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We introduce a two-component one-dimensional system, which is based on two nonlinear Schrödinger or
Gross-Pitaevskii equations (GPEs) with spatially periodic modulation of linear coupling (“Rabi lattice”) and
self-repulsive nonlinearity. The system may be realized in a binary Bose-Einstein condensate, whose components
are resonantly coupled by a standing optical wave, as well as in terms of the bimodal light propagation in
periodically twisted waveguides. The system supports various types of gap solitons (GSs), which are constructed,
and their stability is investigated, in the first two finite bandgaps of the underlying spectrum. These include on-
and off-site-centered solitons (the GSs of the off-site type are additionally categorized as spatially even and
odd ones), which may be symmetric or antisymmetric, with respect to the coupled components. The GSs are
chiefly stable in the first finite bandgap and unstable in the second one. In addition to that, there are narrow
regions near the right edge of the first bandgap, and in the second one, which feature intricate alternation of
stability and instability. Unstable solitons evolve into robust breathers or spatially confined turbulent modes.
On-site-centered GSs are also considered in a version of the system that is made asymmetric by the Zeeman
effect, or by birefringence of the optical waveguide. A region of alternate stability is found in the latter case
too. In the limit of strong asymmetry, GSs are obtained in a semianalytical approximation, which reduces two
coupled GPEs to a single one with an effective lattice potential.
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I. INTRODUCTION

Solitons in lattice potentials have drawn a great deal of
interest in recent decades, as they occur in diverse physical
settings, and exist in many different varieties [1–4]. Periodic
potentials, added to the underlying nonlinear Schrödinger or
Gross-Pitaevskii equations (GPEs), help to create and stabilize
solitons, which do not exist or are unstable in free space.
In optics, one source of the spatial periodicity is provided
by Bragg gratings [5]. Effective periodic potentials can also
be readily induced by photonic crystals, which are built as
permanent structures by means of various techniques [6–8],
or as virtual lattices formed by interfering laser beam in
photorefractive crystals [6,9]. For matter waves in atomic
Bose-Einstein condensates (BECs), perfect periodic potentials
are imposed by optical lattices, i.e., interference patterns
constructed by counterpropagating coherent optical beams
[1,10]. In the presence of the self-repulsive nonlinearity,
localized modes that self-trap in periodic potentials are usually
called gap solitons (GSs), as they exist in bandgaps of the
underlying Bloch spectrum induced by the potential in the
linear approximation [11–15]. Different families of GSs are
distinguished by the number of the bandgaps in which they
reside.

In the presence of an appropriate periodic potential, binary
BECs [16] and binary photonic systems [17–19] can host
two-component GSs, which have been theoretically elaborated
in various settings [17–25]. The use of the Feshbach-resonance
technique [26], which switches the repulsion between atoms
into attraction, makes it possible to create two-component
symbiotic solitons in binary BEC, which are supported by
attraction between the two components, while each of them
is subject to self-repulsion [25]. This concept was extended
to symbiotic GSs in a system of two mutually repelling
components loaded into a common lattice potential [23].

Another extension of this concept was elaborated for dark
solitons in spinor systems [24].

An essential ingredient of many two-component systems
is linear interconversion (Rabi coupling) between the com-
ponents. In binary BEC, the interconversion is driven by a
resonant electromagnetic field, which couples different atomic
states representing the components [27,28]. Two-component
GSs coupled by the linear interconversion were studied too
[22,29]. In optics, the Rabi coupling is emulated by the linear
coupling between copropagating waves in dual-core wave
guides [30]. In particular, GSs in a dual-core Bragg grating
were studied in Ref. [17]. Similarly, a dual-core BEC trap may
hold two matter-wave fields with an effective Rabi coupling
between them, provided by tunneling of atoms across a gap
separating the two cores [31]. In this connection, it is relevant
to mention that GSs may be supported by Zeeman lattices, i.e.,
spatially periodic modulation of the difference in the chemical
potential between two BEC components, which are linearly
coupled by spin-orbit coupling [32].

