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Many car-following models of traffic flow admit the possibility of absolute stability, a situation in which uniform
traffic flow at any spacing is linearly stable. Near the threshold of absolute stability, these models can often be
reduced to a modified Korteweg-deVries (mKdV) equation plus small corrections. The hyperbolic-tangent “kink”
solutions of the mKdV equation are usually of particular interest, as they represent transition zones between
regions of different traffic spacings. Solvability analysis is believed to show that only a single member of the
one-parameter family of kink solutions is preserved by the correction terms, and this is interpreted as a kind of
selection. We show, however, that the usual solvability calculation rests on an unstated, unjustified assumption,
and that without this assumption it merely gives a first-order correction to the relation between the traffic spacings
far behind and far ahead of the kink, rather than any kind of “selection” criterion for the family of kink solutions.
On the other hand, we display a two-parameter family of traveling wave solutions of the mKdV equation, which
describe regions of one traffic spacing embedded in traffic of a different spacing; this family includes the kink
solutions as a limiting case. We carry out a multiple-time-scales calculation and find conditions under which the
inclusions decay, conditions that lead to a selected inclusion, and conditions for which the inclusion evolves into
a pair of kinks.

DOI: 10.1103/PhysRevE.95.032221

I. INTRODUCTION

Much progress in understanding the collective behavior of
vehicular traffic has come from investigating car-following
models, which describe the response of an individual vehicle
to traffic conditions around it. A typical car-following model
specifies the acceleration of each car in terms of its current
speed, the “headway” between it and the next car ahead of it,
and the rate of change of the headway. Many such models, such
as that given in Eq. (1) below, account for an explicit time delay
between the traffic conditions and the response, so that the car’s
acceleration is determined by local conditions some finite time
in the past. Some incorporate further information, such as the
positions and speeds of a finite number of cars ahead of and/or
behind the car in question. For reviews, see Refs. [1–4].

Under quite general conditions [5], these models have a
continuous family of simple steady states that describe uniform
traffic flow with an arbitrary constant spacing � between cars
and all cars traveling at a constant speed that depends on
�. Typically, these steady states are linearly stable for some
spacings and unstable for others, with instability occurring
when the steady-state speed is too sensitive a function of �.
Depending on the specifics of the acceleration function, it is
also possible for all of these steady states to be linearly stable, a
situation called “absolute stability”. (It is even possible to have
“absolute instability”, with all steady states being linearly un-
stable, if, for example, the time delay is too long [6].) Of course,
it is of interest to go beyond linear stability analysis in order to
understand what ultimately becomes of initially uniform traffic
when its spacing is unstable, and also to uncover possible non-
linear instabilities [7,8] of steady states that are linearly stable.

For steady states that are close to the onset of linear
instability, one generally finds that, unless the time delay is
long, the unstable perturbations to uniform flow are those in
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which the headway and speed vary slowly from car to car
along the line of traffic, and they propagate upstream through
the line of traffic at some finite phase velocity. The stability
analysis reveals how the relevant spatial and temporal scalings
are related to the small deviation of � from the onset of
instability, and one may then expand in powers of this deviation
to reduce the car-following model to a nonlinear evolution
equation for the headway, with the spatial independent variable
being a scaled version of car number. To leading order, this
evolution equation turns out to be the Korteweg-deVries (KdV)
equation. In the case where the model is close to absolute
stability, however, the relevant scalings are a bit different and
one finds [9] a different leading-order equation, which in many
cases (though not all [6,10]) is the modified Korteweg-deVries
(mKdV) equation. This latter case is the focus of this paper.

Because the perturbations to uniform flow that grow
near the onset of instability have long wavelengths, the
derivations of the KdV and mKdV equations are quite robust
to local changes in the model. For example, if one allows
the acceleration of a car to be affected by the second car
ahead, or by the car behind, the derivations still go through
with the new effects simply modifying the coefficients in the
reduced equations. Consequently, the mKdV equation has been
derived near the threshold of absolute stability for a number
of models [11,12], including models with a second-neighbor
effect [13] and with multiple-car look-ahead [14,15]. Similarly,
near the onset of instability the linear growth rates of the
growing perturbations are small, so the analysis is not sensitive
to changes in the model that are local in time. Thus, the mKdV
equation has also been derived for models with a finite time
delay [16–18], and even for models that include an anticipation
effect, with a car’s behavior depending on traffic conditions a
short time in the future [19]. It bears repeating, however, that
there is nonetheless a certain finite time delay that is large
enough to make the initial instability occur at finite, rather
than infinitely long, wavelengths [6], and that this would then
lead to a different reduced equation.
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Both the KdV and mKdV equations are well known to be
exactly integrable, but usually one pays particular attention to
specific families of traveling-wave solutions which propagate
backward through the line of cars, namely the solitons for the
KdV equation and the kinks for the mKdV equation. A soliton
would represent a localized concentration or rarefaction of
traffic; a kink describes a localized transition between two
different traffic spacings—either the leading or trailing edge
of a traffic jam, depending on whether the spacing behind the
transition is smaller or larger than the spacing ahead of it.
In both cases these solutions form a one-parameter family,
with the parameter determining the amplitude, width, and
propagation rate of the solution. Continuing the power-series
expansion that led to the leading-order KdV or mKdV equation
then yields first-order corrections to these evolution equations.
Typically, one then carries out a solvability analysis to
determine the effect of these corrections and finds a solvability
condition that is satisfied by only a single parameter value.

For the mKdV kink solutions, this is a puzzling situation on
the face of it. The solvability result seems to indicate that only
one of the kink solutions is the leading-order approximation to
a solution of the full model. However, the two traffic spacings
that are connected by the kink are themselves given in terms of
the kink parameter. This means that there appears to be only
one possible downstream spacing for which a kink solution
is possible. But the spacing far ahead of the transition zone
is not an adjustable parameter— it is set by the initial traffic
spacing, before the occurrence of whatever perturbation led
to the formation of the kink pattern. Thus, the solvability
calculation says nothing about what happens when the initial
traffic spacing is not equal to this special, “selected” value.
Moreover, it also says nothing about the dynamical process by
which a kink pattern develops.

