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From solitons to rogue waves in nonlinear left-handed metamaterials
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In the present work, we explore soliton and roguelike wave solutions in the transmission line analog of
a nonlinear left-handed metamaterial. The nonlinearity is expressed through a voltage-dependent, symmetric
capacitance motivated by recently developed ferroelectric barium strontium titanate thin-film capacitor designs.
We develop both the corresponding nonlinear dynamical lattice and its reduction via a multiple scales expansion
to a nonlinear Schrödinger (NLS) model for the envelope of a given carrier wave. The reduced model can feature
either a focusing or a defocusing nonlinearity depending on the frequency (wave number) of the carrier. We then
consider the robustness of different types of solitary waves of the reduced model within the original nonlinear
left-handed medium. We find that both bright and dark solitons persist in a suitable parametric regime, where the
reduction to the NLS model is valid. Additionally, for suitable initial conditions, we observe a rogue wave type
of behavior that differs significantly from the classic Peregrine rogue wave evolution, including most notably
the breakup of a single Peregrine-like pattern into solutions with multiple wave peaks. Finally, we touch upon
the behavior of generalized members of the family of the Peregrine solitons, namely, Akhmediev breathers and
Kuznetsov-Ma solitons, and explore how these evolve in the left-handed transmission line.
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I. INTRODUCTION

Over the past few years, the study of metamaterials, i.e.,
artificially engineered structures exhibiting electromagnetic
(EM) properties not commonly observed in nature, has seen an
explosion of interest [1–4]. An especially intriguing aspect of
these metamaterials is their so-called left-handed (LH) nature,
which features simultaneously negative effective permittivity
ε and permeability μ, i.e., the relevant signs of these quantities
are opposite to those of conventional right-handed (RH) media.
The resulting difference between these two scenarios is that
in the LH (RH) regime, the energy and the wave fronts of
the EM waves propagate in opposite (same) directions, giving
rise to backward (forward)-propagating waves. Consequently,
these left-handed metamaterials (LHM) can exhibit negative
refraction at microwave [5,6] or optical frequencies [7].

Apart from a classical EM approach involving the study
of an effective medium, which can naturally be used to
study such metamaterial media [8], transmission line (TL)
theory constitutes a convenient framework to analyze their
evolutionary dynamics. A TL-based analysis relies on the
connection of the EM properties of the medium (ε and μ)
with the electric elements of the TL unit cell, namely, the
serial impedance and the shunt impedance [2]. Equivalent
TL models have been used to describe periodic lattices of
prototypical magnetic and electric metamaterial structures in
the form of split ring resonators (SRRs) and complementary
split ring resonators (CSRRs) [9,10]. In this context, each
of the SRRs or CSRRs can be analyzed in the form of a
corresponding LC circuit, while the whole metamaterial is an
array of such circuits, with the coupling between the elements
being modeled by a mutual inductance and/or capacitance. The
serial impedance and the shunt impedance are directly related
to the actual properties of these structures.

In addition to the more standard case of linear LHMs,
the study of nonlinear LHMs has been receiving increased
attention [11]. Here, the EM properties—such as ε and μ (or,
equivalently, the serial impedance and the shunt impedance
at the TL level)—depend on the intensity of the EM field
(equivalently at the TL level, e.g., on the voltage). Practical
proposals for the experimental realization of such features
involve embedding an array of wires and SRRs into a nonlinear
dielectric [12,13] or the insertion of diodes (varactors) into
resonant conductive elements, such as the SRRs [14–16].
The interplay of strong dispersion exhibited by left-handed
transmission lines with the nonlinear voltage dependence of
the group velocity results in unusual dynamical behavior.
In this theme, the extensive theoretical studies have led to
numerous experimental realizations of features such as pulse
propagation [17], envelope soliton formation [18], and the
emergence of bright [19] or dark [20] solitons; see also
Ref. [21], and the more recent work [22] for soliton generation
in active metamaterials. A relevant—but earlier—review of
experimental studies can be found in Ref. [23].

