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Synchronization dynamics on the picosecond time scale in coupled Josephson junction neurons
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Conventional digital computation is rapidly approaching physical limits for speed and energy dissipation.
Here we fabricate and test a simple neuromorphic circuit that models neuronal somas, axons, and synapses with
superconducting Josephson junctions. The circuit models two mutually coupled excitatory neurons. In some
regions of parameter space the neurons are desynchronized. In others, the Josephson neurons synchronize in
one of two states, in-phase or antiphase. An experimental alteration of the delay and strength of the connecting
synapses can toggle the system back and forth in a phase-flip bifurcation. Firing synchronization states are
calculated >70 000 times faster than conventional digital approaches. With their speed and low energy dissipation
(10−17 J/spike), this set of proof-of-concept experiments establishes Josephson junction neurons as a viable
approach for improvements in neuronal computation as well as applications in neuromorphic computing.
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I. INTRODUCTION

The collective behavior of neural systems is a highly
active area of study. It addresses basic questions from two
major scientific challenges: understanding the human brain
and building an efficient artificial learning processor. These
questions require interdisciplinary examination, and even so
are hard to make progress on. One approach takes a bottom-
up approach, building and studying neural circuits at the
cellular level. Another approach works top-down, looking to
understand and emulate behaviors like synchronization [1],
information processing, and memory.

Model systems are a useful tool to go between top-down
and bottom-up approaches. One can simulate neuron behaviors
in a network of cellular-level objects. Digital simulations
can model the time-dependent membrane potentials of large
numbers of neurons but are often limited by computational
time. Analog models, such as electrical very large scale
integration (VLSI) circuits, sacrifice a certain amount of detail
in their simulation capability but can simulate the interactions
in parallel much faster than digital simulations. In fact, analog
models have the capability to go faster [2,3] than the biology,
potentially enabling studies of long-term behavior, learning,
and various neurological disorders.

In addition to providing a better understanding of neuro-
science, analog model systems can be used to create artificial
learning devices. Analog and digital neurons can be networked
to form new kinds of “neuromorphic” processors that will
help process complex and high-volume data [4,5]. Tasks that
deal with complex data, such as pattern recognition, are often
inefficient when run on von Neumann-type machines. Neuro-
morphic circuits in silicon have been demonstrated modeling
somas [6] and synapses, have shown plasticity [7] and learning,
and have been integrated to the system level [4,8]. The results
can include much quicker runtimes, smaller size processors,
and higher energy efficiency when dealing with such tasks [5].
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Power dissipation is a serious issue if computational neuron
models and neuromorphic processors are to be scaled to large
network sizes [9]. Biological neurons dissipate about 10−11 J
per spike. Neurons made from silicon circuits, however,
are over 3 orders of magnitude higher than that at about
2 × 10−8 J/spike and digital neurons are even higher at
10−5 J/spike [10]. Supercomputers composed of silicon cir-
cuits are coming up against a power wall; only a few more
generations of supercomputers will be built with their present
make-up [11]. Low-power computing solutions such as neuro-
morphic computing, reversible computing, and approximate
computing are expected to play important roles moving
forward [11].

In this study we present experimental results on a model
system of analog neurons made from low-power, high-speed
superconducting Josephson junctions. Two mutually coupled
Josephson junction neurons (JJ neurons) are configured to fire
repeatedly, and they quickly transition into a synchronized
state. Their synchronization is predominantly of two types:
in-phase or antiphase. Varying the synaptic strength and/or
time delay of the connecting synapses causes behavior called a
phase-flip bifurcation [12–15], which toggles the system from
in-phase to antiphase or vice-versa. The bifurcation diagrams
are measured with excellent agreement with circuit simulations
and are acquired in a fraction of the time to simulate them.
The neurons fire at a rate of about 25 GHz and with a power
dissipation of about 10−17 J/spike, easily the highest and
lowest numbers, respectively, for analog neurons to date. The
speed of the pulses requires indirect detection of the pulses
using additional circuitry. We use superconducting rapid-
single flux quantum (RSFQ) circuitry in conjunction with the
analog neurons to determine the state of synchronization in real
time.

