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Delayed collapses of Bose-Einstein condensates in relation to anti-de Sitter gravity
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We numerically investigate spherically symmetric collapses in the Gross–Pitaevskii equation with attractive
nonlinearity in a harmonic potential. Even below threshold for direct collapse, the wave function bounces off
from the origin and may eventually become singular after a number of oscillations in the trapping potential. This
is reminiscent of the evolution of Einstein gravity sourced by a scalar field in anti de Sitter space where collapse
corresponds to black-hole formation. We carefully examine the long time evolution of the wave function for
continuous families of initial states in order to sharpen out this qualitative coincidence which may bring new
insights in both directions. On the one hand, we comment on possible implications for the so-called Bosenova
collapses in cold atom Bose–Einstein condensates. On the other hand, Gross–Pitaevskii provides a toy model
to study the relevance of either the resonance conditions or the nonlinearity for the problem of anti de Sitter
instability.
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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE), sometimes
called the Gross–Pitaevskii equation (GPE), is a paradigmatic
model for nonlinear systems. Different versions have been used
in diverse contexts including, e.g., optics [1,2], plasma physics
[3], and even cosmology [4,5]. It describes with precision most
of the physics of Bose–Einstein condensed (BEC) dilute gases
[6,7]. With an attractive nonlinearity, the wave function can
self-focus and collapse, diverging at some point of space in
finite time [8]. This can happen in cold atom BECs when
the scattering length a controlling the effective atom-atom
interaction is negative [9–11]. The phenomenon, sometimes
nicknamed “Bosenova” because of the subsequent explosion,
has been demonstrated in a series of experiments which have
attained a notable degree of control [12–15] and modeled using
the GPE [16–20].

There is a vast literature on collapses in the GPE (or
NLSE), comprising analytic results, numerics, and experi-
ments [8,21,22]. Altogether, the standard lore is that collapse
happens as soon as some parameter of the initial state; for
example, the overall energy or the peak value, surpasses
some threshold. Near collapse, solutions typically display
self-similarities [8,23].

In a totally different arena, collapses have also been studied
in general relativity (GR), in relation to black-hole (BH)
formation. In asymptotically flat space, a critical value for
a given parameter marks the limit between collapse and
dispersion to infinity of the initial matter distribution [24].
Remarkably, solutions at threshold also display extremely
interesting self-similarities both of discrete and continuous
types [25,26].

In recent times, a modified version of this gravitational
phenomenology has been explored in anti de Sitter (AdS),
the maximally symmetric spacetime with negative curvature.
The most dramatic difference is that space becomes effectively
bounded. Initial conditions that do not form a BH right away
reach the boundary and bounce, falling back again towards the
origin with a different radial profile. The surprising result of

Ref. [27] is that, no matter how small the initial amplitude,
collapse eventually happens after a number of bounces of the
matter field against the boundary. The initial claim was that
the underlying mechanism is an energy cascade triggered by a
fully resonant spectrum of the linearized perturbations. Later,
the picture has proved to be more intricate and has thereby
become a subject of intense research. The interested reader
may consult Refs. [28,29] for further details.

It seems natural to look for similarities with other nonlinear
systems. In this work, we have set up an efficient numerical
code for radially symmetric long-time simulations of the GPE
with attractive nonlinearity. To reproduce generic features of
the scalar field in AdS, we consider a quadratic potential whose
spectrum is fully resonant. Moreover, this potential typically
models BEC traps and thus the framework is closely related to
Bosenovas. Mathematical properties of the GPE in a harmonic
trap have been studied elsewhere [30–32]. Our setup is similar
in spirit to the evolution of a probe scalar in AdS [33].

We perform series simulations in a different number of
dimensions, d, fixing the initial condition for the wave function
to be a Gaussian and studying the outcome for varying
amplitudes and widths. For large amplitudes, the attractive
interaction is strong and causes a prompt collapse. Below
threshold for direct collapse, a singularity is reached after a
number of oscillations. We refer to these as “delayed collapses”
following the nomenclature from the GR context [34]. We
see a stepwise structure of delayed collapses. In the physical
d = 3 case, our plots resemble those of wide initial Gaussians
in AdS [35], or those of theories with a mass gap for BH
formation, such as AdS3 [36], Einstein–Maxwell-scalar [37],
or Einstein–Gauss–Bonnet [38,39]. There are plateaus for
which collapses occur after a number of bounces and transition
regions where the collapsing time becomes a chaotic function
of the initial amplitude. Below some amplitude, we do not
find collapse in our simulations. In d = 7, our results become
surprisingly similar to those of Ref. [27].

