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Chimera patterns in two-dimensional networks of coupled neurons
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We discuss synchronization patterns in networks of FitzHugh-Nagumo and leaky integrate-and-fire oscillators
coupled in a two-dimensional toroidal geometry. A common feature between the two models is the presence of
fast and slow dynamics, a typical characteristic of neurons. Earlier studies have demonstrated that both models
when coupled nonlocally in one-dimensional ring networks produce chimera states for a large range of parameter
values. In this study, we give evidence of a plethora of two-dimensional chimera patterns of various shapes,
including spots, rings, stripes, and grids, observed in both models, as well as additional patterns found mainly
in the FitzHugh-Nagumo system. Both systems exhibit multistability: For the same parameter values, different
initial conditions give rise to different dynamical states. Transitions occur between various patterns when the
parameters (coupling range, coupling strength, refractory period, and coupling phase) are varied. Many patterns
observed in the two models follow similar rules. For example, the diameter of the rings grows linearly with the
coupling radius.
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I. INTRODUCTION

Chimeras are hybrid states that emerge spontaneously,
combining both coherent and incoherent parts [1]. First found
in identical and symmetrically coupled phase oscillators [2],
chimera states have been the focus of extensive research for
over a decade now. Both theoretical and experimental works
have shown that this counterintuitive collective phenomenon
may arise in numerous systems, including mechanical, chemi-
cal, electrochemical, electro-optical, electronic, and supercon-
ducting coupled oscillators [3–14].

The phenomenon of chimera states has also been addressed
in networks of biological neural oscillators. In particular,
Hindmarsh-Rose neural oscillators have been studied in net-
works with nonlocal [15] and nearest-neighbor [16] coupling,
as well as in modular networks consisting of communities [17].
The potential relevance of chimera states in this context include
bump states [18,19] and the phenomenon of unihemispheric
sleep observed in birds and dolphins [20], which sleep with
one eye open, meaning that half of the brain is synchronous
with the other half being asynchronous. Furthermore, it has
been recently hypothesized that chimera states are the route of
onset or termination of epileptic seizures [21–24].

Chimera states have previously been reported in the one-
dimensional FitzHugh-Nagumo (FHN) model with nonlocal
connectivity [25]. Patches of synchrony were observed within
the incoherent domains giving rise to multichimera states,
when the coupling constant increased above the weak limit.
The multiplicity of the state, that is, the number of (in)coherent
regions, depended on the coupling strength and range. These
multichimera states were shown to be robust when small inho-
mogeneities in the coupling topology (with identical elements)
or inhomogeneous elements with regular nonlocal coupling
were introduced [26]. For a constant coupling strength and
given number of links, hierarchical connectivity was shown to
induce nested multichimera patterns [26]. The coexistence of

coherent and incoherent domains was also observed in systems
of excitable FHN elements under the influence of noise. As
Semenova et al. stress, the noise has often a constructive role:
It shifts the dynamics of identical excitable elements into the
oscillatory domain, giving rise then to chimera states [27].
Moreover, it is possible to control the position of coherent and
incoherent domains of a multichimera state by introducing a
block of excitable FHN elements in appropriate positions, or
to generate a chimera directly from the synchronous state [28].
This observation offers promising ideas in terms of achieving
desired states by a local modification of the system parameters.
For instance, it may be possible in targeted medication to
modify incoherent neuron dynamics by changing only the
potential of a few neurons locally, leaving the coupling
topology of the rest of the network untouched. In addition,
Omelchenko et al. proposed an alternative control scheme
that extends the lifetime of chimeras, which are known to be
chaotic transients [29], and at the same time reduces the erratic
drift present in small networks [30]. Controlling the position
can also be achieved by introducing an asymmetric coupling
strength [31].

Experimentally, the FHN model has been studied by Essaki
Arumugam and Spano, in connection to synchronization
phenomena associated with neurological disorders such as
epilepsy [32]. In their study, they implemented nine FHN
neurons linked in a ring topology, via discrete electronics.
Introducing nonlocal coupling, a chimera state appeared,
while for local connectivity either fully synchronous or
asynchronous states were observed. Their results indicate
that epilepsy can be understood as a topological disease,
strongly related to the connectivity of the underlying network
of neurons.

Chimera states were recently reported in the one-
dimensional leaky integrate-and-fire (LIF) model, a system
describing the spiking behavior of neuron cells. It was
shown that identical LIF oscillators nonlocally linked in a
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one-dimensional ring geometry give rise to multichimera states
whose multiplicity depends both on the coupling strength and
the refractory period of the neuron cells [33]. In analogy with
the FHN model, the introduction of a hierarchical topology in
the coupling induced nested chimera states and also transitions
between multichimera states with different multiplicities.
Using a different geometrical setup of two populations of
identical LIF oscillators coupled via excitatory coupling,
Olmi et al. studied the onset of chimeras as well as states
characterized by a different degree of synchronization in the
two populations [34]. Irregular synchronization phenomena
have been reported for LIF elements even in the case of
all-to-all connectivity [35].

Chimera states have mainly been investigated in one-
dimensional systems. Recently, works involving two- [36,37]
and three-dimensional [38] oscillator arrays have revealed new
types of chimera states, depending on the coupling function.
These studies have mainly focused on phase oscillators. In this
paper, we go beyond the simple Kuramoto model and consider
a two-dimensional network configuration using two different
models related to neuronal spiking activity. This topology
is motivated by medical experiments in which thin brain
slices are cultured in Petri dishes and various electrical and
chemical properties are recorded; see, for example, Ref. [39].
The two-dimensional nonlocal connectivity studied here can
be considered as an approximation of the acute brain slices,
whose connectivity is certainly more complex.