In our present considerations, we study a nonlinear left-
handed transmission line. In part, we are motivated specifically
by the recent development of strongly nonlinear and voltage
symmetric barium strontium titanate (BST) thin-film capaci-
tors [24]. We thus consider a nonlinear LHM through a TL
approach, which exhibits the symmetric capacitance-voltage
dependence. Our aim is to investigate the properties of the
nonlinear wave forms that arise and are robustly sustained
by this LHM. To gain theoretical insight into this, we utilize
a multiscale expansion method that reduces the model, in
a self-consistent fashion (up to cubic order in a suitable
amplitude parameter), to a nonlinear Schrödinger (NLS)
equation [25–27]. We identify regimes, depending on the
frequency of the carrier wave, where the NLS equation is
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focusing or defocusing. The prototypical soliton solutions of
this model, namely, the bright soliton and the dark soliton,
are found to be robustly preserved by the transmission line
dynamics. However, a more ambitious goal of the present
study is to examine whether rogue wave (RW) patterns, such
as the Peregrine soliton (PS) of the focusing NLS equation,
can emerge in the LH transmission line. The only work that
we are aware of connecting these two themes (LHMs and
RWs) is that of Ref. [28], which focuses on a rather qualitative
comparison for very short propagation distances. Here, we
actually engineer initial data that, at the NLS level, would lead
to a PS profile. As a result of the dynamics, we observe both
similarities with and differences from what we expect at the
NLS level. We discuss these at some length and the impact
that the intrinsic features of the LHM system have on the
potential emergence and form of the Peregrine-like structure.
We do not restrict our considerations to solely this rogue wave
pattern; rather, we extend them to additional members of the
relevant family of solutions, including the spatially periodic
Akhmediev breathers (ABs) and the temporally periodic
Kuznetsov-Ma solitons (KMs).

Our presentation is structured as follows. In Sec. II we
present the model, discuss the nature of the nonlinearity, and
explain the reduction to the NLS setting. In Sec. III, we present
prototypical numerical results not only for the bright and dark
solitons but also, more importantly, for Peregrine-like solitons
and/or rogue waves and related (periodic in space or time)
patterns. Finally, in Sec. IV, we summarize our findings and
present our conclusions.

II. THE MODEL AND ITS ANALYTICAL
CONSIDERATION

Following Ref. [21], we consider the transmission line
framework of Fig. 1 in order to model a left-handed TL
metamaterial. Assuming that the diode can be emulated by
a nonlinear, voltage-dependent capacitance (see below), we
can employ Kirchhoff’s voltage and current laws for the
unit-cell circuit of Fig. 1 and derive (see details in Ref. [21])
the following differential-difference equation for the unknown
voltage Vn in the parallel branch at the nth site of the lattice:

LL

d2

dt2
[CL(Un)Un − CL(Un+1)Un+1] − LLCR

d2Vn

dt2
− Vn

= 0. (1)

CR

+

−

Vn

In+1
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− +
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FIG. 1. A sketch of the unit cell of the transmission line emulating
the left-handed metamaterial.

Here, Un is the voltage across the nonlinear capacitance CL that
emulates the in-line BST capacitor (notice that Un = Vn−1 −
Vn), and CR is the linear shunt capacitance, while LL represents
the inductive elements, connected to the ground; notice that
subscripts L and R denote the LH and RH elements of the unit
cell circuit. A key feature considered herein is the symmetric
(contrary to what was the case in Ref. [21]) dependence of
the capacitive element on the voltage V . We are motivated
by capacitance dependence on voltage results for molecular
beam epitaxy grown BST thin films [24]. In particular, we
utilize the prototypical symmetric (monotonically increasing
with voltage) functional form:

CL(U ) = C0 + 16C0

9V 2
0

U 2. (2)

Here C0 is the zero bias capacitance and V0 has the units of
voltage.