In the present work, our objective is to propose a different
mechanism of the creation of two-component GSs, without
the use of any lattice potential, but rather making use of the
linear coupling between two components of the wave field in
the form of a standing wave, which may be called a “Rabi
lattice” (cf. “Rabi management”, i.e., the linear coupling with
a time-periodic coefficient, introduced in Ref. [28]), assuming
intrinsic self-repulsion in each component. This setting may be
realized in a binary BEC illuminated by a pair of counterprop-
agating resonantly coupling waves, the interference of which
builds the standing wave. In this connection, it is relevant to
mention recent work [18], in which it was demonstrated that a
spatially localized (rather than periodically modulated) linear
coupling between the components may play a role in the soliton
dynamics similar to that of localized attractive potentials. We
here focus on the basic case of the linear coupling, neglecting
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nonlinear cross-repulsion between the components (it can be
suppressed by means of the Feshbach resonance [33]). An
extended version of the system includes asymmetry between
the two components, which may be imposed by the Zeeman
splitting between them. As shown in the next section, a similar
model can be implemented in nonlinear optics, considering the
copropagation of two polarizations in a periodically twisted
waveguide, while the asymmetry may be imposed by the
waveguide’s intrinsic birefringence.

In the symmetric system, the equations for the two
components merge into a single one, if solutions with equal
components are looked for. In this case, the standing-wave-
shaped linear coupling turns into an effective lattice potential.
Although shapes of the corresponding GSs are known, a
new problem is their stability in the framework of the
two-component system, as well as constructing GSs in the
asymmetric one. In this work, we concentrate on the 1D
setting, while the 2D version, which is possible in BEC, will
be considered elsewhere.

The rest of the paper is structured as follows. In Sec. II,
we introduce the model and present a method for the study
of stability of the GSs. Several families of GSs and results
for their stability are produced in Sec. III. The solitons are
classified as on- and off-site-centered ones and symmetric or
antisymmetric, with respect to the two component. The off-
site-centered GSs are additionally categorized as spatially even
or odd modes. In Sec. IV, we address on-site-centered GSs
in an asymmetric version of the system, with the objective
to identify their existence and stability areas. For a strongly
asymmetric system, analytical approximation is developed too.
The paper is concluded by Sec. V.

II. THE MODEL

The two-component system with the linear-coupling coef-
ficient spatially shaped as the standing wave (Rabi lattice) is
based on the system of scaled GPEs for two components of
the mean-field wave function, u(x,t) and v(x,t):

(
i

∂

∂t
+ 1

2

∂2

∂x2
− σ |u|2

)
u + ε cos(2x)v + bu = 0, (1)

(
i

∂

∂t
+ 1

2

∂2

∂x2
− σ |v|2

)
v + ε cos(2x)u − bv = 0, (2)

where ε is the amplitude of the Rabi lattice, whose period is
fixed to be π by making use of obvious rescaling, and real
coefficient b accounts for possible asymmetry introduced by
the Zeeman splitting. Results are reported below for ε = 6
in Eqs. (1) and (2), which adequately represents the generic
situation.

Further, σ = +1 and −1 correspond to the self-defocusing
and focusing signs of the contact nonlinearity. Being interested
in GSs, we focus on the case of self-defocusing, σ = +1,
which cannot create regular solitons in free space. Effects
of the nonlinear interaction between the two components,
with relative strength g (the use of the Feshbach resonance
makes it relevant to consider all the cases of g > 0, g = 0,
and g < 0 [33]), are accounted for by the addition of cross-
phase-modulation (XPM) terms to the nonlinearity in these

equations:

|u|2u → (|u|2 + g|v|2)u,|v|2v → (|v|2 + g|u|2)v. (3)

We chiefly disregard the XPM terms here (as mentioned above,
in BEC this interaction may be eliminated with the help of
the Feshbach-resonance method), except for the limit case
of strong asymmetry [large b in Eqs. (1) and (2)], in which
the XPM can be easily taken into account in the framework
of the semianalytical approximation, see Eqs. (12)–(14)
below. In a systematic form, XPM effects will be considered
elsewhere.