Our investigation follows a parallel presentation of common
patterns in the two-dimensional FHN and LIF systems high-
lighting the main features that are responsible for the formation
of each pattern in the two systems. In Sec. II, the two models
are briefly recapitulated. In Sec. III, the main attributes of
spot and ring chimeras are presented for the two models, and
their common and different properties are discussed. Similarly,
in Secs. IV and V stripe and grid chimeras are discussed,
respectively. Additional miscellaneous chimeras as well as
other patterns are summarized in the Appendixes. Finally,
the main results and open problems are discussed in a brief
concluding section.

II. THE MODELS

In this section, we summarize the two models considered
in this article—the FitzHugh-Nagumo (FHN) model and the
leaky integrate-and-fire (LIF) model—and we introduce the
respective toroidal coupling schemes describing the two-
dimensional layout with nonlocal interactions [40].

A. The FitzHugh-Nagumo model

The dynamics of a single FHN system are described by the
following set of equations [41,42]:

ε
dx

dt
= x − x3

3
− y, (1a)

dy

dt
= x + a, (1b)

where x and y denote a fast activator and a slow inhibitor
variable, respectively. The parameter ε determines the time-
scale separation and is fixed in this study at ε = 0.05. The

threshold parameter a determines the oscillatory (|a| < 1) or
excitable (|a| > 1) behavior in the system, i.e., an unstable or
stable fixed point at the intersection of the nullclines, and it
is set to a = 0.5 throughout this study. The interaction of the
two system variables of each node in the network is realized
via a rotational coupling matrix as proposed in Ref. [25] and
detailed below.

We consider the following coupling scheme for the FHN
model: a two-dimensional regular N×N network with N =
100 nodes and periodic, toroidal boundary conditions. This
setting yields the following system of network equations:

ε
dxij

dt
= xij − x3

ij

3
− yij + σ

Nr − 1

∑
(m,n)∈Br (i,j )

[bxx(xij − xmn)

+ bxy(yij − ymn)], (2a)

dyij

dt
= xij + a + σ

Nr − 1

∑
(m,n)∈BFHN

r (i,j )

[byx(xij − xmn)

+ byy(yij − ymn)], (2b)

where we fix the coupling strength at σ = 0.1 in the following.
Note that the double index of the dynamic variables xij

and yij with i,j = 1, . . . ,N refers to the position on the
two-dimensional lattice. All oscillators (xij ,yij ) are identical
and couple isotropically to all other oscillators in a circular
neighborhood given by

BFHN
r (i,j ) = {(m,n) : (m − i)2 + (n − j )2 � r2}, (3)

where the differences need to be calculated in a manner to
account for a toroidal geometry. In other words, (m − i)2 +
(n − j )2 is computed to obtain the shortest distance on the
torus. See Fig. 1(a) for a schematic depiction. Hence, the
number of lattice points inside a circle of radius r is given
by

Nr = 1 + 4
∞∑
i=0

(⌊
r2

4i + 1

⌋
−

⌊
r2

4i + 3

⌋)
, (4)

where �·� is the floor function, which gives the largest integer
less than or equal to its argument.

The coupling between the x and y variables is realized
by a rotational coupling matrix using the single parameter
ϕ ∈ [0,2π ), which allows diagonal or direct coupling (ϕ = 0
and ϕ = π ), cross coupling (ϕ = π/2 and ϕ = 3π/2), and

i

j

j+r

i

j

j+R

j−Rj−r

i−r i+r i−R i+R)b()a(

FIG. 1. Schematic depiction of the coupling topology used for
the FHN model of Eqs. (2) in panel (a) and for the LIF model of
Eq. (9) in panel (b) according to Eqs. (3) and (10), respectively.
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mixed coupling scenarios. Accordingly, the coupling matrix is
given by

B =
(

bxx bxy

byx byy

)
=

(
cos ϕ sin ϕ

− sin ϕ cos ϕ

)
. (5)

For this type of coupling, the coupling phase ϕ corresponds to
the so-called phase frustration parameter α in the Kuramoto
system, which is known to be a crucial quantity for the
occurrence of chimera states [43]. As derived in Ref. [25], the
mapping from ϕ to α is given via a phase-reduction technique.

In the following, we will use the coupling phase ϕ and
coupling radius r to explore the dynamical scenarios in the
networked FHN system.

B. The leaky integrate-and-fire model

The LIF model describes a neuron via a single dynamical
variable u that can be interpreted as its membrane potential.
The variable u evolves according to the following equation:

du

dt
= μ − u. (6)

If the membrane potential u reaches a threshold uth < μ, it is
reset to a resting potential:

lim
ε→0

u(t + ε) → urest when u � uth. (7)

Without loss of generality, the reset or resting potential can be
set to urest = 0.

The solution of Eq. (6) is then given by u(t) = μ −
(μ − u0)e−t with the initial condition u(0) = u0 and is
repeated after each reset starting again at u0 = urest. The period
between two resets Ts of a single element depends both on μ

and uth as follows: Ts = ln [(μ − u0)/(μ − uth)].
As an extension to the standard LIF model, we take a

refractory period pr into account via the following condition:

u(t) = urest ∀ t : [n(Ts + pr ) + Ts] � t � [(n + 1)(Ts + pr )]

(8)

with n = 0,1,2, . . . . In other words, the LIF element is held
at the rest potential during the refractory period. As a result,
the total period T of the single element is now T = Ts + pr =
ln [(μ − u0)/(μ − uth)] + pr .