As a result of this expansion, Eq. (1) becomes

LLC0
d2

dt2
(Vn−1 − 2Vn + Vn+1) − LLCR

d2Vn

dt2
− Vn

+LL

d2

dt2
{a[(Vn−1 − Vn)3 − (Vn − Vn+1)3]} = 0, (3)

where a = (16/9)(C0/V 2
0 ). Next, measuring time in units of

1/ω0 = √
LLC0 and voltage in units of 3V0/4, we express

Eq. (3) in the following dimensionless form:

d2

dt2
(Vn−1 − 2Vn + Vn+1) − g

d2Vn

dt2
− Vn

+ d2

dt2
{[(Vn−1 − Vn)3 − (Vn − Vn+1)3]} = 0, (4)

where g = CR/C0. Below, we use the following typical
parameter values: LL = 470 μH, CR = 44.8 pF, C0 = 800 pF,
V0 = 10 V, and a unit cell of length d = 1 cm (as in Ref. [21]);
then, parameter g takes the value g = 0.056. Furthermore, the
time variable t is measured in units of ω−1

0 = √
LLC0 (with

f0 = ω0/2π ≈ 260 kHz); i.e., the time unit is ≈ 0.61 μs in
our simulations below.

To obtain an analytical handle on the nonlinear wave
forms that the model of Eq. (4) may possess, we employ a
quasicontinuum approximation [29]. In particular, we consider
wave forms characterized by a discrete carrier and a slowly
varying continuum pulselike envelope and thus seek solutions
of Eq. (4) of the form

Vn =
∑
�=1

ε�V�(X,T )ei�(ωt−kn) + c.c., (5)

where V� are unknown envelope functions, depending on the
slow variables:

X = ε(n − vgt), T = ε2t, (6)

with vg being the group velocity, as can be found self-
consistently from the linear dispersion relation (see below).
Finally, ω and k denote the carrier’s frequency and wave
number, respectively, and ε is a formal small parameter.

Here we should notice that the above ansatz implies that we
are assuming a carrier wave of effective linear propagation, as
will be more transparent in what follows. This carrier wave is
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modulated by a slow envelope that encompasses the nonlinear
dynamics of the model. This slow envelope is expected to
be governed, as we will see in what follows, by the NLS
model. This expansion is a small-amplitude one (i.e., weakly
nonlinear), as the relevant control parameter ε characterizes the
solution amplitude. At the same time, it is a long-wavelength
expansion characterizing wide regions of the lattice of size of
1/ε and long time scales of the size of 1/ε2.

We now present the resulting equations from the multiscale
expansion order by order:

O(ε1) :
1

ω2
= 2 + g − 2 cos k; (7)

O(ε2) : vg = −ω3 sin k; V2 = 0; (8)

O(ε3): i∂T V1 + P∂2
XV1 + Q|V1|2V1 = 0,

P = ω3

2
(cos k − 3ω2 sin2 k), Q = −24ω3 sin4(k/2);

V3 = 144ω2(1 + 2 cos k) sin4(k/2)V 3
1

1 + g − 2 cos(3k)
. (9)

The first one of these, at O(ε), represents the linear
dispersion relation of the LHM, which is depicted in the left
panel of Fig. 2. Notice that the dispersion relation (7) suggests
that there exist two cutoff angular frequencies, namely, an
upper one, ωmax = 1/

√
g ≈ 4.22 (corresponding to k = 0),

and a lower one, ωmin = 1/
√

g + 4 ≈ 0.5 (corresponding to
k = π ), for g = 0.056. In physical units, the respective fre-
quencies, are given by fmax = (2π

√
gLLC0)

−1 ≈ 1100 kHz,
and fmin = (2π

√
(g + 4)LLC0)

−1 ≈ 130 kHz. Notice that the
lower cutoff frequency is due to discreteness since, evidently,
this frequency vanishes in the continuum limit.