We close this introduction with a clarification. Our work is
somewhat related, in spirit, to analog gravity [40], looking
for systems that reproduce general relativistic phenomena
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and discussing laboratory experiments that can mimic aspects
of gravity, such as, e.g., Ref. [41] (see Refs. [42,43] for a
discussion of anti de Sitter in this context). Nevertheless, we
underscore that our approach is different. We focus on the
underlying nonlinear dynamics of certain processes rather
than looking for direct connections with the gravitational
formalism or the dynamics of probes in curved spaces. Despite
analyzing very different equations, we show that there are
compelling similarities in the results. Our work suggests
that the remarkable delayed collapse phenomenology recently
found in gravity might be more general than initially expected,
opening the possibility of cross fertilization between different
fields of physics.

II. FORMALISM

The wave function ψ(t,r), evolving in a d-dimensional
harmonic isotropic trap V (r) = r2

2 with cubic focusing non-
linearity is governed by

i∂tψ = −1

2
∂2
r ψ − d − 1

2r
∂rψ + 1

2
r2ψ − |ψ |2ψ. (1)

Without loss of generality, we use dimensionless quantities.
In the appendix, we give the well-known rescaling from
the dimensionful BEC variables for d = 3. The norm and
Hamiltonian are conserved

N = Sd

∫ ∞

0
rd−1|ψ |2dr, (2)

H = Sd

2

∫ ∞

0
rd−1(∂rψ

∗∂rψ + r2|ψ |2 − |ψ |4)dr, (3)

where Sd is the integral over the angles, e.g., S2 = 2π,S3 =
4π . An important indicator is the variance V = 〈r2〉ψ =
Sd

∫ ∞
0 rd+1|ψ |2dr . The value V = 0 is tantamount to reaching

collapse, in that all the energy gets concentrated at the origin
[8]. However collapses can also occur with V �= 0. A simple
calculation shows that V satisfies the following virial identity,
which is a straightforward generalization of the standard
one [8]:

d2V

dt2
= 4H − 4V − (d − 2)Sd

∫ ∞

0
rd−1|ψ |4dr. (4)

For our purposes, the significance of the variance is twofold.
First, it allows us to estimate how concentrated the wave
function around the origin is and, as stated above, it can be
an indicator of collapse. Second, we can use the identity (4) as
a quality check for monitoring the accuracy of the numerical
evolution (see the appendix).

To study the problem from the point of view of the
formalism of weak turbulence [44,45], the evolution equation
can be rewritten in terms of modes:

ψ(t,r) =
∞∑

n=0

αn(t)e−iμ
(d)
n tf (d)

n (r), (5)

where the f (d)
n (r) are the orthonormal basis of eigenfunctions

of the linear problem which we give for completeness in the
appendix. Inserting Eq. (5) into Eq. (1), projecting on the
f (d)

n (r), and assuming that the rate of change of the αn is much

less than that of the complex exponentials, one finds

α̇l(t) = i

∞∑
i=0

∞∑
j=0

∞∑
k=0

Cijklαi(t)αj (t)α∗
k (t), (6)

where

Cijkl = δi+j,k+lSd

∫
rd−1f

(d)
i (r)f (d)

j (r)f (d)
k (r)f (d)

l (r)dr.

(7)
This multiscale analysis is standard and goes under different
names in the literature: rotating wave approximation, two-
time formalism [46], averaging [47], etc. We find that the
two conserved quantities (2) and (3) (as in Ref. [33]) and the
coincidence of the only resonant channel, i + j = k + l, relate
closely the GPE formalism to the AdS setup [48,49] and imply
the coexistence of direct and inverse energy cascades.

An important ingredient is the family of initial conditions.
We use Gaussians of width σ and amplitude ε:

ψ(t = 0,r) = εe−r2/σ 2
. (8)

The choice is motivated by simplicity and the discussion is not
significantly affected by this particular shape. Equation (8)
gives the ground state of the linear problem in which the
harmonic potential has an extra 4σ−4 factor. Hence one can
think of the processes we simulate as quenches in which
at t = 0 the linear and/or nonlinear potentials are abruptly
modified, initiating the dynamical evolution. In BECs, this
is accomplished by tuning external fields which not only
constitute the harmonic trap but also severely affect the
atom-atom scattering length near Feshbach resonances [50].