Similar to the case of the FHN model, we consider
the LIF network dynamics on a two-dimensional regular
N×N network with N = 100 nodes and toroidal boundary
conditions. The LIF coupled network dynamics read

duij

dt
= μ − uij + σ

NR − 1

∑
(m,n)∈BLIF

R (i,j )

[uij − umn], (9)

where the neighborhood of the element uij with i,j =
1, . . . ,N is given by

BLIF
R (i,j ) = {(m,n) : i − R � m � i + R ∧ j − R

� n � j + R}, (10)

which includes all elements on the grid within a square of side
2R + 1 as depicted in Fig. 1(b). The size of the coupled region
is then given by NR = (2R + 1)2.

To calculate coherence in both models, we use the mean
phase velocity ωij of the oscillator at position (i,j ) [25]. If
cij (	t) is the number of periods that the oscillator at position
(i,j ) has completed in a time interval 	t , the mean phase
velocity is defined as ωij = 2πcij (	t)/	t .

In the next sections, we provide a series of selected patterns
that we observe for both the FHN and LIF models. To
explore the parameter space, we use random initial conditions.
Whenever we observe a characteristic pattern for a specific
choice of coupling parameters, we perform a continuation
by scanning the vicinity using the pattern of the previous
simulation as an initial condition. This way, we are able to
map out the regions of existence of the different dynamical
patterns.

III. SPOTS AND RING PATTERNS

In this section, we focus on chimera states of spot and ring
type in both the FHN and LIF models.

A. FitzHugh-Nagumo: Spots and ring patterns

In the 100×100 FHN system described by Eqs. (2) and
(3), we observe various chimera regions in the parameter
space spanned by the coupling radius r ∈ [1,49] and coupling
phase ϕ ∈ [0,2π ). A complete scan of the parameter space
can be found in Appendix A depicted in Fig. 16 and additional
enlargements for different intervals of ϕ in Figs. 17 and 18.
Here, we will focus on the range ϕ ∈ [1.3,1.65].

An example for a single-headed incoherent spot surrounded
by coherent oscillators is shown in the top panel of Fig. 2(a).
The left, center, and right panels depict a snapshot of the
activator variable xij , the mean phase velocity ωij , where the
average is computed over 1000 time units, and a horizontal
cut of ωij through the center of the spot, respectively. The
latter exhibits the typical arc-shape profile of a chimera state.
When the spots deform to a square shape, the maximum of the
ωij ’s is less pronounced and becomes a plateau (not shown).

FIG. 2. FHN system: Chimera state of (a) incoherent-spot and
(b) coherent-spot type. The left panels depict a snapshot of the
activator variable xij at t = 2000. The center and right panels show
the mean phase velocity ωij and a horizontal cut of ωij . Coupling
parameters: (a) r = 33, ϕ = π/2 − 0.2 and (b) r = 42, ϕ = π/2.
Other parameters are σ = 0.1, a = 0.5, and ε = 0.05.
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FIG. 3. FHN system: Radius ρ of the spotlike chimera states, (a)
incoherent spot and (b) coherent spot, in dependence on the coupling
radius r for different coupling phases ϕ given as a color code. The
error bars indicate an uncertainty of (a) 	ρ = 0.3 and (b) 	ρ = 0.5
in the measurements of the radii. Parameters as in Fig. 2.

The spots and the squares grow when the coupling radius r

increases, as shown in Fig. 3(a) for all observed spots. The
color code refers to different choices of ϕ. We observe two
different domains of large and small coupling radii. These
correspond to different areas in parameter space, which support
spot chimeras; see Appendix A. In the range 20 � r � 30, the
spot patterns lose their stability in space, wander around the
grid in an unpredictable way, change their shape over time or
even split into pieces, and reemerge after some time.

Another chimera spot pattern—again found as a single-
headed and multiheaded version—is a spot with a coherent
center. An example is shown in the bottom panel of Fig. 2(b).
As in the previous example, the ωij values are lower in the
coherent area than in the incoherent region (middle panel).
Furthermore, the section of the mean phase velocities (right
panel) has a shape similar to incoherent spot type and many
other chimera patterns in one dimension. This state can also
be found with two coherent heads (not shown). The size of
the coherent region is depicted in Fig. 3(b). We observe only a
weak dependence on the coupling radius r , while the coupling
phase ϕ has a stronger effect. Compared to the incoherent spot
chimeras, the size increases with decreasing ϕ. In some cases,
we observe that at the opposite side of the coherent region of

FIG. 4. FHN system: Ring chimera, found for r = 33 and ϕ =
π/2 − 0.24. A snapshot at t = 1900 of the (color-coded) activator
variable xij is shown on the left side and the mean phase velocity and
a section through the ring in the center and right panels, respectively.
Other parameters as in Fig. 2.

the torus, a spiral can form; see Appendix B for an example.
The radius of the spiral increases with the coupling radius
(not shown).

Between regions of spots (see Appendix A) and fully
synchronous solutions, we observe that ring chimeras can be
found for ϕ < 1.35; see Fig. 4. The label “ring chimera” refers
to the dip in the mean phase velocity ωij in the center of
the incoherent ring that can reach the level of the coherent
oscillators or have a different, larger ωij value as in the
displayed example. We also find that rings can occur as a
single-headed state and a multiheaded state with two rings
existing simultaneously at different positions (not shown).
Similar to the incoherent spots, the rings can either be round
or have a square shape. Figure 5 shows the dependence of the
inner and outer diameter of the ring chimeras on the coupling
radius r using different levels of brightness to indicate the
number of occurrences on the considered ϕ range. We find

FIG. 5. FHN system: Inner (red triangles) and outer (black
squares) diameter D of the incoherent ring in dependence on the
coupling radius r . The error bars indicate an uncertainty of 	D = 0.9
in the measurements of the diameters. The lines are linear fits as guides
to the eye. All ring patterns found for ϕ ∈ [π/2 − 0.24,π/2 − 0.2]
are shown. The inset shows the data with rescaled axes: Fraction
of incoherent elements Ninc/N

2 vs number of coupled neighbors
Nr/N

2. The brightness of the dots corresponds to the number of
observed ring patterns for every (D,r) pair in the considered ϕ range.
Other parameters as in Fig. 2.
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that the outer diameter increases linearly with r , while the size
of the inner ring does not show such a strong dependence.