At the next (second) order, the solvability condition leads
to the vanishing contribution V2 = 0, as is commonly the case
in such multiscale expansions. Furthermore, at the same order,
we obtain the group velocity (the velocity of the wave packet’s
envelope) vg = dω/dk, which is not only distinct from the
phase velocity vp = ω/k but also carries the opposite sign, as
per the left-handed nature of the medium; this becomes clear
by the form of the dispersion relation shown in the left panel of
Fig. 2, which features a negative slope. In other words, vpvg <

0 (or kvg < 0) means that as a modulated pulse moves forward,
the phase evolves in the opposite direction and, hence, motion
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FIG. 2. Left panel: The linear dispersion relation [cf. Eq. (7)].
Right panel: The dependence of the factor PQ (which determines
the focusing or defocusing nature of the model) on the frequency ω;
see also the text. When PQ > 0, the nonlinearity is self-focusing,
while for the opposite sign it is self-defocusing.

into the left-handed medium induces the process of phase
reversal. Note that the fact that, e.g., vg < 0 and vp > 0 does
not violate causality (implying propagation of energy toward
the source), as per the arguments of Ref. [30]: the normal
to the phase front should not be interpreted as the direction
of the group velocity; in fact, the propagation of the front is
simply antiparallel to the phase velocity—see discussion and
explanations in Refs. [31,32]. This effect is also clearly visible
in our simulations (cf. Figs. 3 and 5, as well as the relevant
discussion below).

At the third order, we obtain the NLS equation for V1. Its
dispersion and nonlinearity coefficients, P and Q, respectively,
depend on the frequency, but the latter is slaved to the wave
number through the dispersion relation. Last, but not least, the
third-order reduction and/or decomposition of the solution is
also derived.

Considering the abovementioned prototypical values of
the relevant parameters, motivated also in part from the
experiments of English et al. [21], we present PQ as a
function of ω in the right panel of Fig. 2, for g = 0.056.
In the region where the relevant quantity is positive, per
the standard general theory of the NLS equation [25–27],
the dynamics is associated with a self-focusing scenario that
should bear structures like bright solitons, but also potentially
Peregrine solitons and related wave forms. In physical units,
and for the abovementioned parameter values, the regime
of PQ > 0 corresponds to the frequency band 130 kHz �
f � 897 kHz, while the respective wave numbers belong to
the interval 0.17 cm−1 � k � 3.14 cm−1. On the other hand,
when PQ < 0, we are in a self-defocusing regime where, e.g.,
dark solitons may arise; the respective frequency and wave
number bands in this case are 897 kHz � f � 1100 kHz and
0 � k � 0.17 cm−1, respectively. The analytical availability of
these wave forms at the NLS level and the explicit form of the
transformation allow us to express these potential solutions
in the LHM dynamics. As an aside, we note that, for radio
frequency, thin-film varactors as in the case of Ref. [24], the
value of g may be considerably different. However, we have
verified in that case too the existence of self-focusing and
self-defocusing frequency ranges and the persistence of the
solitary wave structures explored below. Hence, we now turn
to direct numerical computations to examine the robustness of
such states (and the features thereof) in LHMs.

III. NUMERICAL COMPUTATIONS

In the present section, we explore different wave forms that
arise at the level of the NLS model within the realm of the
LHM. To do so, we numerically integrate Eq. (4) using a 4th-
order Runge-Kutta method and periodic boundary conditions.

A. Bright soliton

It is evident from Fig. 2 that there exists a wide parametric
interval of frequencies, for which the effective nonlinearity
of the NLS model is self-focusing (i.e., PQ > 0). In this
case, the prototypical structure that is relevant to explore is
the bright soliton. At the level of the leading-order for the
voltage, the relevant wave form introduced on the basis of the
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FIG. 3. Contour plots depicting the space (node)-time (t) evolution of a bright soliton propagating through the left-handed medium. Note
that vp > 0 and vg < 0, as seen by the slopes of the lower and upper straight lines, respectively. In both panels, insets zooming in the initial stage
of the evolution highlight the fact that vpvg < 0, as is the case for a left-handed medium. The soliton clearly propagates with the prescribed
group velocity. The initial data are obtained from the bright soliton solution of Eq. (10) with u0 = 1 and c = 0. For the quasicontinuum,
long-wavelength approximation, we use ε = 0.1, and (k,ω) ≈ (1.3823,0.7712) in the left panel and (k,ω) ≈ (0.4650,1.9305) in the right
panel; respective values in physical units are (k,f ) ≈ (1.3823 cm−1, 200 kHz) and (k,f ) ≈ (0.4650 cm−1, 501 kHz). The maximum soliton
amplitudes are 0.93 V (left panel) and 6.7 V (right panel); in both cases, g = 0.056.