III. NUMERICAL ANALYSIS

Our work relies on numerical integration of Eq. (1). The
reader interested in the methods can find all the details in
the appendix. We start by briefly commenting on d = 2. In
BECs, this limit is achieved with a strongly anisotropic trap
leading to a disk-shaped condensate [51]. In the absence of
external potential, the Townes profile [52,53] marks the limit
between directly collapsing waves and those dispersing to
infinity. The harmonic potential changes the picture, permitting
stable stationary solutions [54]. We have not found any set of
initial conditions yielding the sought-after structure of delayed
collapses and below-threshold solutions remain regular for all
times.

In d = 3 without the trapping potential, there is also a
sharp separation between direct collapse and dispersion. With
a harmonic potential, apart from having periodic stationary
solutions [55,56], delayed collapses are possible. Figure 1
shows several examples. Each line of the plot is found by
numerically integrating Eq. (1) with initial conditions (8).
The different initial conditions have all the same width σ

but different values of the height ε. We represent the value
of |ψ |2 at the origin. Collapse happens when this quantity
diverges. For each initial condition, we can therefore compute
the time of collapse tc. There is an oscillating behavior which
can be heuristically understood in terms of the linear problem
(see the appendix), for which it can be immediately checked
that |ψ(r)|2 returns to itself with time period π . The same
period is directly read from Eq. (4), since the last term is not
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FIG. 1. Examples of delayed collapses in d = 3. We depict the
value of |ψ(t,r = 0)|2 for σ 2 = 2/5 and varying ε. In each case,
the wave function promptly collapses after hitting the upper limit of
the plot. In panel (a), ordered by growing tc, we have ε1 = 3.1286
(green line), ε2 = 3.1285 (brown), ε3 = 3.1280 (purple), ε4 = 3.1277
(magenta), and ε5 = 3.1273 (red). Notice the approximate overlap
for long ranges of t . In panel (b), ε6 = 3.1270 (blue line) results in
collapse after many bounces. We remark that the timescale of both
graphs is different.

present in the linear case. When the nonlinear term is present,
the oscillation is only approximate and the “period” for which
maxima appear in Fig. 1 is not exactly π . At each bounce inside
the harmonic potential, the spatial profile of |ψ |2 is modified
and, eventually, this can result in a delayed collapse after
several or many swings. This number of oscillations can be
adjusted by fine-tuning the initial conditions. We call delayed
collapses those which happen after one or more oscillations,
like all the examples in the figure.

In Fig. 2, we plot the time of collapse, tc, as a function
of ε for fixed σ 2 = 1/2. Each red dot corresponds to a full
simulation of Eq. (1) for which we find tc as in Fig. 1.
Necessarily, the computation has to be stopped at some value
of t = tcomp. If collapse has not been found by that time,
it means that tc > tcomp or, possibly, there is no collapse in
any finite time. In Fig. 2 we have taken tcomp = 140 and the

FIG. 2. Time of collapse for a family of initial conditions with
σ 2 = 1/2 in d = 3. Prompt collapse occurs for ε > 2.891. The
resolution of the peak at the transition ε ∼ 2.889 exhibits a chaotic
structure (in the inset).

FIG. 3. Sectors for prompt and delayed collapse in d = 3. The
dashed line signals the transition from initial conditions where
d2V/dt2|t=0 changes from negative (above) to positive (below). All
delayed collapses happen with V �= 0.

noncollapsing points are represented by the dotted line going
up the top of the graph.

There are three distinct regions in parameter space. For large
ε (ε > 2.891 in the case of Fig. 2), there is direct collapse and
tc decreases with growing ε. For small ε (ε < 2.755 in the
case of Fig. 2), solutions stay regular for t < tcomp. There
is a noteworthy intermediate transition region where some
step structure is apparent (cf. 2.755 < ε < 2.891 in Fig. 2).
Roughly speaking, each step corresponds to a number of
bounces in the harmonic potential. At the boundary between
steps, tc presents a bump. Our plot shows remarkable features
in common with those found in different AdS setups (cf. Fig. 9
in Ref. [35], Fig. 3 in Ref. [57], Fig. 16 in Ref. [37], or Fig. 2 in
Ref. [38]). The chaotic character of the curve at the bumps has
been recently established in Ref. [39]. An analogous detailed
analysis for this case would be of interest but extends way
beyond the scope of this paper and is left for future work.
The common feature of these examples seems to be the lack
of fully resonant linearized perturbations around a standing
wave [58].