The region in parameter space discussed above includes
many other patterns, such as square- or cross-shaped incoher-
ent spots, stripes (cf. Sec. IV), alternating chimeras, and more
complex chimeras, many of them in a multistable configura-
tion. Examples will be discussed in Appendix B. Moreover, in
the limit of nearest-neighbor coupling, the direct coupling term
reduces to [xi−1,j − 2xi,j + xi+1,j ] + [xi,j−1 − 2xi,j + xi,j+1]
and similarly for the y variable. This is a discrete version of the
Laplace operator applied to the FHN model, giving rise to the
well-known Turing patterns in this coupling limit. In addition,
we find gridlike structures and lines of incoherent spots in a
different area of the parameter space (cf. Sec. V).

B. Leaky integrate-and-fire: Spots and ring patterns

Spots and ring patterns are also observed in the LIF model
given by Eqs. (9) and (10), in particular for small values of
the coupling strength σ . The spot pattern exists for pr = 0,
while for finite refractory periods the interior of the spot
synchronizes, and ring patterns are obtained. As in the case
of the FHN model, we also use an N×N = 100×100 lattice
with toroidal boundary conditions, while here the control
parameters are the coupling radius R and the refractory
period pr .

Figure 6 depicts an incoherent-spot chimera state for small
values of the coupling constant and zero refractory period. A
typical snapshot of the LIF spot chimera is shown in the left
panel, the corresponding mean phase velocity ωij is depicted
in the middle, and a horizontal cut crossing the spot is depicted
on the right. Single spots develop in the LIF system for small
values of σ (here σ = 0.1) when the coupling range R is small.
As the coupling range increases while keeping the refractory
period at zero, the spot breaks into several unequal secondary
spots whose size and distance increase with the coupling range
(not shown).

Ring patterns are produced when the refractory period takes
finite values pr > 0 and the interior of the spots synchronizes.
The snapshot of the potential uij , the mean phase velocity ωij

and its corresponding horizontal cut of a ring chimera is shown
in Fig. 7. The outer border of the ring has a square shape due
to the square configuration of the connectivity matrix given
by Eq. (10). This pattern differs from the ones appearing in
the one-dimensional configuration: From every point of the
incoherent ring, one can reach all other incoherent elements

FIG. 6. LIF system: Chimera state of incoherent-spot type.
Snapshot of uij (left) and the corresponding mean phase velocity
(middle and right) for small values of the coupling constant σ = 0.1
and for a coupling range R = 10. Other parameters are μ = 1.0,
pr = 0, and N = 100.

FIG. 7. LIF system. Ring chimera: Snapshot of uij (left) and the
corresponding mean phase velocity (middle and right) for a coupling
range of R = 10 and pr = 0.22Ts . Other parameters as in Fig. 6.

by moving continuously on the ring, and this region forms a set
that is not simply connected and cannot exist in one dimension.
As the size of the coupling range increases, the ring radius
increases accordingly. When the coupling range approaches
the system size, the single ring gives rise to multiple parallel
lines of increasing size (not shown). In the limit of small
coupling ranges (e.g., R = 1), we do not observe the formation
of coherent and incoherent regions. Instead, Turing-like shapes
are formed as in the case of the FHN model.

The inner and outer diameters of the incoherent regions as
a function of the coupling range R are plotted in Fig. 8. The
size of both diameters increases proportionally to the coupling
range as the linear fits (solid lines) indicate. The inset of the
same figure depicts the relative number of incoherent elements
Ninc/N

2 (where Ninc is the number of oscillators in the
incoherent domain) as a function of the relative connectivity
matrix size NR/N2 = (2R + 1)2/N2. From this figure, we
observe that the growth rate of Ninc/N

2 is almost linear. We
also find that the mean phase velocities are independent of
the coupling range (not shown). As we will see in the next
sections, the mean phase velocities are mainly influenced by
the coupling constant σ .

C. Comparison

Comparing the FHN oscillator and LIF dynamics, we
identify similar spatial structures with a spot or ring shape.
Their size grows linearly with the coupling range. It is worth
stressing that the ωij values in the incoherent regions are larger

FIG. 8. LIF system: Inner and outer diameter D of the incoherent
ring patterns as a function of the coupling range R. Inset: Relative
number of incoherent elements Ninc/N

2 as a function of the relative
number of coupled neighbors NR/N 2. Parameters as in Fig. 7.
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FIG. 9. FHN system: Stripe chimera for r = 39, ϕ = π/2 − 0.04,
and t = 1900. The (color-coded) activator xij (left panel) shows a
synchronous stripe region, while the other panels show the mean
phase velocity distribution ωij (middle panel) and the section of ωij

(right panel). Other parameters as in Fig. 2.

than those in the coherent ones. For small coupling ranges, i.e.,
the local coupling regime, we find Turing-like behavior. In
the LIF model, the oscillators synchronize for large coupling
ranges close to all-to-all connectivity, and in the FHN model
they synchronize for coupling phases slightly smaller than in
the area where spots and rings are observed.

IV. STRIPES

In this section, we focus on a different type of chimera
states that exhibit one-dimensional structures extended in the
second spatial dimension: stripes.