NLS reduction has the following form:

V1 =
√

2|P |
|Q| u0 sech[u0(X − 2c|P |T )]

× exp
[
i
(
cX + (

u2
0 − c2

)|P |T )]
, (10)

where u0 and c are free O(1) parameters setting the ampli-
tude and/or inverse width and wave number of the soliton,
respectively. Utilizing the above expression and reconstructing
the initial condition (of the modulated amplitude wave,
within the multiscale expansion) based on Eqs. (5)–(9), we
can initialize the nonlinear dynamical lattice of Eq. (4) and
observe the resulting evolution presented in Fig. 3, for the
parameter values discussed above. The dynamics clearly
illustrates that for different solutions of varying wave numbers
(and frequencies), as well as amplitudes even up to order O(1),
we observe the extremely robust propagation of a bright soliton
through the LHM. As expected, the multiscale approximation
is more accurate for smaller amplitudes, as observed in the
left panel of Fig. 3. In the right panel of Fig. 3, for larger
amplitude close to O(1), the resulting bright soliton wave
packet tends to have a group velocity smaller than that of

the theoretical approximation. In this case, a larger fraction of
the energy is lost to dispersive wave packet radiation. It is also
worth noticing that the insets in both panels of Fig. 3, where
a zoom in the initial stage of the evolution is depicted, clearly
shows the following: phase fronts travel in opposite direction
to the envelope of the wave packet, i.e., vp > 0 and vg < 0, as
is expected from the left-handedness of the medium and the
discussion in the previous section.

Figure 4 cements the relevant result by illustrating the
evolution of the amplitude of the bright soliton (i.e., the
maximal absolute value of the voltage) over time. We can
see that, although the voltage is modulated by the LH lattice,
it is sufficiently robust to be preserved under the long-time
evolution. Hence, the bright soliton is an entity able to
propagate undistorted over long distances in such left-handed
transmission lines.

B. Dark soliton

While in Fig. 2 it can be observed that the interval of
frequencies considered is dominated by effective self-focusing
dynamics, nevertheless the quantity PQ can change sign.
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FIG. 4. Amplitude (i.e., maximum voltage) of the bright soliton as a function of time for Fig. 3. Despite the modulation induced by the LH
medium, notice the robustness of the bright soliton wave form.
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FIG. 5. Dark soliton space-time contour plot evolution for g =
0.056. The initial data for the dark soliton solution are obtained on
the basis of Eq. (11) using u0 = 0.1, A = 0, B = 1, K = 0, ε = 0.1,
and (k,ω) ≈ (0.1649,3.4681) [i.e., (k,f ) ≈ (0.1649 cm−1, 900 kHz),
in physical units]. The background voltage amplitude is 0.53 V. We
observe the nearly undistorted propagation of the dark soliton which
is now supported by the defocusing NLS model.

Hence, it is natural to explore the potential for the formation
of dark soliton states, voltage dips on top of a carrier wave
(voltage) background. The relevant functional form of the dark
soliton solution of Eq. (9) for PQ < 0 reads as follows:

V1 =
√

2|P |
|Q| u0[B tanh(u0BX) + iA]

× exp
[
i
(
KX − (

2u2
0 + K2)|P |T )]

, (11)

where u0 and K are the background amplitude and the wave
number of the carrier, while B and A set the amplitude
(“darkness”) and velocity of the soliton, respectively (note
that A2 + B2 = 1). We have once again used Eq. (11) and the
long-wavelength multiscale expansion machinery of Eqs. (5)–
(9) to construct a suitable initial condition for the dynamical
lattice of Eq. (4). The result in the space-time contour plot
evolution of the voltage is shown in Fig. 5. In this case too,
although the entire background is excited, we can observe that
the voltage dip propagates essentially undistorted over a long
propagation distance, following the prescribed (through the
analysis) group velocity. It is also noted that, as in the case of
the bright soliton, phase fronts travel in the opposite direction

to the envelope of the wave packet, i.e., vp > 0 and vg < 0, as
discussed in the previous section.