Figure 3 depicts a map of the results obtained with different
ε and σ , found by repeated simulations of Eq. (1) with different
initial conditions (notice that the computations leading to Fig. 2
correspond to a vertical line at fixed σ = 0.707 around the
delayed collapse region). The transition line between prompt
and delayed collapse can be defined with precision. On the
other hand, regularity of evolution can only be stated within a
given computational time, which we have fixed to tcomp = 100
for Fig. 3. The delayed collapse window is certainly narrow in
the two-parameter space of initial conditions.

Tuning ε is equivalent to tuning the scattering length in the
cold atom framework. Thus, Fig. 2 depicts the same observable
as, e.g., Fig. 2 of Ref. [14]. Our work is devoted to the
theoretical analysis of Eq. (1) and we do not intend here to
make a realistic description of experimental situations where,
typically, anisotropies and nonlinear losses should be taken
into account. In any case, it is interesting to make order of
magnitude estimates of the parameters. We take Fig. 2 of
Ref. [14] for reference. There, the harmonic trap is mildly
anisotropic with νradial = 17.5 Hz and νaxial = 6.8 Hz. Let us
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take a fiducial value of that order of magnitude ν = 14 Hz.
The initial condition is the ground state of the linear problem;
namely, σ = √

2. In Fig. 3, it is shown that the delayed collapse
window in parameter space closes around σ = 1 and therefore
the original atom cloud of Ref. [14] is too wide to produce the
behavior described here. Let us however compute the range of
ε corresponding to the horizontal axis of Fig. 2 of Ref. [14]. The
relation between the physical and the adimensional quantities
is provided in the appendix and we take N̄ = 6000 for the
number of atoms and m = 1.4 × 10−25 kg (for 85Rb). It is
straightforward to show that 4 < |a|/a0 < 60, where a0 is the
Bohr radius and corresponds to 1 < ε < 3.8. The situation
described in the present paper could be thus approached
by taking an isotropic trap and starting with a narrower
profile. Experimentally, smaller values of the initial σ should
be attainable by taking a tighter trap for t < 0. At t = 0,
the trap can be ramped down while the value of |a| is
ramped up. Imagine a situation with σ 2 = 1/2 and the rest
of parameters fixed as above. The 2.75 < ε < 2.90 window
of our Fig. 2 becomes 3.8 < |a|/a0 < 4.3 in physical terms,
values that are well within reach with Feshbach resonance
techniques.

As mentioned above, our interest in looking for delayed
collapses in GPE was sparked by the similar problem in the
gravitational context of a scalar field coupled to gravity and
a negative cosmological constant. Now we can reverse the
lore and ask ourselves what we can learn from this nonlinear
system in regard to the important question of the instability
of AdS. In fact, one advantage of this simple equation is the
fact that we can tweak separate features independently, like the
property of full resonance or the character of the nonlinearity.
These features are utterly mixed in the gravitational setup and
are difficult to disentangle [59].

There is growing consensus that the weak turbulent in-
stability of AdS, i.e., that initial data always collapse in
the limit ε → 0, is not solely caused by a fully resonant
spectrum. This being a necessary condition, it needs to be
supplemented with appropriate asymptotics for the coupling
coefficients Cijkl (7) at large values of i,j,k,l → ∞ in a
resonant channel. This should catalyze efficient energy transfer
to the high-frequency modes. In the three-dimensional GPE,
we have checked that Cin,jn,kn,ln behaves with n → ∞ as a
power nγ with γ = −0.5. This is substantially lower growth
than that observed in AdS4 where γ = 1 in this channel [60]
[in order to compare the resonant system in AdS with ours in
Eq. (6), the modes αi need to be rescaled to αi/

√
ωi ; this shifts

γ = d → d − 2].
A natural question is what minimal twist could we perform

in order to enhance the asymptotics, and whether this would
have the expected impact on the collapse at low values of the
initial amplitude. One possibility is to include derivative terms
(derivative couplings appear in the effective equations for a
scalar field coupled to gravity). In fact, a term of the form
|∂rψ |2ψ added to the GPE yields γ ≈ 0.5. The numerical
evolution of the system with this additional term becomes
unstable and we have deferred its study.