Unlike the BEC system, introduction of a similar model
in terms of optical dual-core waveguides is problematic, as
the coefficient of the intercore coupling cannot, normally,
change its sign. On the other hand, the same linear coupling
as defined in Eqs. (1) and (2) may naturally appear in the
model of the copropagation of two linear polarizations of light
in a “rocking” optical waveguide, subject to a periodically
modulated twist [34] (with evolution variable t replaced by
the propagation distance, z), while parameter b represents
the phase-velocity birefringence of the waveguide. In the
latter case, however, the XPM terms with g = 2/3 in Eq. (3)
should be taken into account, therefore this case too will be
considered in detail elsewhere. In principle, more freedom in
the choice of the XPM coefficient is offered by photonic-
crystal waveguides, which may also carry periodic twist
[35]. Last, the optical model may include a group-velocity
birefringence too, although this effect is usually much weaker
than the phase-velocity birefringence.

Stationary solutions of Eqs. (1) and (2) are looked for as
usual,

u(x,t) = e−iμtU (x),v(x,t) = e−iμtV (x), (4)

where μ is a real chemical potential, and real wave functions
U and V obey the stationary equations, as said above:

μU + 1
2U ′′ − U 3 + ε cos(2x)V + bU = 0, (5)

μV + 1
2V ′′ − V 3 + ε cos(2x)U − bV = 0, (6)

where the prime stands for d/dx (hereafter, we fix the
defocusing sign of the nonlinearity, σ = +1, as said above).
Numerical solutions of Eqs. (5) and (6) was produced by means
of the Newton’s method. The bandgap spectrum generated by
the solution of the linearized version of the equations is shown
in Fig. 1.

Equations (1) and (2) conserve the total norm, i.e., scaled
number of atoms, in terms of BEC,

N =
∫ +∞

−∞
(|u|2 + |v|2)dx ≡ Nu + Nv, (7)

and the Hamiltonian,

H =
∫ +∞

−∞

[
1

2

(∣∣∣∣∂u

∂x

∣∣∣∣
2

+
∣∣∣∣∂v

∂x

∣∣∣∣
2

+ |u|4 + |v|4
)

− ε(u∗v + uv∗) cos(2x) + b(|v|2 − |u|2)

]
dx, (8)
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FIG. 1. The bandgap spectrum of the linearized version of
Eqs. (1) and (2) with ε = 6, for b = 0 (a) and b = 3 (b), which
correspond, respectively, to the symmetric and asymmetric system.
Shaded areas designate Bloch bands where gap solitons do not exist.
The semi-infinite gap and lowest finite ones are labeled.

where ∗ stands for the complex conjugate, while the conserva-
tion of the momentum is destroyed by the presence of the Rabi
lattice. Asymmetry of two-component solitons is determined
by the respective ratio,

R = (Nu − Nv)/(Nu + Nv). (9)

For families of GSs, N and H , as well as R (if R �= 0), may
be naturally considered as functions of chemical potential μ.

Stability of stationary solutions can be investigated by
means of the linearization with respect to small complex
perturbations φ1,2(x,z) and ψ1,2(x,z) added to solution Eq. (4):

u(x,t) = e−iμt [U (x) + φ1(x)e−iλt + φ∗
2 (x)eiλ∗t ],

v(x,t) = e−iμt [V (x) + ψ1(x)e−iλt + ψ∗
2 (x)eiλ∗t ], (10)

where λ is the perturbation eigenfrequency, which may be
complex. Instability takes place if there is at least one eigen-
value with Im(λ) > 0. Oscillatory instabilities correspond to
complex λ, with both real and imaginary parts different from
zero, which happens in previously studied related systems
[14,23]. The substitution of Eqs. (10) into Eqs. (1) and (2)
and subsequent linearization leads to the eigenvalue problem
for λ, based on the following system of equations:

− 1
2φ′′

1 + U 2(2φ1 + φ2) − (b + μ)φ1 − ε cos(2x)ψ1 = λφ1,

1
2φ′′

2 − U 2(2φ2 + φ1) + (b + μ)φ2 + ε cos(2x)ψ2 = λφ2,

− 1
2ψ ′′

1 + V 2(2ψ1 + ψ2) + (b − μ)ψ1 − ε cos(2x)φ1 = λψ1,

1
2ψ ′′

2 − V 2(2ψ2 + ψ1) − (b − μ)ψ2 + ε cos(2x)φ2 = λψ2.