This study provides a proof-of-concept demonstration of
the potential of Josephson junction neurons (JJ neurons) and
their associated circuitry to model somas, axons, adjustable
synapses, and detection of activity states. The JJ neuron tool-
box provides possibilities for both neuromorphic computing
and fast computational models at high speed and low power.
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FIG. 1. Experimental details: (a) Block-diagram of the experiment. The first soma-axon-synapse (N1-A1-S1) combination is coupled to
the second (N2-A2-S2); this mutually coupled loop (marked by the green dashed line) falls into a synchronized state. A copy of the pulses are
coupled out onto JTLs (JTL1 and JTL2) and merged together in an OR gate. The in-phase state will fire at the same frequency as the neurons;
the antiphase state will fire at twice the frequency. (b) Circuit diagram of the two somas, N1 and N2. The X’s indicate Josephson junctions.
Two currents, INB and Iin, bias the soma. (c) Circuit diagram of the synapse. A two-junction loop (DC SQUID) modifies the amplitude of the
pulse coming in from the axon. Two currents (ISB and Imag) control the amount of modulation. Following the SQUID, an LRC-filter smooths
the pulse; this converts it into a synaptic current. (d) Optical microscope picture of the circuit. The mutually coupled loop is indicated by the
green box, and the S2-N1 combination is indicated by the yellow box. The outputs voltages for the two JTLs and the OR gate are indicated;
two other output voltages (not indicated) are taken from the two axons. (e) A zoom-in on the S2-N1 combination.

II. METHODS

A schematic of the circuit is shown in Fig. 1(a). A JJ
neuron [3] (N1), with its full circuit diagram shown in Fig. 1(b),
acts as the first soma. A standard Josephson transmission line
(JTL) 20 junctions long acts as the axon (A1), carrying away
the pulse from the soma. The axon ends in a synapse (S1),
shown in Fig. 1(c). It is formed by a superconducting quantum
interference device (SQUID), similar to earlier work [16]; here
we also add an RLC filter. The SQUID changes the amplitude
and delay of the action potential by an amount dependent on the
flux through the loop, while the filter smooths and stretches the
pulse in time, converting it to a synaptic current. This synaptic
current flows to the second soma-axon-synapse (N2-A2-S2)
combination, which in turn couples its output back to the first.
The whole circuit fires in the range of ∼25–50 GHz, depending
on the circuit parameters.

This mutually coupled loop sometimes synchronizes in one
of two synchronized states, in-phase or antiphase. To detect the
synchronized state of the system, a copy of each pulse is split
off of its axon, coupled onto separate transmission lines (JTL1
and JTL2) and then merged together in an RSFQ merger (OR
gate). The spiking frequency of this OR gate is compared to
that of the individual axons. For the in-phase state, the OR gate
will fire at the same rate as the neurons; for the antiphase state,
it will fire at twice the frequency of the neurons [Fig. 1(a)].
Note that this frequency doubling is for detection purposes
only; the base frequencies of the neurons do not change.

A picture of the chip, fabricated by Hypres, Inc., is shown
in Fig. 1(d) and 1(e). The circuit requires seven currents for
bias and control. Currents in the mA range for the two halves
of the circuit come from a single source and are identical. Two

currents (not shown) feed the axons and the JTLs (Iaxon and
IJTL). Two currents feed each of the JJ neurons, the neuron bias
current and the neuron input current (INB and Iin). The merger
is biased with a current IOR (not shown). Finally, the synapses
involve two control currents: the magnet current (Imag) and
the synapse bias current (ISB). The magnet current is an on-
chip current that coupled flux into the SQUID loop, while
the synapse bias current provides bias to each of the SQUID
Josephson junctions.

The state of the circuit is sensed by measuring the firing
frequencies at five different points. Direct current (DC)
voltages are measured at probe junctions on the two axons
and the two JTLs, and at the output junction of the OR gate.
DC voltages are proportional to frequency via the Josephson
relation, 2.07 μV/GHz. The voltages were amplified by
a factor of 500, giving a conversion of 1.035 mV/GHz
(conveniently about 1mV/GHz).