A. FitzHugh-Nagumo: Stripes

Besides the two spot types and rings, we also identified
stripe chimeras in the FHN model, as shown in Fig. 9. These
states consist of an incoherent and a coherent stripe region. The
latter oscillates with lower mean phase velocity ωij . Again, the
ωij profile of the stripe exhibits an arc-shape. In the depicted
example the stripe region is synchronous, but in most cases
it contains a gradual phase shift, which means that waves
travel in the direction of the stripe (see Appendix B). For
this synchronized stripe type, we never observed a diagonal
stripe pattern. We also found other stripe patterns that exhibit
a wavelike dynamics within the stripe instead of complete
synchronization.

Figure 10 depicts the width W of the coherent region as
a function of the coupling range r for the fully synchronized
stripe type. The color code refers to different coupling phases.
We find that the width of the coherent region increases for
larger r and that smaller phases result in larger values of W .
Other multistripe chimeras are found outside the previously
discussed region of ϕ ∈ [1.3,1.65] (see Appendix B).

B. Leaky integrate-and-fire: Stripes

Stripes are also present in the LIF model for large values of
the coupling strength and the refractory period, and medium
values of the coupling range. A stable configuration containing
six coherent regions separated by six incoherent ones is
presented in Fig. 11. In fact, the coherent regions are separated
in two groups, one with a higher mean phase velocity than
the other. This is evident from the right panel of Fig. 11,
where the section of the mean phase velocity at j = 35
demonstrates high values in the order of 2.15 for the first
coherent group, intermediate values in the order of 2.10 for

FIG. 10. FHN system: Width W of the coherent region in the
fully synchronized stripes in dependence on the coupling range r for
different coupling phases ϕ as a color code. The size of the error
bars refers to an uncertainty of 	W = 0.9 in the measurements.
Parameters as in Fig. 2.

the second coherent group, and ωij values between 2.06 and
2.12 for the incoherent stripes. Other stripe multiplicities were
also observed for different values of the coupling range R, in
the interval 15 � R � 25. For smaller (larger) values of R,
a larger (smaller) number of stripes is supported with smaller
(larger) width (not shown). Depending on the initial conditions,
the stripes form parallel or perpendicular to the i axis. In the
LIF model, diagonal stripes have not been observed.

C. Comparison

Stripe chimeras have been found in both FHN and LIF
models. They include single and multiple stripes. In the FHN
system, we have observed an arc-shaped mean phase velocity
profile. The width of the coherent region becomes smaller as
the coupling phase increases. For multiple stripes in the LIF
model, coherent regions emerge with different mean phase
velocities, while ωij was found to be equal for every coherent
stripe of the multiheaded stripe chimeras in the FHN system.

V. GRID PATTERNS

Grids are the most common patterns observed in both FHN
and LIF models. These states include features from both spot
and stripe chimeras. Examples are presented below.

FIG. 11. LIF system: Snapshot of uij (left), the corresponding
mean phase velocity (middle), and a section of it (right). Parameters
are σ = 0.6, μ = 1.0, pr = 0.6Ts , N = 100, and R = 20.
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FIG. 12. FHN system: (a) Grid state with 6×6 spots for r = 30
and ϕ = π/2 + 0.82. The k×k structure is visible in the (color-coded)
activator variable xij (left) at t = 2000 and the (color-coded) mean
phase velocity (center). The right column shows a section of ωij . (b)
Lines of incoherent spots for r = 22, ϕ = π/2 + 0.96, and t = 1900.
Other parameters as in Fig. 2.

A. FitzHugh-Nagumo: Grid patterns

The grid chimera is formed by a regular grid of k×k

incoherent spots. The spots are either round or spiral-like
and have approximately the same size given the choice of
r and ϕ. When approaching the direct-coupling case with
ϕ ≈ π , they shrink to a size of only a few oscillators and
disappear. A complex coherent grid pattern without incoherent
cores remains, which consists of multiple clusters with the
same mean phase velocity but nonzero phase lags. As seen in
the enlargement of the parameter space for the grid chimera
states in Appendix A, these cluster states partially surround
the corresponding grid chimeras. Similar cluster states are
also found for the double spot lines and the twisted chimeras
discussed below and also in Appendix B.

Figure 12(a) shows an example of spirals arranged on a
grid with asynchronous, incoherent cores. The grids can also
appear as rotated versions with a nonzero angle compared to
the underlying lattice structure (not shown). In this work, only
the regular grids with the same orientation as the oscillator
grid are presented.

The number of spots in the baseline is found to be even
in every grid considered, and it decreases exponentially with
increasing coupling radius r (see Appendix C). In the case of
an odd number of spots in a baseline, the spirals cannot fulfill
the boundary conditions. This leads to a destruction of the
state. Nevertheless, the grids can exist as a k×l state, where
both k and l are even numbers.

Another grid pattern, which is observed commonly in the
two-dimensional FHN model for a large parameter region,
is a multiheaded, double-spotted line chimera state. This state
consists of two parallel straight lines of incoherent spots, while
the surrounding area is filled with a frequency-locked coherent
pattern that exhibits a gradual phase shift in space. An example
for such a spotted chimera pattern is shown in Fig. 12(b).

The spotted patterns can be arranged in a horizontal-vertical
or diagonal configuration. When the coupling radius increases,
the number of spots in a single line decreases exponentially for

both configurations (not shown), similar to the grid chimeras
(cf. Appendix C). Again, they can be spiral-shaped or round
and shrink or disappear completely near the direct-coupling
case with ϕ ≈ π , which leaves a coherent pattern. For all
coupling phases, every second spot in a line can be shifted off
the line for big coupling radii.