(11)

These equations can be rewritten in the matrix form,
M̂(φ1,φ2,ψ1,ψ2)T = λ(φ1,φ2,ψ1,ψ2)T , where operator M̂

corresponds to the matrix in the left-hand side of Eqs. (11). For
the numerical solution of the stability problem, we discretize
functional expressions in matrix elements by means of the
center-difference numerical scheme, and then calculate the
eigenvalue spectrum of the matrix, truncated to a sufficiently
large finite size, for stationary solutions.

III. GAP SOLITONS

The numerical solution of the symmetric version of Eqs. (5)
and (6), with b = 0, shows that the system produces several
basic types of GSs. With respect to their spatial structure,
they can be classified as on- and off-site-centered localized
modes, which feature, respectively, a single density maximum
coinciding with a local minimum of the modulation function,
−ε cos(2x), i.e., x = 0, or two density maxima placed at
adjacent modulation maxima, x = ±π/2. Further, the off-
cite-centered modes, with the pair of density maxima, may
be spatially even or odd as functions of x (all onsite-centered
modes are, obviously, of the even type). Then, in the absence
of the Zeeman splitting (b = 0), the two-component GSs are
categorized as “symmetric” or “antisymmetric”, if their two
components are, respectively, identical, or differ by opposite
signs. In the following analysis, we first focus on on-site-
centered symmetric, off-site-centered even antisymmetric, and
off-sited odd antisymmetric GS species. We also consider on-
site-centered antisymmetric, off-site-centered even symmetric,
and off-site-centered odd symmetric modes, whose stability
is, severally, the same as that of the three above-mentioned
species. The analysis is performed for the GSs residing in the
first and second finite bandgaps; see Fig. 1.

A. On-site-centered symmetric gap solitons

It is obvious that on-site-centered symmetric GSs [see
typical examples in Figs. 2(a) and 2(b), 3(a) and 3(b)], with
equal components, U (x) = V (x) (in the system with b = 0),

FIG. 2. (a) A typical example of stable on-site-centered symmet-
ric GSs, found in the first finite bandgap, at μ = −2, b = 0, and
ε = 6. Here, and in similar figures below, the background pattern
(red sinusoid) represents the scaled underlying Rabi lattice [periodic
modulation of the coupling constant, −(ε/6) cos (2x), with scaling
factor 1/6 added to keep the sinusoid within boundaries of the
panel]. (b) The eigenvalue spectrum for small perturbations around
the soliton, which confirms its stability. It is further corroborated
by simulations of the evolution of the soliton initially perturbed by
random noise at the level of 5% of the soliton’s amplitude, which are
displayed in panels (c) and (d).
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FIG. 3. The same as described in the caption of Fig. 2, but for a
typical unstable on-site-centered symmetric soliton in the second
finite bandgap, at μ = 3 and ε = 6. As seen in panels (c) and
(d), development of the oscillatory instability replaces the GS by
a “turbulent” pattern, which remains spatially confined.

are identical, in their shape, to the GSs produced by the single-
component GPE, the Rabi lattice becoming equivalent to a
single-component lattice potential, −ε cos (2x). Accordingly,
the density maximum placed at x = 0 in Figs. 2(a) and
3(a) tends to minimize the effective potential. However, the
difference in the stability between the single-component model
and the present two-component system is essential, as shown
in Figs. 4(a) and 4(b). Recall that the GS family tends to be
stable in the first two finite bandgaps of the single-component
model, except for a weak oscillatory instability, caused by the
appearance of complex eigenvalues, close to the right edge
of the first bandgap, and in the second one [36]. In addition,
dashed magenta lines display, in Figs. 4(a) and 4(b), analytical
predictions based on the Thomas-Fermi approximation (see
details in the figure caption), which was elaborated for single-
component GSs in Ref. [23]

Figures 4(a) and 4(b) demonstrate that the on-site-centered
GSs are stable in the first finite bandgap of the two-component
system (see a typical example in Fig. 2), except for a small
region near the right edge of the bandgap, which roughly
resembles the above-mentioned weak oscillatory instability
of single-component GSs near the edge of the first bandgap
[36]. In this small region, stable solitons alternate with unstable
ones, which are subject to a weak oscillatory instability caused
by complex eigenvalues. A detailed structure of this region is
displayed in Fig. 4(d), and a typical example of a weakly
unstable GS, which keeps a nearly undisturbed shape, is
presented in Fig. 5. For ε = 6, the stable part of the first finite
bandgap is −3.70 < μ < 0.14 and 0 < N < 11.11 in terms
of the chemical potential and total norm, respectively.