Experiments were performed at 4.2 K in a 3He cryostat
from Oxford Instruments. The bias lines were heavily fil-
tered with low-pass filters and powder filters with discoidal
capacitors [17]. The currents were provided by custom-made,
single-ended current supplies from precision voltage regula-
tors. Voltages were amplified by Analog Devices amplifiers,
digitized by a National Instruments analog-to-digital converter
and saved on disk.

To observe the phase-flip bifurcation, the experimental
currents were chosen such that the measured frequency of the
two axons and the two JTLs was about 27 GHz, all at the same
frequency within the measurement uncertainty (±1 GHz, due
to drifting amplifier offsets). The frequencies synchronize if
the bias currents are adjusted carefully. With the circuit biased
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FIG. 2. Experimental Results: (a) Bifurcation diagram. Plotted is the frequency of the OR-gate in GHz as a function of the two synaptic
parameters, ISB and Imag. Blue regions are at about 29 GHz and represent the in-phase state; red regions are at about 62 GHz and represent the
antiphase state. (b) Frequency of the firing of the neurons, measured at the axons and the JTL probe junctions. (c) Bifurcation diagram with an
increased value of INB. The base frequency of the neurons increase, causing a “reversal,” where in-phase becomes antiphase and vice-versa.
(d–f) Simulated versions of (a–c).

in such a way, we then recorded the voltage of the OR gate
as a function of the two synaptic currents (ISB and Imag) and
plotted a 2D color plot to form the bifurcation diagram for
the system. Typical sweeps were 1000 bias currents by 1000
magnet currents (106 total points) and took about 17 min,
limited by averaging and acquisition time.

III. RESULTS

In our bifurcation diagrams, we were able to identify several
different states of the coupled system. At low synapse bias
currents (ISB), the neurons were synchronized; here we saw in-
phase states, antiphase states, and bistability states (where the
system toggles back and forth between in-phase and antiphase
over long timescales). The OR-gate detector records the in-
phase states at the same frequency as the neurons, the antiphase
states at about twice the neuron frequency, and the bistability
states at about 1.5 times the neuron frequency. At high synapse
bias currents (ISB), the circuit shows another state, a desyn-
chronized state. In this state, the neurons no longer fire at the
same frequency. We can observe this through the standard devi-
ation of the frequencies measured at the two axons and the two
JTLs. We first discuss the synchronized state and the phase-flip
bifurcation, and then we discuss the desynchronized state.

Figure 2 shows the bifurcation diagram for parameters
where the two neurons are always synchronized. The hori-
zontal axis shows Imag, which adjusts the magnetic field inside
the synapse’s SQUID. The bifurcation diagram has symmetry
about zero magnet current, since standard SQUID response
to a magnetic field is symmetric. In Fig. 2(a), we show the
frequency of the OR gate in a blue-red color plot with blue
at about 29 GHz and red at about 58 GHz; blue corresponds

to an in-phase state, red to an antiphase state, and white to
a bistability state. In Fig. 2(b), we show the frequency of
the neuron itself, measured at the probe junctions along the
axon, also in a blue-red color plot but at a reduced frequency
range (27–32 GHz). The firing frequency changes by only
about 15% over the whole range of magnet and bias current,
demonstrating that the frequency changes in the OR gate in
Fig. 2(a) are clearly due to phase changes and not because the
whole circuit is oscillating at a higher frequency. Figure 2(b)
also shows a shift in frequency of the underlying neurons at
the phase-flip bifurcation, with the in-phase state near 29 GHz
and the antiphase state near 31 GHz.

Phase-flip bifurcations are expected in any coupled-
oscillator system when the coupling strength and/or the
time delay are varied [13]. The characteristic features of a
phase-flip bifurcation are: (1) a phase change between the
two oscillators, (2) a change in the firing frequency between
the two synchronization states, and (3) a discontinuity the
Lyaponov exponent. The first two observations are clearly seen
in Figs. 2(a) and 2(b), respectively; we show the discontinuity
in the Lyaponov exponent in the appendix. This demonstration
of a phase flip-bifurcation in an analog neuron system is at an
extremely high frequency compared to previous work [18,19].
In addition, the bifurcation occurs as a function of three
different parameters: Imag,ISB and INB, more than we had
expected. This suggests that phase-flip bifurcations may be
very common in neuron networks, an important observation
since synchronization is used [20] by the brain in many
different areas of sensory and information processing.