For a possible avenue toward answering these questions, we
may look at the corresponding calculation for the one-soliton
solutions of the KdV equation, which occurs when the traffic
spacing is close to the onset of instability but not near the
absolute stability regime. There, also, a first-order perturbation
calculation leads to a solvability condition that is satisfied by
only one value of the soliton parameter. One may extend this
perturbation calculation, however, by allowing a slow time
dependence of the soliton parameter [20,21]; the solvability
condition is then replaced by an equation that describes how
the soliton evolves along the family of solitons. The soliton
that satisfies the solvability condition is the fixed point of
this evolution. This multiple-time-scales approach also gives
information about solitons that do not satisfy the solvability
condition, and in particular it shows whether the “selected”
soliton is a stable or unstable fixed point of the evolution.
In the latter case—which turns out to be by far the more
common—the “selected” soliton will not be observed, as
it merely marks the threshold of a nonlinear instability of
uniform flow: solitons with smaller soliton parameter will
decay, those with larger parameter value will grow. For the
mKdV kink solutions, however, we find that extending the
perturbation calculation to allow a time evolution of the kink
parameter does not help: the coefficient of the time derivative
of kink parameter turns out to be infinite [6]. In hindsight,
this is not too much of a surprise, because adjusting the kink
parameter entails changing the traffic spacing infinitely far

behind and ahead of the transition zone, so it requires moving
individual cars by large distances.

The purpose of this paper is to investigate the role of the
first-order corrections to the mKdV equation for traffic flow
near absolute stability. In particular, we wish to clarify the
meaning of the “selected” kink—the one that satisfies the
solvability condition—and to seek a dynamical mechanism
by which a kink solution can develop from initially uniform,
steady traffic.

In Sec. II we review how and when the mKdV equation
arises when traffic conditions are near the threshold of absolute
stability, establishing our notation as we do so. In Sec. III we
display a two-parameter family of traveling-wave solutions of
the leading-order mKdV equation, which have equal upstream
and downstream spacings, and so could arise in finite time
from a localized perturbation to initially uniform traffic; we
observe that the kink solutions are a nonuniform limit of this
family. We then investigate the effect of the correction terms in
the equation on these solutions, finding that they drive a slow
evolution of the second parameter. In Sec. IV we determine
how this evolution plays out and what its final state will be,
given the values of the relevant parameters and—for some
parameter ranges—what the initial value of the parameter is.
In Sec. V we revisit the kink solutions and show that the usual
solvability calculation yields a selection criterion only if one
imposes an unjustifiably restrictive boundary condition in the
course of the calculation; done with the appropriate boundary
condition, it does not restrict the kink parameter. Finally, we
summarize and discuss our results in Sec. VI.

II. DERIVATION OF THE MKDV EQUATION

We begin with a car-following model, which describes a
single line of cars traveling along an infinitely long, uniform
road, with all drivers behaving identically. Such a model,
of course, is most appropriate for describing cars controlled
by onboard adaptive cruise control, since different human
drivers will respond differently to identical road conditions,
and indeed a given human driver will respond differently
to identical conditions at different times. We take the x

direction to be the direction of traffic flow and number the cars
consecutively, with car n + 1 ahead of car n. The position of car
n at time t is denoted by xn(t), and its velocity is vn = dxn/dt .
The model is embodied in the equations of motion [5]:

dxn(t)

dt
= vn(t),

dvn(t + td )

dt
= A(xn+1(t) − xn(t),vn+1(t) − vn(t),vn(t)). (1)

Here td is a fixed delay time, so that car n responds to conditions
ahead of it as they were at a time td before the present. The
acceleration function A(h,ḣ,v) is a general function of the
velocity v = vn of the car under consideration, the headway
h = xn+1 − xn between it and the next car ahead, and the
rate ḣ = vn+1 − vn at which the headway is changing. For
the model to be realistic, A must be an increasing function of
the headway and its rate of change and a decreasing function
of the velocity of car n itself [5].

This model has a continuous family of steady states
representing traffic flow with an arbitrary uniform spacing
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� between cars, given explicitly by

xn+1 − xn = � and vn = Vs(�), for all n and t, (2)

where the steady-state traffic velocity Vs(�) is defined implic-
itly by

A(�,0,Vs(�)) = 0. (3)

If A(h,0,v) is a decreasing function of v (and does not remain
constant for any finite range of v) then there is a unique Vs for
each possible spacing �.

We will not present the linear stability analysis of these
steady states here, but only quote the results relevant to our
subsequent calculations. For the model with no delay (td = 0)
the analysis is given by Wilson [5] and by Orosz et al. [7];
one finds that steady, uniform flow with spacing � is linearly
unstable if the steady-state traffic speed Vs(�) is too sensitive
to �, specifically if

V ′
s (�) > �c(�) ≡ 1 + 2λ(�)

2τ (�)
, (4)

where the prime denotes a derivative with respect to �, and
the parameters τ (�) and λ(�) are given by

1

τ
= −∂A

∂v
,

λ

τ
= ∂A

∂ḣ
, (5)

with the partial derivatives evaluated in the steady state h = �,
ḣ = 0, v = Vs(�). Because A(h,ḣ,v) must be an increasing
function of ḣ and a decreasing function of v, both τ and λ are
positive. Note that λ is dimensionless and τ has dimensions
of time, so �c has dimensions of inverse time (as does V ′

s ). In
addition to this stability criterion, one finds that just beyond
the onset of instability, i.e., when the “stability parameter”
V ′

s (�) − �c(�) is small and positive, it is the long-wavelength
perturbations to uniform steady flow that grow.

For nonzero delay, the linear stability analysis is given by
Orosz et al. [8] and by Kurtze [6].One finds that the above
results for zero delay continue to hold [6] if the time delay is
not too large, specifically if td is less than the smaller zero of
the quadratic

P = 1 − 2(1 + λ)(td/τ ) + 1 + 2λ

2
(td/τ )2. (6)

For larger delay times the stability criterion is different, and
uniform flow first becomes unstable to perturbations with finite
wave number. We will not consider that situation here.