In the present system the GSs are primarily unstable in
the second finite bandgap, as is indicated in Fig. 4(b), and
illustrated by a typical example in Fig. 3, which shows that the
unstable solitons evolve into spatially confined chaotic modes
(“solitons of conservative turbulence”). An exception is the

FIG. 4. (a) The numerically found amplitude of fundamental on-
site-centered symmetric GSs versus chemical potential μ, for ε = 6
and b = 0. The dashed magenta curve is produced by the Thomas-
Fermi approximation (TFA) for the single-component GSs: U (x =
0) = V (x = 0) = √

6 + μ − 3(6 + μ)−3/2. Panel (b) shows the total
norm N versus μ, along with its dashed-magenta TFA counterpart,
N = 2[

√
36 − μ2 + μ cos−1(−μ/6)]. In these panels, as well as in

Fig. 7(a) below, red solid and black dashed segments represent stable
and unstable GSs in the first and second bandgaps, respectively, while
the green dotted segment designates a region of alternate stability and
instability in the second bandgap. The red dotted segment near the
right edge of the first bandgap designates a region of alternating stable
GSs and ones weakly unstable against oscillatory perturbations. (c)
The alternation of the stability and instability in the green dotted
segment of (b). Here, red triangles and black circles represents stable
and unstable GSs, respectively. (d) The alternation of the stability and
weak oscillatory instability in the red dotted segment of (b). Here,
and also in Fig. 7(c), red triangles and blue filled circles represent
stable GSs and ones subject to the weak instability, respectively.

green dotted segment, which contains alternating stable and
unstable solitons, as shown in detail in Fig. 4(c).

B. Off-site-centered spatially even antisymmetric gap solitons

For antisymmetric states, with U (x) = −V (x) (in the
system with b = 0), the above-mentioned effective single-
component lattice potential, generated by the Rabi lattice,
inverts its sign, taking the form of ε cos (2x). Accordingly,
off-site-centered antisymmetric GSs tend to minimize their
energy by placing two density maxima at potential-minima
points, x = ±π/2, which gives such solitons a chance to be
stable. A typical example of a stable antisymmetric GS with
the off-site-centered spatially even shape is shown in Fig. 6.
The stability of this GS species is summarized in Fig. 7(a),
which demonstrates that they are stable solely in the first
finite bandgap [the instability in the second finite bandgap
is illustrated by Fig. 6(d)]. Similar to the situation shown for
the on-site-centered symmetric GSs in Fig. 4(b), at the right
edge of the bandgap there is a narrow segment of alternating
stability and weak oscillatory instability, whose structure is
displayed in detail in Fig. 7(c).
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FIG. 5. An example of a weakly unstable GS with μ = 0.32, be-
longing to the red dotted segment near the right edge of the first finite
bandgap in Fig. 4. (a) Unstable eigenvalues of small perturbations
are complex with small imaginary parts. (b, c) Direct simulations
corroborate the weak oscillatory instability of the soliton, which keeps
its localized shape. (d) The weak instability is additionally illustrated
by the time dependence of squared amplitudes of both components
of the same solutions.

C. Other types of symmetric and antisymmetric gap solitons

The system with b = 0 supports off-site-centered antisym-
metric GSs with the spatially odd shape, in addition to their
even counterparts considered above. An example, and the
family of such solitons in the (μ,N ) plane, are displayed in

FIG. 6. Panels (a) and (b) display a typical stable off-site-centered
antisymmetric spatially even GS for μ = −2, which falls into the
first finite bandgap. (c) Direct simulations (with the initial random-
amplitude perturbation at the 5% level) of the evolution of the
same soliton, which corroborate its stability. (d) Simulations of the
perturbed evolution of the GS of the same type, but belonging to
the second finite bandgap, with μ = 2, demonstrate that this unstable
soliton is finally transformed into a spatially confined turbulent state.