We now turn to the Peregrine soliton.

C. Peregrine soliton

The study of solutions of the focusing NLS involving
extreme events (associated with rogue waves) has had a long
and time-honored history through the works of Peregrine [33],
Kuznetsov [34], Ma [35], Akhmediev et al. [36], and Dysthe
and Trulsen [37]; see also the reviews [38–40]. However, it
has been the recent experiments in a wide range of areas
that has significantly propelled the amount of interest in the
related wave structures. In particular, relevant experiments
reporting observations of rogue waves have emerged in the
study of nonlinear optics [41–45], mode-locked lasers [46],
superfluid helium [47], hydrodynamics [48–50], Faraday sur-
face ripples [51], parametrically driven capillary waves [52],
and plasmas [53].

In our problem, given the NLS reduction, we can utilize the
Peregrine soliton solution of the focusing NLS model in the
following form,

V1 =
√

2|P |
|Q| u0

(
1 − 4

(
1 + 4iu2

0|P |T )
1 + 4u2

0X
2 + 16u4

0|P |2T 2

)

× exp(i2u2
0|P |T ), (12)

(here, as before, u0 is the amplitude of the background carrier
wave) to reconstruct the initial condition of a wave form to be
introduced in Eq. (4) via Eqs. (5)–(9).

We initialize the relevant wave form at a time well before the
formation of its maximum and observe its full evolution. We
do this both for a smaller amplitude case, where the reduction
should be more representative of the true NLS dynamics,
and for a larger amplitude one. Figure 6 shows a Peregrine
soliton example with a small amplitude; ε = 0.1 is used here.
The dynamical evolution illustrates that the number of peaks
progressively increases; i.e., while there is the emergence of the
fundamental peak associated presumably with the Peregrine
soliton, for longer times an evolution somewhat reminiscent
of modulational instability and the formation of a more
complex pattern consisting of multiple breathing solitary wave
entities appear to emerge. It is worthwhile to mention (also in
connection with the results that follow) that the growth towards
the formation of the Peregrine soliton is not monotonic (as is
expected by the exact solution). Rather, there is a slight interval
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FIG. 6. Evolution of a Peregrine soliton in the left-handed metamaterial lattice, for parameter values as in the left panel of Fig. 3. The left
panel shows the space-time contour plot of the lattice, while the right panel shows the evolution of the maximum voltage amplitude. Note that,
in physical units, the initial and maximum values of the voltage are 1.03 and 2.7 V, respectively.
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FIG. 7. Evolution through the left-handed metamaterial lattice of a Peregrine soliton for ω = 1.926 (f ≈ 503 kHz in physical units) and
g = 0.056. Here, Eq. (12) is utilized to obtain the initial condition in the original variables. The top left panel shows the evolution of the
solution’s maximum. The top right, bottom left, and bottom right panels show a very long space-time contour plot for the evolution of the
voltage. For the formation of a large-amplitude (extreme) event and the subsequent splitting, see details in the text.

of amplitude decay before the growth, ultimately leading to the
emergence of the extreme event.

Figure 7 corresponds to a case of substantially larger
initial voltage, where we expect the small amplitude reduction
to no longer be valid. This case also illustrates a number
of similarities and differences with respect to the original
NLS model. In the NLS, a monotonic growth of the “bulge”
develops, leading to the peak of the Peregrine soliton (which
thus seems to “appear out of nowhere and disappear without
a trace” [54]). Here, in our lattice, the growth still occurs,
yet it involves a decay stage before the growth stage leading
to the peak. After the formation of the peak, a somewhat
unconventional sequence arises in the time evolution of the
maximum. While, that is, we expect decay anew, this decay
occurs only briefly, with another growth stage and a sharp (in
fact, even sharper than the previous one) peak emerging. The
top right panel of Fig. 7 illustrating the space-time evolution
until t = 3000 sheds light on this feature. In particular, what
happens is that the original “wider” wave form splits into two
narrower peaks, which evolve rather independently. At the
level of the amplitude, further evolution leads to decay and
then once again to growth (the latter time developing even
higher voltage amplitudes). Once again, the contour plots of
the bottom panels for considerably larger times reveal the
explanation: in a similar way as the single wave eventually

grows and splits into two, the two subsequently proceed to
split, forming an additional one. This way, the number of wave
structures appears to be increasing over time. While this is not
consonant with the exact solution of the Peregrine soliton in
NLS, we should note that it is reminiscent of an evolution
leading to a progressive increase in the number of peaks in the
recent work [55]. Furthermore, although it is far more ordered,
it carries some of the breathing characteristics of the smaller
amplitude case in Fig. 6.