The entire circuit was also simulated with WR-SPICE
from Whitely Research. Since the bifurcation diagram
varies two parameters, the remaining five control currents
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FIG. 3. Synaptic strength and delay. (a) Synaptic delay. Plotted is the delay from soma to synapse in picoseconds (ps) as a function of
the two synaptic parameters, ISB and Imag. The range of parameters is identical to Fig. 2. (b) Synaptic strength. Plotted is the amplitude of the
synaptic pulse in mV versus ISB and Imag, again over the same range as Fig. 2. (c) Bifurcation diagram plotted in the strength-delay space. The
blue points are the in-phase state and the red points are the antiphase state, as before.

(INB,Iaxon,IJTL,Iin and Ior) and another parameter, the chip
critical current density, all need to be chosen as input to the
simulation. Even our small measurement uncertainty led to a
complex fitting procedure in this six-dimensional space. For
the fitting shown in Fig. 2, all fitting parameters are within 8%
of the experimental parameters. Figures 2(d) and 2(e) show
the simulated neuron frequencies and OR-gate frequencies,
in direct comparison with Figs. 2(a) and 2(b). The in-phase,
antiphase, and bistable states appear at mostly similar values
of ISB and Imag, showing we have achieved good agreement
over this entire two-dimensional parameter range.

In Fig. 2(c) we show a similarly obtained bifurcation dia-
gram with a larger value of the neuron bias current (INB), which
increases the firing rate of the neurons to about 31 GHz for the
in-phase state. Because this alters the time in which the pulse
arrives at the postsynaptic soma, with the appropriate choice
of bias current the synchronization state can be flipped. With
the chosen parameters, the entire bifurcation diagram is in fact
“inverted,” where in-phase becomes antiphase and antiphase
becomes in-phase (red becomes blue and blue becomes red).
The circuit simulation, using the same parameters including
the change in INB, is shown in Fig. 2(f). The simulation is able
to reproduce this inversion as well.

The synaptic parameters we have varied in Fig. 2, ISB

and Imag, are specific to our Josephson system. In biological
synapses, the typical synaptic parameters are synaptic strength
and delay. In Fig. 3 we make the conversion from our
parameters to the biological ones. Figure 3(a) shows the delay
(from soma to synapse) in picoseconds and Fig. 3(b) shows
the strength (amplitude of the pulse coming out of the synapse
in mV), both as a function of ISB and Imag, for the biasing
parameters used in Figs. 2(d) and 2(e). Using this information
allows us to reconstruct the bifurcation diagram of Fig. 2(d)
in delay-amplitude space. We show this in Fig. 3(c), where
we plot the frequency of the OR-gate (indicator of in-phase
or antiphase) as a function of amplitude and delay. The
bifurcation is primarily in the delay direction, but Fig. 3(c)
shows some nontrivial dependence on amplitude as well.
Synchronization does not appear to be significant until a
threshold synaptic strength of 0.3 mV is reached. This suggests
a threshold-like behavior in which synchronization occurs
only for sufficiently large synaptic strength. Experiments in
biological systems to describe such a threshold would be
interesting.

As already mentioned, for the range of parameters shown
in the bifurcation diagrams in Fig. 2 the circuit is always
in synchronization. However, if we go to larger synapse bias
currents (ISB), the circuit falls out of synchronization. Figure 4
shows the standard deviation of the firing frequency at the
four different outputs in the circuit (one on each axon, one
on each JTL). In the range used in the diagrams in Fig. 2
(dashed box), the standard deviation is less than 1 GHz,
within our measurement uncertainty, implying full-circuit
synchronization. However, in the dark regions outside of the
dashed box, the standard deviation gets as high as 10 GHz.
This is a distinct state of the circuit, a desynchronized state.
The implication of this is discussed below.