It is entirely possible that for some realistic acceleration
function, uniform steady flow turns out to be linearly stable for
every spacing �; this situation is called “absolute stability”. If
the stability parameter V ′

s (�) − �c(�) has a maximum value
of zero, then we say that the system is at the “threshold” of
absolute stability; near threshold, then, the maximum value of
the stability parameter is small. If, in addition to the system
being near the threshold of absolute stability, the traffic spacing
� is close to both the maximum of the stability parameter and
the inflection point �i of Vs(�), then it is possible to reduce
the equations of motion (1) to a modified Korteweg-deVries
(mKdV) equation, as we will show presently. Of course,
such a scenario can only occur if the maximum of the
stability parameter lies close to �i . However, many specific
car-following models are defined in such a way that the

stability threshold �c is a constant independent of �. In such
a model the maximum of the stability parameter automatically
occurs at �i , and the reduction then goes through for any
spacing near �i . In general, however, �c can be a nontrivial
function of �, and we do not obtain the mKdV equation unless
the maxima of V ′

s (i.e., the inflection point) and of V ′
s − �c

are at least close to one another [6].
Suppose now that the conditions above are satisfied: the

system is near absolute stability, so that the maximum value of
V ′

s − �c is small, and this maximum occurs at a spacing � that
is close to the inflection point �i of Vs . If the maximum value
of V ′

s − �c is positive, then there is a range of linearly unstable
spacings that is also small. Thus we define an arbitrary,
dimensionless small parameter ε so that the width of the
unstable range is of order ε. Specifically, we write

V ′
s (�i) = �c(�i) + ε2Cδi, (7)

where C is a coefficient with dimensions of inverse time, to be
chosen later. The dimensionless parameter δi , of order unity,
characterizes how far from the threshold of absolute stability
the system is. In order for the maxima of V ′

s and V ′
s − �c to

be within order ε of each other, we must also have �′
c small at

�i , so we write

�′
c(�i) = ε

C

L
ωi, (8)

where L is a coefficient with dimensions of length, also to
be chosen later, and ωi is dimensionless and of order unity.
The stability parameter V ′

s − �c then has its maximum and its
zeros, if any, at spacings within order ε of �i .

Since the unstable modes near the onset of instability have
small wave numbers and small linear growth rates, we expect
that the nonlinear development of the flow near the onset of
linear instability of the uniform steady state will take place
on long spatial scales and slow time scales. We then write the
positions of the cars in the form

xn = n�i + Vs(�i)t + Lf (z,T ), (9)

where, motivated by the results [6] of linear stability analysis
with the above assumptions about V ′

s and �c, we define
dimensionless scaled car number and time variables:

z ≡ ε[n + V ′
s (�i)t], T ≡ ε3Ct. (10)

Note that a given car is represented by a z value that increases
linearly with time, while a fixed function f (z) represents a
pattern of traffic that propagates through the line of cars against
the direction of traffic at a rate (in cars per unit time) of V ′

s (�i).
Note also that the function

g(z,T ) ≡ ∂f

∂z
(11)

is then proportional, to leading order in ε, to both the deviation
in headway xn+1 − xn and the deviation in velocity dxn/dt of
car n from the steady state.

To derive the evolution equation for f , we substitute
Eqs. (7) and (8) and the ansatz (9) into the equations of
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motion (1) and expand in powers of ε. The general expansion
is given in Ref. [6]; here it reduces to

CfT = C11fzzz + 1

6
V ′′′

s L2f 3
z + ε

[
1 + 2λ

2
C(−δi + ωifz)fzz

− (1 + 2λ)2

8
PV ′

s fzzzz + 1 + 2λ

4
(�′′

c − V ′′′
s )L2f 2

z fzz

+C22aLfzfzzz + C22bLf 2
zz + 1

24
V ′′′′

s L3f 4
z

]
+ . . . ,

(12)

where subscripts on f represent partial derivatives, and

C11 =
[

1 + 3λ

6
− (1 + 2λ)2

4

td

τ

]
V ′

s , (13a)

C22a =
(

λ′

2
− τ ′tdV ′2

s

)
V ′

s , (13b)

C22b = 1

8
V ′

s

(
∂A

∂v2
− 4

∂A

∂ḣ∂v
+ 4

∂A

∂ḣ2

)
, (13c)

with the partial derivatives of A again evaluated in the steady
state and all �-dependent parameters and their derivatives
evaluated at � = �i . It is straightforward to show that C11

is positive for the range of time delays we are considering,
i.e., td/τ smaller than the smaller zero of P , given in Eq. (6).
We also note in passing that if we regard the right side of
Eq. (13a) as a function of �, take its derivative, and evaluate
at �i , the result is C22a . Moreover, the coefficient �′′

c − V ′′′
s

must be positive in order for the extremum of the stability
parameter V ′

s − �c to be a maximum; similarly, V ′′′
s (�i) must

be negative since �i is a maximum of V ′
s .

While the function f gives the deviation between the actual
position of car n and the position it would have in the exact
uniform-flow steady state, the deviations of speed and headway
are usually of more direct interest, so we differentiate Eq. (12)
with respect to z and write the result in terms of g = fz. We
also choose C = C11 and L2 = 12C/|V ′′′

s | for convenience.
This gives us

gT = gzzz − 2(g3)z + ε
∂

∂z

[
1 + 2λ

2
(−δi + ωig)gz

− (1 + 2λ)2PV ′
s

8C11
gzzz + 1 + 2λ

4

(�′′
c − V ′′′

s )L2

C11
g2gz

+ C22aL

C11
ggzz + C22bL

C11
g2

z + V ′′′′
s L3

24C11
g4

]
+ . . . , (14)

which is the mKdV equation plus correction terms. Note that,
as a result of the arbitrariness of the expansion parameter ε, the
entire equation is invariant under the rescaling ε → kε, g →
g/k, z → kz, T → k3T , δ → δ/k2, ω → ω/k, for any k.