Thus, summarizing our findings, there exist definite sim-
ilarities between the NLS reduction and the dynamics of
the LHM, including the formation of extreme wave patterns.
Nevertheless, there are also notable differences, such as the
nonmonotonic growth or the breakup of the latter initial profile
into multiple waves, which—especially at large amplitudes—
seems to be more complex than what may be expected on the
basis of the NLS reduction.

D. Akhmediev breathers and Kuznetsov-Ma solitons

As is well known [34–36], the Peregrine soliton can be
viewed as a low wave number or a low-frequency limit of a
generalized family of solutions including on the one hand the
Akhmediev breathers and on the other Kuznetsov-Ma solitons,
respectively. Both these structures are solutions of the focusing
NLS equation and can be written in a single form as

V1 =
√

2|P |
|Q|

[
1 + 2(1 − 2a) cosh(2b|P |T ) + ib sinh(2b|P |T )√

2a cos(KX) − cosh(2b|P |T )

]
exp(2i|P |T ), (13)

where b = √
8a(1 − 2a) and K = 2

√
1 − 2a. For 0 < a <

0.5 the solution is referred to as an Akhmediev breather, with
period 2π/K in X. For a > 0.5, K and b become imaginary,
thus the solution is periodic with period π/(b|P |) in T and

Eq. (13) represents a Kuznetsov-Ma soliton. In the limit of
a → 0.5, these periods (spatial and temporal, respectively)
approach ∞ and Eq. (13) has as a limiting case the Peregrine
soliton solution of NLS. Given the NLS reduction, we can
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FIG. 8. Evolution through the left-handed metamaterial lattice of an Akhmediev breather for f ≈ 200 kHz and g = 0.056. We use Eq. (13)
with a = 0.1131 to obtain the initial condition in the original variables. Here, we start from the time before the formation of the maximum
amplitude of the Akhmediev breather. Once again, the space-time contour plots of the voltage (left) and of the maximal evolution of the
voltage amplitude over time (right) are shown. In this case, in physical units, the initial and maximum values of the voltage are 0.98 and 3.6 V,
respectively.

utilize Eq. (13) with different values of a to reconstruct these
types of initial conditions of Eq. (4) via Eqs. (5)–(9).

Figure 8 shows the dynamics of the LHM with the initial
data taken from Eq. (13) for a = 0.1131, in the regime
where the solution is anticipated to evolve into an Akhmediev
breather. As in the Peregrine examples, our initialization
time is before the formation of the maximum amplitude
of the Akhmediev breather. We observe for the amplitude
that, instead of growing to form the relevant pattern and
subsequently decaying to a constant background forever as
is prescribed by the NLS equation, it oscillates until the
humps become irregular. Such a manifestation is, once again,
somewhat reminiscent of modulational instability and the
subsequent formation of more highly localized wave forms. As
a complementary simulation, we also used the initial data of the
LHM with T = 0 of Eq. (13), i.e., at the maximum amplitude
of the Akhmediev breather. Then we observe that, besides
the group velocity being slightly slower than the theoretical
prediction, the amplitude for each individual hump actually
oscillates simultaneously for a while until around t = 1400
with a much shorter period in Fig. 9 than in Fig. 8. Eventually,
however, in this case too the oscillatory pattern destabilizes
and leads to an irregular profile of the energy distribution over
the lattice, which also features occasional sharper localization
phenomena.