IV. DISCUSSION

The fact that we have simulated neuron behaviors on
the picosecond timescale with biologically realistic neurons
allows one to consider applications in the study of long-term
neuron dynamics. Although we have only studied two neurons
here, it is straightforward to add more neurons since they
are made lithographically. Consider, for example, the study
of epilepsy, where large-scale synchronization of thousands

FIG. 4. Standard deviation of the time-averaged firing frequency
at four points in the circuit, one on each axon and one on each JTL,
plotted as a function of ISB and Imag. The dashed black box represents
the region of figure two, where the circuit is in full synchronization. At
higher values of ISB, however, the circuit becomes unsynchronized.
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to millions of neurons causes epileptic seizures. Existing
biophysical network models run on digital computers [21] have
already made progress in understanding aspects of epilepsy,
such as the shift [22] from dominant excitation to dominant
inhibition, the modeling [23] of absence seizures, and the
mechanisms [24] relating fast oscillations to seizure onset.
Digital simulations, however, are hampered by the limited
ability of computers to model collective neuron dynamics in
large networks over long time scales. An approach using su-
perconducting ICs with analog neurons such as demonstrated
here would allow the same models to be studied but with
computational times thousands of times faster, permitting a
vastly greater exploration of parameter space.

The data in Fig. 4 gives a preview of how one might study
epilepsy in larger neural networks in the future. In a seizure,
the firing frequencies become essentially the same; that is the
standard deviation of the firing frequencies decreases. So, a
measurement of the standard deviation across neurons of the
time-averaged firing frequency is an indicator of seizure-like
behavior. Figure 4 shows the standard deviation across four
points in our circuit as an indicator of seizure-like behavior in
our two-neuron system. With more neurons in the circuit, we
would simply take the standard deviation over more neurons.
The dark, desynchronized regions correspond to parameter
regions where the behavior is not seizure-like, while the light
blue synchronized regions correspond to parameter regions
where the behavior is seizure-like. The digital calculation of
the information in Fig. 4 takes about 60 h with 1000 times
fewer points; our JJ neuron simulation took 51 min, a factor
of over 70 000 times faster per data point in an unoptimized
system. Importantly, adding more neurons would not add to
the time needed for these JJ neuron simulations.

These results demonstrate that we have been able to
construct an analog system where we can control its behavior
(synchronization) with off-chip currents. In the area of neuro-
morphic computing, we have demonstrated spiking neurons,
axons, adjustable synapses, and collective-state detection for
a system dissipating 10−17 J per pulse and firing at tens
of GHz. Future experiments are expected to show both
long-term plasticity (LTP) and long-term depression (LTD)
as well as spike timing dependent plasticity (STDP). LTP
can be implemented by using the pulsed output of our state
detector to vary one of the synaptic parameters (ISB and
Imag) in a manner consistent with a learning [7] rule. A
“forgetting” resistor can be put into the SQUID loop such
that the current state has LTD. For STDP, one could use an
RS-Flip Flop [25] as the state detector to ensure that synaptic
increases only occur if the presynaptic neuron fires before the
postsynaptic neuron and not the other way around. With the
toolbox of RSFQ comparison circuits, variable [26] couplers,
and superconducting transmission lines and filters already
demonstrated by the superconducting digital community and
the superconducting quantum computing community [27],
these should be straightforward next steps, enabling a fast,
low-power learning network.

In conclusion, we have demonstrated the operation of
a superconducting neuromorphic circuit via a synchronized
oscillator behavior known as a phase-flip bifurcation. With the
high speed and low-power dissipation of superconducting cir-
cuits, vast improvements in neuronal computation are possible.

ACKNOWLEDGMENTS

We thank A. Kadin, E. Olson, J. Meyers, and B. Hansen for
useful discussions and T. Griffin and E. LaGorga for simulation
assistance. This work was supported by Colgate University
(the Picker Interdisciplinary Science Institute) and NSF Grant
No. DMR 1105444.