Although we chose the underlying spacing in the expansion
to be �i , this entails no loss of generality. One may verify, by a
straightforward but lengthy calculation, that the final equation
for g is the same for any other basic spacing that is within
order ε of �i .

III. INCLUSIONS AND THEIR DEVELOPMENT

The leading order of Eq. (14) is the defocusing modified
Korteweg-deVries (mKdV) equation, which is exactly inte-
grable via an inverse scattering procedure. Here we will only
concern ourselves with traveling wave solutions of the form
g(z − uT ), where—unlike the familiar hyperbolic-tangent
“kink” solutions—g approaches the same constant value g∞
for both z → −∞ and z → ∞. Such a solution could develop
in finite time from a localized perturbation to initially uniform,
steady traffic; it represents traffic of a fixed background spacing
�i + εLg∞ with an “inclusion” propagating upstream at a rate
(again, in cars per unit time) of V ′

s − ε2C11u, where both u

and the shape g of the inclusion are to be determined by the
calculation. For these solutions, the leading order of Eq. (14)
becomes

0 = gzzz − 2(g3)z + ugz. (15)

Integrating once introduces an arbitrary constant of integration
and gives an equation for g that is analogous to the Newtonian
equation of motion of a particle in a quartic potential, with z

and g playing the roles of, respectively, time and the particle’s
position. The quartic term in the potential is negative, so in
order to have solutions in which g remains bounded, the two
arbitrary parameters—u and the constant of integration—must
be chosen so that the potential has two local maxima. If the
energy of the analog particle is lower than the height of both
maxima, we obtain solutions for g that are periodic in z, which
we will not consider here. If the two maxima have equal height
and the particle energy is equal to that height, then we obtain
the one-parameter family of kink solutions. We will focus here
on the solutions that occur when the maxima have unequal
heights and the particle energy is equal to the height of the
lower maximum. There is a two-parameter family of these
solutions, because for any u in some range, there is a range
of values of the constant of integration for which the potential
has unequal maxima. A straightforward calculation yields the
explicit form of these solutions:

g(0)(z) = g∞

(
1 − 2 sinh α tanh α

cosh kz + cosh α

)
(16a)

= g∞

[
1 − tanh α

(
tanh

kz + α

2
− tanh

kz − α

2

)]
,

(16b)

with

k = 2|g∞| tanh α, u = 2g2
∞(1 + 2 sech2α). (17)

The parameter g∞, as in the kink solutions, can be positive or
negative; its arbitrariness reflects the scaling invariance of the
mKdV equation, which in turn arises from the arbitrariness of
the expansion parameter ε. The second parameter, α, which
can be taken to be nonnegative, controls the shape of the
inclusion and its propagation rate. Inclusions with larger α

have a larger disparity between the spacing in the inclusion and
the background spacing, and propagate slightly more rapidly
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through the line of traffic. From Eq. (16a) we see that an
inclusion with small α is a small, broad deviation from uniform
flow, with the minimum value of g/g∞ being approximately
1 − α2 and the width of order k−1 ∼ α−1. From Eq. (16b) we
see that an inclusion with large α is a plateau (at a value close
to −g∞) between two hyperbolic-tangent kinks separated in
z by 2α/k ≈ α/|g∞|. In particular, if we redefine z = α/k

to be the origin, then the kink solution is the (nonuniform)
limit of inclusion solutions for α → ∞. Thus, the inclusion
solutions interpolate smoothly between uniform traffic flow
and a kink-antikink pair.

To see the effect of the order-ε correction terms in Eq. (14),
we carry out a standard multiple-time-scales calculation. We
write g in the form

g(z,T ) = g(0)(z − uT ; α(εT )) + εg(1)(z − uT ,T ) + . . . ,

(18)

thus allowing the inclusion parameter α to vary slowly with
time. Note that this form splits the first-order correction into
two parts, one involving a change in α and one not. At an
appropriate point in the calculation, we will need to impose
some subsidiary condition to define precisely how this split is
made. Leaving that condition unspecified for the time being,
we substitute Eq. (18) into Eq. (14) and expand to first order

in ε to obtain

∂g(0)

∂α
α̇ + ∂g(1)

∂T
= ∂3g(1)

∂z3
− 6

∂

∂z
g(0)2g(1)

+u
∂g(1)

∂z
+ ∂

∂z
[· · · ], (19)

where the overdot denotes differentiation with respect to the
new slow time εT , and the square brackets contain all the terms
in the square brackets in Eq. (14) with g replaced by g(0).

To isolate an equation for α̇, we multiply both sides of
this equation by g∞ − g(0), which vanishes for z → ±∞, and
integrate over all z. Since we are taking the initial condition
to be uniform steady traffic plus a localized perturbation, the
full solution g must continue to approach g∞ at z → ±∞, and
so the correction g(1) must vanish at ±∞. Integration by parts
then eliminates the terms on the right side involving g(1). We
now choose the subsidiary condition mentioned above to be∫ ∞

−∞
(g∞ − g(0))

∂g(1)

∂T
dz = 0, (20)

so that all terms involving g(1) drop out of the equation for α̇.
The remaining integrals can be evaluated analytically; since
g(0) is an even function, the last three terms in the square
brackets do not contribute. Thus, we obtain our evolution
equation for α:

α̇ = 1 + 2λ

3
g2

∞

{
f0(α)δ̃ + f1(α)

[
ω̃g∞ − 5

(1 + 2λ)PV ′
s

4C11
g2

∞

]
− f2(α)

[
κ̃g2

∞ − 7
(1 + 2λ)PV ′

s

4C11
g2

∞

]}
. (21)

The new parameters,

δ̃ = δi − ωiLg∞ − 1

2

(�′′
c − V ′′′

s )L2

C11
g2

∞,

ω̃ = ωiL + (�′′
c − V ′′′

s )L2

C11
g∞,

κ̃ = (�′′
c − V ′′′

s )L2

C11
, (22)

are scaled values of the stability parameter V ′
s − �c and its

negative � derivatives evaluated at the traffic spacing �i +
εLg∞ far from the inclusion rather than at the inflection point
�i of the steady traffic speed Vs . The α-dependent coefficients
are given by

f0(α) = 3 coth α − 2 tanh α − 3αcsch2α,

f1(α) = 1
2 [15 coth α − 13 tanh α − 3αcsch2α(5 − tanh2 α)],

f2(α) = 1
10 [105 coth α − 115 tanh α + 16 tanh3 α

− 15αcsch2α(7 − 3 tanh2 α)]. (23)

These are all positive functions, which approach constant
values of 1, 1, and 3/5, respectively, for large α and vanish as
2α3/5, 8α5/35, and 8α7/105 for α → 0.