FIG. 7. (a) Total norm N versus chemical potential μ for off-
site-centered antisymmetric spatially even GSs, cf. Fig. 4(b) for the
on-site centered symmetric solitons. (b) The N (μ) curve for the family
of off-site-centered antisymmetric spatially-odd GSs. Here, the red
and black dashed curves refer to unstable solitons which evolve,
respectively, into robust breathers [see Fig. 8(c)], or into a confined
turbulent state shown in Fig. 8(d). (c) The detailed structure of the
red-dotted segment with alternate stability and instability in panel
(a). The red triangles and blue filled circles label stable and weakly
unstable solutions, respectively.

Figs. 8 and 7(b), respectively. The conclusion of the analysis is
that the family is completely unstable in both first and second
finite bandgaps. Further, direct simulations demonstrate that,

FIG. 8. (a, b) An example of an unstable off-site-centered
spatially-odd antisymmetric GS for μ = −3 (which belongs to the
first finite bandgap) with b = 0 and ε = 6. (c) The perturbed evolution
(with initial random perturbations at the 5% level) of the same soliton
shows its transformation into a persistent breather. (d) Simulations of
the perturbed evolution of the GS of the same type, but with μ = 2
(which falls into the second finite bandgap) show its transformation
into a confined turbulent mode.
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in the first bandgap, the instability transforms the stationary
spatially odd GSs into persistent breathers, see Fig. 8(c),
while in the second bandgap, the unstable GSs evolve into
apparently turbulent spatially confined modes, as shown in
Fig. 8(d). In either case, the dynamical states produced by the
instability keep the spatially odd shape, as indicated by the
persistence of zero amplitude at the midpoint in Figs. 8(c)
and 8(d).

Additional types of solitons have been found too: on-
site-centered antisymmetric, off-site-centered spatially even
symmetric, and off-site-centered spatially odd symmetric
GSs. Due to the nature of the present system, in which
the GSs are supported by the Rabi lattice, these additional
species are actually tantamount to the three species considered
above. Indeed, the on-site-centered symmetric GS is obviously
equivalent to an antisymmetric one which is centered at the site
shifted by half a spatial period, their stability being identical
too. The same pertains to off-site-centered spatially even and
odd symmetric GSs, which may be easily converted into their
antisymmetric counterparts.

IV. ON-SITE-CENTERED GAP SOLITONS IN THE
ASYMMETRIC SYSTEM

A. Numerical results

It is relevant to stress that, while GSs in symmetric
dual-core systems with the usual lattice potential and constant
intercore coupling readily feature spontaneous breaking of the
(anti-)symmetry between their components, followed by gen-
eration of asymmetric solitons, provided that the nonlinearity
strength exceeds a certain critical value [20,21], this effect is
not observed in the present system, i.e., all the GSs, both stable
and unstable ones, are either symmetric or antisymmetric with
respect to the two components. In this section, we report results

FIG. 9. Examples of stable on-site-centered asymmetric GSs with
ε = 6, and fixed chemical potential μ = −3.5 : (a) b = 0.2; (b) b = 1;
(c) b = 3. Fields U (x) and V (x) with larger and smaller amplitudes
are shown by blue and green lines, respectively.

FIG. 10. (a, b) Direct simulations of the perturbed evolution of
a stable asymmetric on-site-centered GSs with (b,μ) = (3, − 3.5) .
(c, d) The same for an unstable asymmetric soliton, with (b, μ) =
(3, − 1.5).

for the most fundamental on-site-centered asymmetric GSs,
which are naturally produced by the asymmetric system, based
on Eqs. (1) and (2) with b �= 0 (obviously, it is sufficient to
consider b > 0). We do not aim here to consider other GS
species in the asymmetric system.