All spotted line states are multistable to other patterns
of similar geometry and the grid states. Starting from the
basic patterns of two parallel lines of spots, the change of
parameters induces a transition to a different chimera pattern,
wave patterns, or to synchronization. One possibility is the
collapse of the two spotted lines into a single line, which then
forms an incoherent stripe. Another possibility is the formation
of more than two lines of incoherent spots, mostly four lines.
Configurations of an odd number of spot lines are observed
as well, but they are transients, that is, the lines tend to move,
until two of them collide to a single line of spots.

We also observe that the coherent wave pattern that
surrounds the incoherent spots [see Fig. 12(b)] can be oriented
in space in other ways that include an angle with the underlying
grid structure of the N×N oscillator grid while leaving the
straight lines of incoherent spots intact. We find that for a
given number of spots k, the solutions that are aligned with
the grid structure have big coupling radii, while the radius
decreases when the angle increases (not shown).

B. Leaky integrate-and-fire: Grid patterns

In the LIF network, grid chimera patterns emerge when the
coupling range takes relatively high values; see Figs. 13 and
14. Before studying the effects of the coupling range R on the
form of chimera states, we present the case of multistability
observed for high values of σ = 0.7 and intermediate values
of R = 22. Figure 13 depicts snapshots of the potential uij

(left panels), corresponding mean phase velocities ωij (middle
panels), and a section of mean phase velocities (right panels)
for LIF realizations starting from two different random initial
conditions. In panels (a) we observe a 36-headed chimera

FIG. 13. LIF system: (a) Grid chimera and (b) double-spotted
line. The Patterns (a) and (b) are formed starting from two different
random initial conditions. Left panels: snapshots of uij ; middle
panels: corresponding mean phase velocities; right panels: section
of mean phase velocities. Parameters: R = 22, σ = 0.7, μ = 1.0,
pr = 0.22Ts , and N = 100.
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FIG. 14. LIF system: The snapshots of uij (left panels), corre-
sponding mean phase velocities (middle panels), and sections of mean
phase velocities (right panels) in the limit of strong coupling for two
different coupling ranges: (a) R = 23 and (b) R = 45. Parameters:
σ = 0.7, μ = 1.0, pr = 0.22Ts , and N = 100.

arranged in a 6×6 grid, while panels (b) show a 12-headed
chimera in the configuration of two horizontal double-spotted
bands with six incoherent regions each. We must stress that
pattern (b) is very rare but stable in time and is present only
in a few cases around 22 � R � 24 and for specific initial
conditions. Most initial conditions support the 36-headed
chimeras.

In Fig. 14 we present the snapshots of uij (left panels),
corresponding mean phase velocities (middle panels), and
sections of mean phase velocities (right panels) for LIF
realizations for two different coupling ranges R. The 36-
headed chimera persists as we increase the coupling range,
up to R ∼ 30. Above this value, the system synchronizes
(not shown). As the limit of all-to-all synchronization is
approached, there is another window of partial synchronization
around R = 45, where a 16-headed grid chimera is observed;
see Fig. 14(b).

A grouping phenomenon of mean phase velocities is clearly
visible in this 16-headed grid chimera pattern of Fig. 14(b). The
coherent regions split into four groups, with each one of them
having a distinct mean phase velocity, while the ωij levels of
the four coherent groups alternate in space. In the right panel of
Fig. 14(b), only two of these groups are visible since the section
for j = 25 cuts through the 2.785 and 2.79 regions. Traces of
this grouping phenomenon are also visible in Figs. 13(a) and
14(a). As the coupling range grows, the difference between the
mean phase velocities of the four groups increases (not shown),
and for large values of R the four groups are distinguishable.

Another observation worth studying is that for large values
of σ the incoherent regions exhibit small ωij values, while
the coherent ones correspond to large ωij ’s. Comparing the
mean phase velocities between Figs. 7 and 14, we observe that
their values have been doubled. We find that it is the
coupling strength that controls their magnitude. As mentioned
in Sec. III B, for small values of σ the ωij values of the
incoherent regions are larger than the coherent ones, while
we observe here that the opposite is true for large values of σ .
This qualitative change indicates that there is an intermediate
value of the coupling constant where this qualitative change

FIG. 15. LIF system: The ratio of incoherent elements in all
observed 6×6 grids as a function of the coupling strength σ , using a
fixed coupling range at R = 25 and other parameters as in Fig. 7.

takes place. For the LIF model, this critical point is located
between the values 0.2 < σcrit < 0.6. It should correspond
to full synchronization or traveling waves at the crossover
ωincoh = ωcoh. Our simulations show that σcrit ∼ 0.3. For
this value we observe full synchronization, while for σ

between approximately 0.4 and 0.5 the system stays in the
transient regime for a long time. This difficulty to attain a
stationary state is another indication that we are near a critical
point.

Overall, the number of incoherent elements decreases with
the coupling strength σ , as shown in Fig. 15. This figure
is based only on the 36-headed chimera patterns, since the
16-headed pattern is hard to detect in higher σ values. The
exponential fit (solid line) describes closely the decrease of
the size of the incoherent regions with R, with an exponent
β = −3.25 characterizing the decay.

The conclusion related to the attributes of the chimera states
in the LIF model is that the ratio of coherent and incoherent
elements and the mean phase velocities are mainly controlled
by the coupling strength σ .

C. Comparison

Both models support the presence of incoherent spot pat-
terns arranged in grids. The spots are organized equidistantly
along straight lines. The grid consists of an even number of
such spotted lines in the two spatial directions, along which
the number of lines is not necessarily equal. In the LIF model,
an odd number of lines is not observed for the considered
parameter scans. In the FHN model, spots arranged in odd
numbers of lines may arise, but they soon merge, zipping
together and giving rise to stable patterns with an even number
of spots in both directions.