APPENDIX

In this appendix we support the claim that the bifurcation
we see in the experimental and simulation data is a phase-flip
bifurcation [13]. We also reproduce the basic character of the
bifurcation using a simplified model. The simplified model is
easier to analyze and we use it to explore behavior details.

We proceed to describe the simplified model of two
mutually coupled JJ neurons. We then present simulated time
profiles of in-phase and antiphase solutions, a bifurcation
diagram of solution character versus delay and synaptic
strength comparable to Fig. 3(c), and the three characteristic
behaviors of solutions across a phase-flip bifurcation. These
include an abrupt change in the phase (in- versus anti-)
character of the solution, a jump in period of oscillation at
the bifurcation point, and a discontinuity in the Lyapunov
exponents at the bifurcation. Together this supports the claim
of a phase-flip bifurcation by reproducing the behavior using
a simplified model in which analysis of the details of the
bifurcation is more accessible.

The simplification in our model comes from replacing the
axon portions of the circuit with a delay to represent the time
it takes for the signal to move down the axon to the synapse.
The circuit diagram in Fig. 5 shows how the delay replaces a
portion of the circuit. The resulting system of equations are
delay differential equations (DDEs) with the synapse variables
dependent on a delayed version of the variables in the soma.
DDEs are equivalent to infinite-dimensional systems of ordi-
nary differential equations (ODEs), so our simplification is ar-
guably not simple. But the interactions of equations describing
the axon can be subtle and the resulting time of transmission
is hard to adjust explicitly. In the DDE model the transmission
delay is an explicit parameter representing the time of
transmission along the axon. We can adjust this transmission
delay parameter directly. While the total delay between soma
excitation and synapse excitation involves the sum of the
transmission delay and the excitation time of the synapse,

FIG. 5. Simplified circuit of Fig. 1(a). The neurons connect to the
synapses with an adjustable delay τ . The synapses connect back to
the neurons with a resistor r12; changing its value adjusts the strength
of the synapse.
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FIG. 6. Time profile for the in-phase state (left) and the antiphase state (right). Shown are the two neuron voltages (v1, v2) and the output
voltage of the first synapse (vout). Note that in the symmetric case v1 and v2 are exactly on top of each other, so that v2 is not visible. The
synapse pulse switches from before v1 to after v1 across the bifurcation.

our delay parameter allows us to control the total delay quite
effectively. This is the sense in which the model is simple.

Replacing the axon with a delay, the remaining circuit
elements represent the soma and synapse portions of the
system. These portions are modeled using the electric circuit
equations described in Crotty et al. [3]. The relevant variables
are ϕpi , ϕci , vpi , vci , vouti , fouti , i12, where subscript i ∈ {1,2}
denotes which neuron is described. The ϕ variables describe
the phase jump across the junctions, the v variables are voltages
across the junctions and synapse capacitor (out), and i12 is the
current through the synapse resistor toward the next neuron.
There are 14 variables and 14 equations:

ϕ̇p1 = vp1, (A1)

v̇p1 = −�vp1 + sin(ϕp1) + �s i12 − λ(ϕp1 + ϕc1)

+ (1 − �p)ib, (A2)

ϕ̇p2 = vp2, (A3)

v̇c1 = −�vc1 + sin(ϕc1) + �si12 − λ(ϕp1 + ϕc1) − ib�p,

(A4)

v̇out1 = fout1, (A5)

ḟout1 = −�oQfout − i12
�3

oQ�syn

λ
− �2

o�syn

λ
( ˙i12)

+�2
o[vp2(t − τ ) − vout1], (A6)

( ˙i12) = λ

�s(1 − �s)

[
vout1 − r12

�
i12 − λ(ϕp1 + ϕc1)

]
, (A7)

ϕ̇p2 = vp2, (A8)

v̇p2 = −�vp2 + sin(ϕp2) + �si21 − λ(ϕp2 + ϕc2)

+ (1 − �p)ib, (A9)

ϕ̇c2 = vc2, (A10)

v̇c2 = −�vc2 + sin(ϕc2) + �si21 − λ(ϕp2 + ϕc2) − ib�p,

(A11)

v̇out2 = fout2, (A12)