For small α, f1 and f2 are much smaller than f0, so Eq. (21)
reduces to

α̇ =
[

2(1 + 2λ)

15
g2

∞δ̃

]
α3 + O(α5). (24)

An inclusion with small α is a small deviation from steady,
uniform traffic flow with a spacing of �i + εLg∞. For negative
δ̃ this steady state is linearly stable, and we see that α does
indeed decay (as T −1/2), so the inclusion reverts to uniform,
steady flow. On the other hand, for positive δ̃ the inclusion
grows.

For large α, Eq. (21) reduces to

α̇ = 1 + 2λ

3
g2

∞

[
δ̃ + ω̃g∞ − 3

5
κ̃g2

∞ − (1 + 2λ)PV ′
s

5C11
g2

∞

]

+O(αe−2α). (25)

Thus, when α is large it increases or decreases linearly with
T , according to whether the quantity in brackets is positive or
negative. For large α the inclusion is a pair of kinks separated
by a z range of α/|g∞|, so in this regime the number of cars
in the inclusion grows or shrinks linearly with time. Since z

is defined relative to a reference frame that moves backward
through the line of traffic, this amounts to having the leading
and trailing edges of the inclusion moving backward relative
to traffic at slightly different rates.
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It is also possible, of course, for Eq. (21) to admit stable or
unstable fixed points. We now examine the parameter ranges
in which the various possible long-time behaviors occur.

IV. LONG-TIME BEHAVIOR

According to Eq. (21), the fixed-point structure of the
slow evolution of inclusions is governed by three parameters,
as we may see by factoring out the (positive) quantity
(1 + 2λ)PV ′

s g
2
∞/4C11 to obtain

α̇ = (1 + 2λ)2

12C11
PV ′

s g
4
∞[f0(α)δ + f1(α)(ω − 5)

− f2(α)(κ − 7)]. (26)

The new parameters here are scaled versions of the stability
parameter and its negative derivatives at the far-downstream
traffic spacing,

δ = 4δ̃

(1 + 2λ)PV ′
s g

2∞
,

ω = 4ω̃

(1 + 2λ)PV ′
s g∞

,

κ = 4κ̃

(1 + 2λ)PV ′
s

. (27)

Note again that because the system is near a maximum of the
stability parameter, κ must be positive.

A straightforward approach, calculating the value(s) of α

for which α̇ vanishes, is analytically impractical because of the
complicated form of the functions fi . Instead, we will regard
α as an independent variable and look for the loci in parameter
space where the evolution has a fixed point—whether stable
or unstable—for a given value of α. From Eq. (26) we see that
this occurs for

ω = 5 − f0(α)

f1(α)
δ + f2(α)

f1(α)
(κ − 7). (28)

For a given δ, this is a line in the κ − ω plane
with slope f2(α)/f1(α) and ω-intercept [5f1(α) − 7f2(α) −
δf0(α)]/f1(α). As we increase α from 0 to ∞, the slope
increases monotonically from zero to 3/5, the δ-independent
term in the intercept decreases monotonically from 5 to 4/5,
and the coefficient of δ in the intercept increases monotonically
from −∞ to −1. The α → ∞ line,

ω = (4 − 5δ + 3κ)/5, (29)

is of particular importance: from Eq. (26) we see that for ω

above this line, α̇ approaches a positive constant for large α, so
that a sufficiently large inclusion will grow linearly with time,
eventually replacing the initial traffic spacing, �i + εLg∞,
with a new spacing �i − εLg∞. It is perhaps interesting
to note that this new spacing would have a δ value that is
given in terms of the parameters for the original spacing by
δ + 2ω − 2κ and an ω value of −ω + 2κ . Parameters for the
new spacing would then also be above the α → ∞ line, since
this transformation leaves 5δ + 5ω − 3κ unchanged, so that
the new spacing would also be susceptible to the formation of
inclusions that would then reestablish the old spacing.

κ0 5 10 15

ω

0

5

10

0

∞
ss

0/∞

FIG. 1. Fixed-point lines in the (κ, ω, δ) parameter space with
δ = 0. Along each line the inclusion evolution equation (26) has
a fixed point at a given α, ranging from α = 0 on the heavy
horizontal line ω = 5 to the α → ∞ limit on the heavy diagonal line
ω = (4 + 3κ)/5. For parameters in the region marked “0” any initial
inclusion decays to α = 0; in the “∞” region any initial inclusion
grows toward α = ∞; in the “ss” region any initial inclusion evolves
toward a steady state with the fixed-point α. In the “0/∞” region
the fixed point is unstable, so an initial inclusion with α below the
fixed-point value decays to α = 0, while one with α above it grows
toward α = ∞.