Examples of stable asymmetric GSs are presented in Fig. 9.
With the increase of b, the shapes of the U (x) and V (x)
components become less localized and develop undulations
in their tails. Examples of the perturbed evolution of stable
and unstable asymmetric GSs are further shown in Fig. 10.
Different from the case of symmetric on-site-centered GSs,
asymmetric ones which are unstable tend to develop a chaotic
state expanding to the entire spatial domain, cf. Figs. 3(c)
and 3(d).

Results obtained for families of asymmetric GSs and their
stability are summarized in Fig. 11, by means of N (μ) and
R(N ) curves [recall R is the asymmetry ratio defined in

FIG. 11. (a) Total norm N of asymmetric on-site-centered GSs
versus chemical potential μ, at ε = 6 and fixed values of the
asymmetry coefficient: b = 1, b = 3, and b = 5. (b) Asymmetry
ratio, R, defined as per Eq. (9), versus N , for the same soliton families.
The family with b = 0, which has R ≡ 0, is included too, for the
completeness’ sake. In these panels, solid and dashed lines represent
stable and unstable GSs, respectively, while the dotted segments
designate regions of alternate stability and instability.
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FIG. 12. Panels (a), (b), and (c) show the detailed structure
of regions with alternating stable and unstable on-site-centered
asymmetric GSs in the regions shown by the dotted line in Fig. 11(a),
for b = 1, 3, and 5, respectively. Red triangles and black circles
represent, severally, stable and unstable solitons.

Eq. (9)]. These dependencies suggest that the asymmetric
GSs are more stable at lower values of the total norm, N ,
and stability regions shrink with the increase of asymmetry
coefficient b and asymmetry ratio R. Similar to the symmetric
system (b = 0), here there also exist regions of alternate
stability and instability, which are designated by dotted
segments in Fig. 11 . The detailed structure of these segments
is rendered in Fig. 12.

In Fig. 13, we have collected results produced by the
stability analysis for the on-site asymmetric GSs in the planes
of (b,μ) and (N,b). Figures 13(a) and 13(b) demonstrate that
the stability area originally shrinks with the increase of the
asymmetry coefficient, b, and then stays narrow but nearly
constant. In the (N,b) plane, the stability region also narrows
at first with the increase of b, but then it broadens at still
larger b.

FIG. 13. Stability diagram for on-site-centered asymmetric GSs
in the planes of (b,μ) (a) and (N,b) (b). The red and gray colors
designate, respectively, the stability area, and the one of alternate
stability and instability. GSs do not exist in the top blank areas in
panels (a). In the bottom blank area in (a) and blank area in (b), there
exist completely unstable GSs.

B. A semianalytical approximation

In the limit of b 	 1, the two-component system, based
on Eqs. (1) and (2) can be easily reduced to a single equation
with the usual lattice potential, by means of an approximation
similar to that recently elaborated for the two-component BEC
under the action of strong Zeeman splitting in Ref. [37]. The
approximation is based on the fact that large b gives rise
to solutions with chemical potential μ = −b + δμ, which
implies |δμ| 
 b . Accordingly, the solutions are looked for in
the form of {u(x,t),v(x,t)} = exp (ibt){ũ(x,t),ṽ(x,t)}, where
the remaining t-dependence in ũ and ṽ is slow, in comparison
with exp(ibt). Then Eq. (2), in which the the XPM terms
may be restored, as per Eq. (3), readily yields an approximate
expression for the small v component:

ṽ ≈ ε cos(2x)

2b + σg|u|2 ũ ≈ ε

(
1

2b
− σg

4b2
|u|2

)
cos(2x)ũ. (12)

To justify the expansion of the the fraction in this expression,
it is assumed that the soliton’s peak density is not too large,
viz.,

(|u|2)max 
 b/|g| (13)

(this condition is easily satisfied for large b). Then, the
substitution of this approximation in Eq. (1) leads to a single

FIG. 14. Panels (a1, a2) and (b1, b2) present typical examples
of stable GSs produced, respectively, by the full system of Eqs. (1)
and (2), and by the semianalytical approximation which amounts
to the single Eq. (14), for (b,μ) = (10, − 9.1). Results of direct
simulations, initiated by the full two-component solution, and by the
single-component approximation, are displayed, for the u component,
in panels (a3) and (b3), respectively.
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equation for ũ(x,t), with an effective lattice potential:[
i