ḟout2 = −�oQfout2 − i21
�3

oQ�syn

λ
− �2

o�syn

λ
( ˙i21)

+�2
o[vp1(t − τ ) − vout2], (A13)

( ˙i21) = λ

�s(1 − �s)

[
vout2 − r21

�
i21 − λ(ϕp2 + ϕc2)

]
. (A14)

Parameters values include η = 1, � = 1.55, λ = 0.13,
�s = 0.487, �p = 0.482, i12 = 2.2, �syn = 0.3, �o = 1,
Q = 0.05. The parameters r12 = r21 represent the strength of
the synapse and our control parameter is τ representing the
transmission delay.

Solving these equations, using standard DDE methods,
results in time profiles shown in Fig. 6. Figure 6(a) shows the
in-phase case when r12 = 1.4 and τ = 16.0, while Fig. 6(b)
shows the antiphase case when r12 = 1.4 and τ = 17.0. Notice
that the in-phase case displays both neuron’s voltages directly
on top of each other, while the antiphase case has them shifted
by a half period relative to each other. The relative timing
of the synapse pulse and the second neuron pulse indicates a
possible mechanism for the bifurcation. For in-phase solutions,
the synapse pulses just before the neuron it connects to;
presumably it helps the neuron to fire. For the antiphase
solution, the synapse pulses just after the neuron it connects to
so the synapse doesn’t lead to immediate firing of the neuron. It
does shorten the overall period, however; presumably the early
excitation moves the neuron through the slow build-up phase
of the oscillation to a state closer to its firing threshold. In any
case, the bifurcation appears to occur when the delay between
soma and synapse firing crosses a multiple of the period.

Varying both r12 and τ while tracking the character and
period of the oscillation produces the bifurcation diagram
shown in Fig. 7. The characteristic stripe pattern of in-phase

FIG. 7. Bifurcation diagram in delay-strength space. Blue points
represent in-phase while red points represent antiphase. The bifur-
cation occurs primarily in the delay direction, with some nontrivial
dependence on strength. This has similarities with Fig. 3(c) in the
main text.
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FIG. 8. Three characteristics of a phase-flip bifurcation. (a) Phase versus delay. The phase flips from in-phase (0) to antiphase (0.5) at the
bifurcation. (b) Period versus delay. The period drops about 15% at the bifurcation point. (c) Lyapuonov exponents versus delay. The highest
exponent (red triangles) is zero, representing the perturbations along the periodic solution. The second-, third-, and fourth-highest exponents
are shown with blue diamonds, green squares, and black circles, respectively. The second and third undergo a discontinuity at the bifurcation
point. Note that the green curve is directly under the blue curve after the bifurcation.

and antiphase solutions resembles Fig. 3(c) in the paper for
simulations of the more complex system. There are regions
of bistability near the boundaries of the colored regions.
We suspect that such bistability leads to bands of white
in the experimental data since that data is averaged over
many observations yielding a result between the pure in-phase
or pure antiphase result. Crossing the boundary involves a
phase-flip bifurcation.

The three characteristics of a phase-flip bifurcation as
described by Prasad et al. are a change in the phase character
of the time profile, a jump in period or frequency of oscillation,
and a discontinuity in Lyapunov exponent at the bifurcation
point [13]. Figure 8 shows all of these characteristics. Fixing

r12 = 1.4 and varying τ through the bifurcation point provides
the time profiles shown in Fig. 6. In addition the period jumps
from 19.870 to 16.367, as shown in Fig. 8(b). The leading
Lyapunov exponents are displayed in Fig. 8(c). These are
computed using the DDE methods from Farmer et al. [28].
Notice the zero Lyapunov exponent present for all periodic
orbits. Not all exponents have a jump at the bifurcation point,
but, e.g., the second- and fourth-largest do. Together these
findings indicate a phase-flip bifurcation that occurs when
delay changes and in some circumstances when synaptic
strength changes (as measured by r12). This strongly suggests
that the same bifurcation is occurring in the full simulated
system as well as in the experiments.

[1] S. Strogatz, Physica D 143, 1 (2000).
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