VI. CONCLUSIONS AND OPEN PROBLEMS

We have studied the dynamics of two-dimensional networks
of neuronal oscillators with nonlocal coupling. This can be
seen as an intermediate step extending the intensively studied
one-dimensional ring geometries toward a three-dimensional
arrangement of the brain. FitzHugh-Nagumo (FHN) and
leaky-integrate-and-fire (LIF) models have been chosen to
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represent the single neuronal activity, as they are two of the
most prominent paradigmatic descriptions. Finding common
synchronization patterns in the two dynamical networks could
point the way toward identification of universal dynamical
features present in brain activity.

The aim of the current study was to concentrate on stable
chimera patterns induced by the nonlocal connectivity and
to identify patterns that are common in both models. In each
model, we have considered a parameter space spanned by three
quantities. For the FHN model, the phase connectivity parame-
ter and the coupling range have been varied, while the coupling
strength was kept fixed. For the LIF model, the coupling
strength, coupling range, and refractory period were varied.

Our comparative study has demonstrated that, although
the dynamics of the single neurons in the two models are
described by different equations, both systems support hybrid
states composed of coherent and incoherent regions when the
elements are nonlocally coupled. We have identified a number
of common chimera patterns: spots, grids, rings, and stripes.
Our simulations suggest that the coherent or incoherent pattern
characteristics follow similar growth rules. For example, the
diameter of the ring patterns grows linearly with the coupling
range in both models. Other phenomena typical in nonlinear
systems such as multistability and transitions between different
patterns have been observed as well. The common behavior
of the two models supports the universal occurrence of
these peculiar dynamics: Chimera patterns are persistent and
independent of the specificity of the model, provided that the
models retain the characteristics of spiky limit cycles.

Future investigations are needed to show whether these
chimera patterns will be persistent for a three-dimensional
configuration and in more complex network architectures,
drawing from the current advances in the realistic recordings
of the neuron connectivity in the different parts of the brain.
Another aspect worth investigating is the inhomogeneity of the
single neurons. Biological experiments have shown that mi-
croscale inhomogeneities, including different neuron bodies,
dendritic structures, axonal fiber bundles, etc., are common
in the brain structure and that they affect electrical signal
propagation on a microscale [44]. On the other hand, numerical
experiments on the one-dimensional ring architecture support
the view that at low levels of inhomogeneity of the single
neuron parameters the chimera patterns persist [26]. It will be
insightful to investigate this phenomenon in the case of higher
spatial dimensions with complex connectivity patterns inspired
by the ones recorded in medical experiments on the brain.
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APPENDIX A: PARAMETER SCAN OF THE COUPLED
FITZHUGH-NAGUMO MODEL

Figure 16 shows a complete scan of the (ϕ,r)-parameter
space for the FHN system. The blue region indicates all
observed chimera states with a difference in the mean phase
velocity 	ω > 0.009 between the coherent and incoherent
region, which means that after 1000 time units, the oscillators
in one of the regions have completed at least 15 cycles more
compared to the other region. The value for 	ω was obtained
by visual inspection of the data for different values of 	ω.

When the difference of the mean phase velocities is smaller
than 	ω, the patterns have a very small or no frequency
difference between the different regions. These patterns are
either fully synchronized or coherent, when a region exhibits
a phase lag. The coherent solutions can be cluster states with
two or more clusters, which form large synchronous regions,
or states with a gradual shift in phase. This type of solution is
colored in orange.

We also find two other coherent cluster solutions that are
marked in green and red. One of them is a two-cluster state
shown in green, where the clusters have a phase lag of π .
They are scattered in space and form a spatially chaotic,
isochronous region in the oscillator grid, except for one coher-
ent region, where only one of the clusters exists. Such patterns
are usually remnant states, evolving from prepared initial
conditions (chimeras), and they cannot be found with random
initial conditions. As these states include two distinguishable
coherent regions, which do not change their position over time,
we call them frequency-locked isochronous chimera states.

When one of the clusters is scattered in space in such a way
that it only consists of isolated oscillators, which are embedded
in the other cluster, the states are called solitary states. These
patterns are shown in red.

Figure 17 provides an overview of some of the observed
chimera patterns in the range ϕ ∈ [1.1,2.15]. The highlighted
areas are discussed in the main text in Secs. III A and IV A;
some of the other patterns are presented in Appendix B. The

FIG. 16. FHN system: full parameter space (ϕ,r). The colors in-
dicate groups of chimera states (blue), frequency-locked isochronous
chimera states (green), cluster states and patterns with a gradual phase
shift (orange), and solitary states (red). Other parameters as in Fig. 2.
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FIG. 17. FHN system: overview of some chimeras for the cross-coupled region with 1.1 � ϕ � 2.15. The regions with bold borders are
discussed in the main text in Secs. III A and IV A. The colors indicate different types of chimeras, while the arrows and numbers point out the
number of coherent heads (for the leopard chimeras), the number of spirals (for the spiral states), and the alignment (horizontal, diagonal) of
the ninepin chimera. Other parameters as in Fig. 2.

numbers in the figure indicate the number of coherent heads
(for the leopard chimeras), the number of spirals (for the spiral
states), and the alignment (horizontal, diagonal) of the ninepin
chimera. In this region, many other chimera patterns were also
found, such as twisted chimeras, grids, and double spot lines
in different configurations.

Figure 18 depicts an enlargement of Fig. 16 in the range
where we find grid chimeras. As shown in the main text in
Sec. V A, the number of heads in a single line decreases
exponentially with the coupling range r . The black lines mark
two examples for other grid states that have no incoherent

cores. These states are frequency-locked states, which can
consist of two or more separately synchronous clusters or
regions with a gradual shift in phase.