The analysis is simplest for the case when the initial traffic
spacing is marginally stable, so that δ = 0. It is then trivial
to see that all the fixed-point lines pass through the point
κ = 7, ω = 5. These lines are plotted in Fig. 1; note that they
divide the κ − ω plane into four wedges. For parameters in the
upper left wedge, where ω is greater than 5 and also above the
α → ∞ line, α̇ is positive for all α—it is positive for large α

because parameters are above the α → ∞ line, and it has
no zeros—so any initial inclusion will grow to infinite α.
Similarly, in the lower right wedge, where ω is less than 5 and
below the α → ∞ line, α̇ is negative for all α, so that any initial
inclusion will decay back to the uniform state. In the upper
right wedge, where ω is above 5 but below the α → ∞ line, α̇
is positive for small α, changes sign at the fixed-point α value,
and remains negative for large α. The fixed point is then stable,
since α increases if below it and decreases if above it. In this
wedge any initial inclusion approaches a fixed point, with the
fixed-point α getting higher as we move higher in the wedge.
Finally, in the lower left wedge, with ω below 5 but above
the α → ∞ line, α̇ is negative for small α and positive for
large α, changing sign at the fixed-point value. Thus, the fixed
point is unstable and marks the threshold of a finite-amplitude
instability: any initial inclusion with α below the fixed-point
value will decay back to α = 0, while one with α above the
fixed-point value with grow to α → ∞. The threshold gets
smaller as we move upward through the wedge, from the region
where α = 0 is the final state for all initial inclusions toward
the region where all initial inclusions go to α → ∞.

For δ < 0, so that the background spacing �i + εLg∞
is linearly stable, a new possibility arises. The fixed-point
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κ0 5 10 15

ω

0

5

10

0

0/∞ 0/ss

FIG. 2. As in Fig. 1, but with δ = −0.3, typical for negative δ. The
ω intercept of the fixed-point lines decreases and the slope increases
with increasing α. For parameters in the overlap region marked “0/ss”
there are two fixed-point values of α. An initial inclusion with α

below the smaller of the two decays to α = 0, while one with α larger
than the smaller fixed-point value evolves toward the larger fixed-
point α. The heavy line is given by ω = −δ + (4 + 3κ)/5, and the
heavy curve which meets it at κ = 7 − (5/4)δ, ω = 5 − (7/4)δ is
given by Eq. (30).

lines for a typical case are plotted in Fig. 2. As for δ = 0,
the slope increases and the intercept decreases monotonically
with increasing α, but the fixed-point lines no longer all pass
through a single point. Instead there is now an overlap region
in which pairs of fixed-point lines cross. In addition, for small
α the intercept goes as α−2, so fixed-point lines cover the plane
up to arbitrarily large ω. There are now three distinct regions
of the parameter plane. Everywhere above the α → ∞ line, α̇

is negative for small α and positive for large α, crossing zero
at the single fixed-point α value. As in the lower left wedge for
δ = 0, this is a region of bistability, in which an initial inclusion
decays to zero if its α is below the (unstable) fixed-point value
and grows to α → ∞ if above it. Below the α → ∞ line is
a region with no fixed point, in which any initial inclusion
decays to zero. In the overlap region, which is also below the
α → ∞ line, α̇ is negative for small α, turns positive at the
smaller fixed-point α, then turns negative again at the larger
one and remains negative for large α. The larger-α fixed point
is then stable; any initial inclusion with α above the smaller
fixed-point value approaches it at long time, while any with α

smaller than the smaller fixed-point value decays to zero. At the
boundary between the overlap region and the region without
fixed points, then, the two fixed-point values coincide and α̇ has
a double zero. At this double zero, both α̇ as given in Eq. (26)
and its α derivative are equal to zero. Solving these two equa-
tions for κ and ω yields parametric equations for the boundary
of the overlap region, i.e., the envelope of the fixed-point lines:

ω − 5 = −
[

d

dα

f0(α)

f2(α)
/

d

dα

f1(α)

f2(α)

]
δ,

κ − 7 =
[

d

dα

f0(α)

f1(α)
/

d

dα

f2(α)

f1(α)

]
δ. (30)

κ0 5 10 15

ω

0

5

10

∞

ssss/∞

FIG. 3. As in Figs. 1 and 2 but for δ = 0.3, typical for positive δ

less than 28/5. For parameters in the “ss” region any initial inclusion
evolves toward the fixed-point α. In the “ss/∞” region there are
two fixed-point α values; an initial inclusion with α below the larger
of the two evolves toward the smaller, while one with α above the
larger fixed-point value grows toward α = ∞. The heavy line is
given by ω = −δ + (4 + 3κ)/5, and the heavy curve which meets it
at κ = 7 − (5/4)δ, ω = 5 − (7/4)δ is given by Eq. (30). For δ > 28/5
this junction would occur at negative κ , so the “ss/∞” region would
then be absent.

We find that for small α this curve approaches the inverse
parabola ω ≈ (−7κδ/3)1/2 with large κ , while for large α

it meets the α → ∞ line tangentially at κ = 7 − (5/4)δ,
ω = 5 − (7/4)δ.

For positive δ the background spacing is linearly unstable;
the fixed-point lines for a typical case, with δ not too large,
are plotted in Fig. 3. The ω intercept of the fixed-point lines
now approaches ω → −∞ for α → 0, and it increases with
increasing α until—for δ not too large—it reaches a maximum.
Thus, the fixed-point lines initially fan upward. After the
intercept reaches its maximum, further fixed-point lines form
an overlap region, as in the δ < 0 case except now lying above
the α → ∞ line. Below the α → ∞ line, α̇ is positive for
small α and turns negative at the fixed-point value of α. In this
region, then, the fixed point is stable and any initial inclusion
will tend toward it. Above the overlap region and the α → ∞
line, α̇ is positive for all α, so any initial inclusion grows toward
α → ∞. In the overlap region, α̇ is positive for both small and
large α and negative between the two fixed-point values, so this
is again a bistable region: an initial inclusion with α below the
larger fixed-point value tends toward the smaller fixed-point
α, and one with α above the larger fixed point tends to infinity.
As in the negative-δ case, the upper boundary of the overlap
region is where α̇ has a local minimum at a value of zero, and
so the parametric equations for that boundary are the same as
Eq. (30). As above, the boundary merges with the α → ∞ line
at κ = 7 − (5/4)δ, ω = 5 − (7/4)δ. For δ > 28/5 this junction
would occur at negative κ , so the intercept never reaches a
maximum as α increases, and there is no overlap region.