∂

∂t
+ 1

2

∂2

∂x2
− σ

(
1 + ε2g

8b2

)
|ũ|2 + ε2

2b
cos2(2x)

]
ũ = 0

(14)

[it is easy to see that, to obtain the nonlinearity coefficient in
Eq. (14) under the above condition (13), one may substitute
cos2(2x) by its average value, 1/2, while this substitution is
not relevant in the effective lattice potential]. In turn, Eq. (14)
with σ (1 + ε2g/8b2) > 0 is the standard equation which gives
rise to the usual GSs [2,3]. Note that the renormalization of
the nonlinearity coefficient in Eq. (14), represented by the
term proportion to the XPM coefficient, g, is essential if the
Rabi lattice is strong enough, namely, |g|ε2 ∼ 8b2, which is
compatible with the underlying condition b 	 1.

This approximation may be naturally named semianalyti-
cal, as its analytical part replaces the underlying system of two
Gross-Pitaevskii equations, coupled by the Rabi lattice, by
the single standard Eq. (14), whose solution is not, generally,
available analytically, but is known very well in the numerical
form [2,3,36]. Comparison between a typical stationary GS
predicted by this approximation and its counterpart produced
by the numerical solution of Eqs. (5) and (6) is presented in
Fig. 14. Obviously, the semianalytical and numerical profiles
are close to each other, and both are stable. In fact, the broad
modes displayed in this figure resemble the known nonlinear
states generalizing GSs in the usual single-component model,
in the form of “truncated Bloch waves”, which were demon-
strated experimentally in Ref. [38] and explained theoretically
in Ref. [39].

V. CONCLUSION

The objective of this work is to introduce the model of two-
component gap solitons, based on two GPEs (Gross-Pitaevskii
equations) with self-repulsive nonlinearity, coupled by linear
terms that are subject to the spatially periodic cosinusoidal
modulation (Rabi lattice). The system can be implemented
in binary BEC with the superimposed standing wave of a
resonantly-coupling electromagnetic field, and in the bimodal
light propagation in twisted waveguides. We have demon-
strated that this setting gives rise to stable two-component
GSs (gap solitons), in the absence of periodic potentials which

are necessary for the existence of GSs in usual models. Several
types of the GSs have been found, including on-site-centered
symmetric and antisymmetric modes, and spatially even and
odd off-site-centered symmetric and antisymmetric ones. Both
symmetric and antisymmetric GSs are stable chiefly in the first
finite bandgap, as well as in a small segment of the second
bandgap. These findings are, roughly, similar to what was
recently found for the stability of usual GSs in the single-
component model with a periodic potential [36]. A noteworthy
finding is the alternation of stable and unstable on-site-centered
symmetric GSs in the latter segment. For on-site-centered
symmetric and off-site-centered spatially even symmetric and
antisymmetric GSs, there also exists a narrow segment of
alternating stability and weak oscillatory instability near the
right edge of first finite bandgap. Unstable GSs spontaneously
transform into robust breathers or spatially confined turbulent
states. On-site-centered GSs were found in the asymmetric
system too, where segments featuring the alternate stability
exist as well. Thus, the alternation of stability and instability
of GSs, which was not reported in previously studied models,
is a characteristic generic feature of the present system. It is
worthy to note that the stability area of the on-site-centered
asymmetric GSs originally shrinks with the increase of the
asymmetry coefficient, b, but then it expands with the further
increase of b, in terms of the total power of the solitons. In the
limit of b 	 1, an analytical approximation makes it possible
to transform the system into a single GPE with an effective
periodic potential and respective GS solutions.

A natural extension of the present analysis should produce a
detailed analysis of the system including the XPM interaction
between the two components. A challenging direction for
further work is a two-dimensional version of the present
system. In that case, two-component solitary vortices may be
looked for, in addition to fundamental GSs. In fact, off-site-
centered spatially odd GSs, which are considered above, are
one-dimensional counterparts of the two-dimensional vortices.
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