APPENDIX B: OTHER PATTERNS

Apart from the commonly observed spot, stripe, and grid
patterns, a number of other patterns, moving or stable, are
encountered in each model. Indeed, we find a plethora of
different patterns mainly in the FHN model (see Fig. 19), some
of which escape the nomenclature of spots, stripes, or rings:

FIG. 18. FHN system: Enlargement of the parameter space where grid chimera states are found (cf. Sec. V A). The color indicates the
number of incoherent heads in a single line. Every grid chimera pattern is partially surrounded by a corresponding grid pattern, which does not
include the incoherent cores (black). Other parameters as in Fig. 2.
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FIG. 19. FHN system. Examples of chimeras and other states: The left panels show the activator variable xij , while the other panels show
the mean phase velocity distribution ωij (left panel) and a horizontal section of ωij (right panel). (a) Solitary state, r = 24, ϕ = π/2 − 1.04 at
t = 1900; (b) double spiral chimera, r = 17, ϕ = π/2 − 0.54 at t = 1900; (c) cross chimera, r = 19, ϕ = π/2 − 0.14 at t = 6000; (d) coherent
spot with a spiral, r = 49, ϕ = π/2 − 0.02 at t = 2000; (e) leopard chimera (4×3), r = 37, ϕ = π/2 + 0.16 at t = 2000; (f) ninepin chimera
(2×2 diagonal), r = 48, ϕ = π/2 + 0.34 at t = 2000; (g) mosaic chimera, r = 31, ϕ = π/2 + 0.36 at t = 6000; (h) wave chimera with spots
(five waves), r = 17, ϕ = π/2 + 0.48 at t = 2000; (i) twisted 5,3-chimera, r = 25, ϕ = π/2 + 0.42 at t = 2000; (j) organic chimera, r = 2,
ϕ = 5π/2 − 2.8 at t = 6000; (k) diagonal antiphase stripe and spots, r = 5, ϕ = 5π/2 − 2.7 at t = 2000; (l) spiral in antiphase spot, r = 15,
ϕ = 5π/2 − 2.7 at t = 1900. Other parameters are σ = 0.1, a = 0.5, and ε = 0.05.

(a) Solitary state, which consists of two clusters with
nearly identical mean phase velocities. The number of isolated
oscillators grows exponentially with ϕ for every coupling
radius r � 7 on a shared main branch and minor branches
for the other radii (not shown). For big coupling radii, the
large cluster is synchronous, while for small coupling radii the
cluster is coherent and waves reduce the number of solitaries.

(b) Double spiral state with static, incoherent cores and a
coherent wave pattern that surrounds them. In other examples
the cores are moving, often in straight lines, but not necessarily
in the same direction. The state can die in the solitary region
and form a solitary state, with solitaries arranged in an arc-
shape. This pattern can also be found with four or eight spirals
(not shown).
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(c) Cross chimera. Although it looks like this is a transi-
tional pattern between a spot and a stripe, they do not exist in
the parameter area between these two states.

(d) Coherent spot and spiral. The spiral grows with coupling
range r (not shown). The state also can exist with two coherent
spots instead of a spiral.

(e) Leopard chimera (multiheaded chimera with 4×3
shifted coherent heads). The state is also observed with a
different number of heads, like 5×5. The state can be found in a
configuration with no mean phase velocity difference between
the coherent and incoherent oscillators, when numerical
tracking through parameter space is used with prepared initial
conditions. Note that the coherent spots have a nonzero phase
lag.

(f) Ninepin chimera, here in a diagonal configuration. This
pattern also exists with a horizontal or vertical alignment.

(g) Mosaic chimera. Around the incoherent regions, waves
are traveling in tubes. Many other stable configurations are
also found (not shown).

(h) Wave chimera: When taking a vertical cut at i = 60,
five wavefronts can be observed. These states can also exist in
other parameter regions with a different number of wavefronts;
see Fig. 17. In the example, the state exhibits 10 spots inside
the coherent region. In other examples, the chimera does not
contain them.

(i) Twisted 5,3-chimera. Many different twisted chimeras
are found. In most cases, the lines are straight, but they can
also form curves (not shown) or wriggle. It is possible to create
a similar pattern with a different number of wavefronts in the
stripe.

(j) Organic chimera: No stable pattern is formed in this
state. Instead, it changes its shape continuously. For better
visualization, the mean phase velocity is an average over 200
time units.

(k) Diagonal antiphase stripe and spots. The term antiphase
refers to the surrounding pattern, which shares the same mean
phase velocity and is coherent, but it consists of two or
more clusters with nonzero phase lags. Note the two different
mean phase velocity levels of the spots and the stripe. The
stripe can also exist without the spots and vice versa. The
width of the antiphase stripes and the antiphase spots grows

FIG. 20. FHN system. Grid states: Dependence of the number of
asynchronous heads k in a single line on the coupling radius r . The
red line is an exponential fit. The brightness of the dots indicates the
number of occurrences of k×k grid chimeras for ϕ ∈ (1.71,4.65).
Parameters as in Fig. 2.

with coupling range r , while the number of antiphase spots
decreases exponentially with coupling range r (not shown).

(l) Spiral in an antiphase spot. Note that there is an inco-
herent halo around the spot, while the rest of the surrounding
pattern is in an antiphase configuration. The halo effect was
also found for other patterns in the antiphase region.

In the LIF model, similar patterns are observed in the
simulations, but they were short-lived and transient in most
cases.

APPENDIX C: GRID PATTERNS IN THE COUPLED
FITZHUGH-NAGUMO MODEL

In support of Sec. V A discussing the occurrence of grid
chimeras in the FHN model, Fig. 20 illustrates the number
of asynchronous heads as the coupling range r is varied. The
opacity of the dots reflects the number of occurrences of a k×k

grid chimera for the respective r value.
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