The most unstable spacing has ω = 0; the fixed-point lines
for this case are plotted on the κ − δ plane in Fig. 4. Note
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κ0 2 4 6

δ

−1

0

1

2

3

0

∞

ss
ss/∞

FIG. 4. Fixed-point lines for ω = 0. The slope of the fixed-point
lines increases with α, from α = 0 on the bold horizontal line δ = 0
to α → ∞ on the heavy diagonal line δ = (4 + 3κ)/5. Labeling of
the regions is the same as for Figs. 1–3. The upper boundary of the
“ss/∞” region is given by Eq. (30) with δ = 0; it meets the vertical
axis at δ = 1.51881 and merges with the diagonal line at δ = 20/7,
κ = 24/7.

that if the “most unstable” spacing is in fact linearly stable,
so that δ < 0, then all initial inclusions decay to α = 0, so
that there is no finite-amplitude instability in this case. If it is
actually linearly unstable, then an initial inclusion approaches
a steady-state inclusion if δ is less than (4 + 3κ)/5, while for
larger δ it is possible for an initial inclusion to grow to infinity,
again replacing the initial traffic spacing �i + εLg∞ with a
new spacing �i − εLg∞. For intermediate δ with κ not too
large, there is a region of bistability, where the α value of the
initial inclusion determines whether the final state will be a
stable inclusion or growth to α → ∞.

V. KINK SOLUTIONS AND SOLVABILITY

To find the familiar kink solutions of the mKdV equation,
we return to the mechanics analog in Sec. III, choose
parameters so that the two maxima of the quartic “potential”
are at equal heights, and choose the “energy” to be that
common maximum value. In this way we obtain

g(0)(z − uT ) = g∞ tanh |g∞|(z − uT ) (31)

with

u = 2g2
∞, (32)

where g∞ is a free parameter. We can now try to re-
peat the multiple-time-scales calculation to find an equation
for the slow evolution of the kink parameter g∞ that is driven
by the corrections to the mKdV equation. This fails, however,
because when we multiply the analog of Eq. (19) by g(0)

and integrate over all z, the coefficient of ġ∞ diverges. This
procedure, then, does not uncover any dynamical mechanism
that could select one of the infinite family of kink solutions.
What, then, is the significance of the solvability condition that
must be satisfied in order to find a first-order correction g(1)?

This quandary becomes yet more puzzling if we think of the
pattern of traffic as having arisen from a localized perturbation
to initially uniform, steady flow. The equations of motion (1)
contain no mechanism for downstream traffic to respond to
conditions upstream, i.e., for larger n (or z) to be affected by
smaller n (or z). Thus, the traffic spacing far downstream, at
z → +∞, must always remain equal to the initial spacing;
this becomes a boundary condition on Eq. (14). This boundary
condition, in turn, fixes the value of g∞ immediately. But
the spacing far downstream is �i + εLg∞, and since there
is no reason why traffic must have started at the particular
spacing for which g∞ satisfies the solvability condition, we
almost always have a paradoxical situation where the boundary
condition forbids satisfying the solvability condition. What
then becomes of initially steady, uniform traffic at a spacing
that does not satisfy solvability?

To see how to resolve this situation, we retrace the steps that
lead to the solvability condition. First we write the perturbed
spacing as

g(z,T ) = g(0)(z − uT ) + εg(1)(z − uT ) + . . . (33)

with

u = 2g2
∞ + εu(1), (34)

thus allowing an order-ε correction to the propagation rate u.
We substitute this expansion into Eq. (14) and linearize in ε to
obtain the analog of Eq. (19),

0 = ∂

∂z

{
∂2g(1)

∂z2
− 6g(0)2g(1) + 2g2

∞g(1) + u(1)g(0) + [· · · ]

}
.

(35)

Next we multiply this equation by g(0) and integrate by parts.
Crucially, in order to eliminate the terms involving g(1), we
must impose the boundary conditions g(1) → 0 at z → ±∞.
However, while the boundary condition at large positive z is
clearly appropriate, because the downstream spacing is fixed at
�i + εLg∞, there is no compelling reason to demand that the
far-upstream density be precisely �i − εLg∞. Consequently
the appropriate boundary condition for z → −∞ is just that
g(1) approach some undetermined constant. With this less
restrictive boundary condition, the integrations by parts now
yield boundary terms, and instead of a solvability condition
we obtain a formula for the upstream spacing,

g(1)(−∞) = 1

C11

{
1 + 2λ

6

[
δi − 1 + 2λ

5
PV ′

s g
2
∞

− 1

10
(�′′

c − V ′′′
s )L2g2

∞

]
sgn g∞

+ 2

15
(C22a − 2C22b)Lg2

∞ + 1

60
V ′′′′

s L3g2
∞

}
.

(36)

The right side of this equation is the quantity which, according
to the solvability condition, is supposed to vanish. Thus,
the traffic spacing that satisfies the conventional solvability
condition is not one that is somehow “selected”, but rather
it is merely the initial spacing for which the average of the
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upstream and downstream spacings remains �i through first
order in ε.

We may also determine the correction to the propagation
rate of the kink by simply integrating Eq. (35) over all z; the
result is

u(1) = −2g∞g(1)(−∞). (37)

We can also obtain these results from the inclusion
calculation, by multiplying Eq. (19) by g(0) and integrating
only from 0 to ∞ instead of from −∞ to ∞. When α is large,
according to Eq. (16b), for positive z the inclusion solution
differs from the kink solution only by corrections that are
exponentially small in α. Moreover, α̇/2 is the first-order shift
in velocity of the kink.

