete
Gross-Pitaevskii equations with the long-range dipole-dipole
interactions (DDIs) determined by angle θ of the orientation
of the dipoles with respect to the system’s axis. Except for
the limit cases of θ = 0 and θ = π/2, the system, with the
spatially asymmetric DDIs between the two parallel lattices,
gives rise to the cross-symmetric discrete two-component
solitons of two different types, on-site or off-site centered.
These two families are stable, being separated by a very
narrow region populated by intermediate asymmetric discrete
solitons, which are stable too. Finally, we have extended the
analysis by adding the PT symmetry to the system. In this
case, stability areas for the cross-PT -symmetric solitons of
the on- and off-site-centered solitons have been identified. The
corresponding intermediate asymmetric solitons are unstable,
evolving into robust breathers.

It may be interesting to extend the work to the consid-
eration of higher-order solitons, such as twisted (spatially
antisymmetric [52]) ones. A challenging possibility is to
introduce a two-dimensional version of the present discrete
system.
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