Figure 10 shows the dynamical evolution of the LHM
with initial data from Eq. (13) at a = 0.9, in the regime of
the Kuznetsov-Ma soliton. Since the Kuznetsov-Ma soliton
is time periodic, this time we start from T = 0, i.e., at the
maximum amplitude of the Kuznetsov-Ma soliton. We observe
that the single hump splits into two humps at a very early
stage, one with group velocity considerably smaller than the

theoretical prediction and the other one with a group velocity
larger than the one suggested by the NLS reduction. This
procedure keeps cascading for the duration of our numerical
integration, in a way once again reminiscent of the pattern
formation via modulational instability. In fact, even in the
case of the Peregrine soliton, an initialization at the maximum
amplitude leads to the observation of similar dynamics with a
splitting at an early stage. Besides that, as in the right panel of
Fig. 10, we observe an oscillating amplitude, which is similar
initially to the Kuznetsov-Ma soliton, until the interactions
with the apparently unstable background disrupt its nearly
periodic evolution.

IV. CONCLUSIONS AND FUTURE CHALLENGES

In the present work, we have revisited the study of
left-handed transmission line metamaterials, motivated by
the consideration of strong voltage symmetric nonlinearities
demonstrated for epitaxially fabricated BST capacitors. Upon
introducing the relevant theoretical model, we have argued that
its dispersive character renders it suitable for a carrier-envelope
decomposition and an associated multiple scales reduction.
This approach, as is customary in such models, leads to a
nonlinear Schrödinger (NLS) equation which is a host to a
diverse array of coherent wave form structures.

We illustrated that focusing as well as defocusing non-
linearities can be engineered on the basis of varying the
frequency (or wave number) of the carrier wave. In the case
of effectively self-defocusing nonlinearities, we observed the
robust propagation of dark solitons in the system. In a similar
way, for focusing nonlinearities, bright solitons were found to
be generically robust. What was most interesting, however, was
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FIG. 9. Same as in Fig. (8) but for initial data using Eq. (13) at T = 0.
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FIG. 10. Evolution through the left handed metamaterial lattice of a Kuznetsov-Ma soliton for f ≈ 200 kHz and g = 0.056. The solution
of Eq. (13) with a = 0.9 is utilized to obtain the initial condition in the original variables. The same diagnostics, namely, voltage space-time
contour plot (left panel) and maximal voltage vs. time (right panel) are depicted. In this case, in physical units, the initial and maximum values
of the voltage are 3.4 and 4.0 V, respectively.

the possibility for producing extreme wave form events, in the
form of rogue waves (Peregrine solitons, but also Akhmediev
breathers and Kuznetsov-Ma solitons) for such left-handed
media. We observed that such events do arise through suitable
initial conditions, motivated by the NLS reduction. In particu-
lar, these extreme wave forms demonstrated both similarities
with and differences from the standard Peregrine soliton case,
the differences being the nonmonotonic growth, as well as
the subsequent (to the formation of the peak) emergence of
multiple peaks signaling, arguably, the modulational instability
of the background. Similarly to the case of the Peregrine
soliton, the Akhmediev breather and the Kuznetsov-Ma soliton
preserved some of their characteristics such as the approximate
spatial or temporal (respectively) periodicity, but at the same
time, they also manifested nontrivial perturbations in both
space and time, due to the modulational features of their
corresponding background.

The results of the present study stimulate numerous further
explorations within this general area of the interplay of
nonlinearity and left-handed media, especially around the
subject of extreme events and rogue waves. At the one-
dimensional (1D) level, it may be well worthwhile to examine
more general lattices, potentially also involving right-handed
parasitic elements (as in Ref. [21]), or more broadly composite
left-handed and right-handed element chains as, e.g., in

Ref. [56]. A natural question is to what degree Peregrine
type patterns may persist in such settings. Another major
direction for future investigations is that of exploring the role of
dimensionality. In particular, recent studies have explored even
experimentally the role of geometry (e.g., square vs triangular,
etc.) in transmission line implementations of two-dimensional
(2D) lattices [57]. It would be especially relevant to consider
left handed such media and particularly the possibility of
inducing 1D (or even more intriguingly 2D) extreme events
in the latter. Such studies are currently in progress and will be
reported in future publications.
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