VI. DISCUSSION

A common calculation for car-following models, when
parameter values are near the threshold of absolute sta-
bility, is to reduce the model to a mKdV equation with
small corrections, write down the one-parameter family of
hyperbolic-tangent “kink” solutions of the mKdV equation,
and then carry out a solvability analysis to find which one
of the kink solutions—the “selected” kink—persists when
the correction terms are included. The significance of this
selected kink, however, has always been rather problematic.
The calculation gives no hint as to how the dynamics of the
model might actually select it, nor does it give any hint of what
might happen if the traffic spacing far ahead of or far behind
the kink does not match the value in the selected kink solution.
For parameter values near the onset of instability, rather than
near absolute stability, a similar sequence of calculations is
common: one reduces the model to a KdV equation with
small corrections, writes down the one-parameter family of
one-soliton solutions, and carries out a solvability analysis to
find the selected soliton. In this situation it is possible to extend
the solvability calculation to a multiple-time-scales analysis,
which shows that the correction terms drive a slow evolution
along the family of soliton solutions, with the “selected”
soliton being the fixed point of this evolution. This analysis
further shows whether the soliton parameter evolves toward
or away from its “selected” value; in the former case, that
soliton is in fact dynamically selected, while in the latter it
marks a finite-amplitude instability threshold, with smaller
initial soliton parameters decaying to zero and larger ones
growing to infinity (and into a regime in which the assumptions
underlying the derivation of the KdV equation are no longer
valid). It is crucial, however, that the soliton solutions are
localized while the kink solutions are not. We have found
that the corresponding multiple-time-scales analysis for kink
solutions fails: there is no slow evolution along the family
of kink solutions. This is perhaps not particularly surprising,
since different kink solutions have different traffic spacings far
ahead of and far behind the kink, so that any small change to
the kink parameter requires changing those spacings, which
then entails large changes to the positions of cars infinitely far
ahead of and far behind the kink. Moreover, most car-following
models include no mechanism for cars to adjust their behavior
to traffic conditions behind them, so the car spacing infinitely
far ahead of the kink must be fixed. This means, however, that

the spacing far ahead of the kink is ultimately set by initial
conditions, not by any solvability consideration—a fact that
makes the difficulties noted above even more consequential.

This last observation points the way toward understanding
the actual significance of the “selected” kink. The conventional
solvability calculation implicitly assumes that the first-order
correction to the kink solution vanishes far ahead of the kink
and also far behind it. The underlying model, however, does
not treat those two regions symmetrically. The development
of the traffic pattern proceeds backwards from some localized
perturbation to initially uniform traffic, so that the traffic
spacing far ahead of the developing kink is fixed, but the
spacing behind it is not. It is reasonable, then, to choose
the zeroth-order kink solution to be the one that has the
correct downstream spacing, but there is no reason why this
zeroth-order solution should also get the upstream spacing
right to anything beyond leading order. This implies that one
must allow the first-order correction to approach a constant,
not necessarily zero, far behind the kink. If we modify the
solvability calculation to allow this, we find that it gives only
an equation for the correction to the spacing far behind the
kink. Thus, it is clear that the solvability calculation does not
in fact lead to any sort of selection condition for the kink
solutions.

To investigate how a kink solution could arise from initially
uniform, steady traffic flow, we have examined two-kink, or
“inclusion”, solutions of the mKdV equation. For a given initial
spacing, there is a one-parameter family of these solutions,
interpolating between a small, broad perturbation to uniform
flow and a widely separated kink-antikink pair. Corrections to
the mKdV equation then cause a slow time evolution of the
parameter, and there are three possibilities for the long-time
result of this evolution: an initial inclusion might decay to
zero, or it may evolve to a stable inclusion at some selected
parameter value, or it may develop into a kink-antikink pair,
with the kink and antikink propagating through the line of
traffic at slightly different rates, so that the region between
them grows linearly with time. Which of these scenarios
ultimately plays out depends on three parameters, namely the
parameter governing linear stability of uniform traffic at the
initial spacing and its first and second derivatives with respect
to spacing. We have delineated the regions of parameter space
in which each possible long-time behavior occurs; there are
some regions in which more than one long-time behavior
is possible, and initial conditions determine which actually
occurs. In those situations in which the inclusion develops
into a widely separated kink-antikink pair, we find that the
kink and the antikink are exponentially close to the familiar
kink solutions.

It is worth noting that a large inclusion essentially replaces
the initial spacing by one that is as far below the inflection
point as the initial one was above it (plus corrections). This
is a somewhat unsatisfactory aspect of our results, as we
would like to see solutions in which jams form which replace
the initial spacing with other spacings as well. This would
allow the possibility of jam formation leading to some traffic
spacing which actually is selected. In connection with this idea,
however, we note that when parameters are in a range in which
the initial spacing can be replaced by a growing inclusion
with the new spacing, then the new spacing could also be
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replaced by a growing inclusion of the old spacing. Thus, it
may be that the tendency is simply to produce traffic patterns
in which regions of traffic at different spacings alternate
irregularly, rather than to converge to some selected spacing
everywhere.

The fact that our inclusion solutions allow only a single
possibility for the spacing within the inclusion seems to arise
from our having looked for leading-order solutions that are
stationary in some reference frame, i.e., for which the leading
and trailing edges of the inclusion move through the line of
traffic at the same rate. In future we will seek and examine more
general inclusion solutions that are not stationary (analogous
to those found for the Korteweg-deVries equation by the
Hirota method [22]) to see whether a more comprehensive
picture emerges of the effect of the correction terms on these
solutions. Taking this idea further, it is known that the mKdV
equation can be solved for arbitrary initial conditions, at least

in principle, by an inverse scattering transform; one could try
to use this as a basis for a perturbation theory by writing the
corrections in terms of the scattering variables [23]. While
complicated, this approach would offer the possibility of
identifying globally attracting traffic patterns.

Finally, it would be of interest to extend these results, and
other analytic results for car-following models, to models with
longer time delay. As we have noted, our results are valid
provided the explicit time delay in the model is small enough
that the parameter P defined in Eq. (6) is positive, and P

itself then appears in one of the correction terms to the mKdV
equation. Dealing with a larger time delay, however, is not
simply a matter of allowing P to be negative. For larger
delays the initial instability does not occur at infinitely long
wavelengths, so that the basis of the reduction of the model to
an mKdV equation is not valid, and it is necessary to restart
the analysis from this much earlier point.
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