Another artificial but efficient way to enhance γ is to
formally extend the GPE to higher dimensions. In Fig. 4, we
depict the behavior of Cnnnn for n � 300 and d = 2, . . . ,7. In
the large-n limit the exponent γ behaves with the dimension

FIG. 4. Doubly logarithmic plot of Cnnnn as a function of n for
different values of d . In the inset, we depict Cn,4n,2n,3n, showing that
they present a similar behavior.

(see appendix)

γ = d

2
− 2, (9)

a fact that presumably causes the different qualitative behavior
between d = 2 and d = 3. This suggests that turbulence and
collapse are favored at large d. This expectation is borne out
by the results of Fig. 5, which shows a neat step structure for
tc(ε) when d = 7, resembling AdS4 [27].

We also display the results with a slightly modified potential
V (r) = 1

2 rα , where α = 2 corresponds to the harmonic case.
Changing α modifies the eigenvalues of the linear problem,
breaking full resonance. As shown in Fig. 5 this has a dramatic
impact on the time of collapse at low initial amplitudes.

IV. SUMMARY OF RESULTS AND CONNECTIONS
TO ANTI DE SITTER GRAVITY

Collapses in GPE-NLSE have been thoroughly studied but
are still a fascinating topic. We have considered a harmonic

FIG. 5. Curve of tc vs ε for d = 7 with σ 2 = 1
2 and V (r) = 1

2 rα .
Two nonresonant cases α = 1.9 and α = 2.1 present limiting values
of ε below which no singularity is reached in computational time.
The harmonic resonant case α = 2 [Eq. (1)] shows a regularly spaced
set of steps extending to much lower values of ε.
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FIG. 6. Temporal evolution of the spectrum En = μn|αn|2 for
some low-lying modes until collapse. Panel (a) corresponds to an
example with d = 3. Panel (b) corresponds to an example with d = 7.
The changes in the spectrum mostly take place around the time when
the wave function periodically peaks at the origin. This periodic
energy transfer towards the ultraviolet underlies the stepwise patterns
of collapse in Figs. 2 and 5.

trap in different numbers of dimensions. We have studied
the long-time evolution of the wave function for families of
Gaussian initial conditions depending on two parameters. For
long-time evolution we mean that many bounces are allowed
to take place by evolving up to a time tcomp � π , which is
much larger than that of an oscillation in the potential (we
have seen that nonlinear oscillations do not have exactly a
period π but are associated to time spans of that order). In
d = 3, we have seen that there are initial conditions that lead to
delayed collapses, where the divergence occurs after a number
of oscillations; see Fig. 1. On average, the time of collapse
grows with the inverse of the norm of the initial wave function,
but nonmonotonically and with a strong sensitivity to the initial
conditions. This happens in a region of parameter space which
separates direct collapse from absence of collapse; see Figs. 2
and 3. In d = 7, delayed collapses are also present, albeit of a
different type. A neat step structure appears (cf. Fig. 5), which
extends collapse to smaller values of ε. This happens thanks to
a fully resonant spectrum and efficient energy transfer between
modes, associated with rapidly growing Cijlm couplings; see
Fig. 4.

For completeness, in Fig. 6 we plot the behavior of the
energy spectrum as a function of time for some of the modes.
We do not include more modes for clarity of the plot. Besides

the usual direct cascade that feeds the higher modes from
the lowest ones, we also observe an inverse cascade. This
is a consequence of the simultaneous conservation of two
independent quantities, N and H , and matches the similar
behavior observed in the resonant system obtained from
averaging the AdS dynamics (see Sec. III in Ref. [49]).

The transitions between steps in Fig. 6 happens at the time
when the pulse comes close to the origin. A similar structure is
seen in AdS and stems from the fact that the magnitude of the
wave function increases by orders of magnitude, enhancing
the nonlinear effects at those instants of time. In d = 7,
this process is very much ordered and seems to end up
inexorably in a collapse whereby a polynomially decaying
spectrum is achieved. In d = 3 the ordered structure is less
apparent and the process becomes a statistical wave turbulence
effect.

One may wonder is how generic is the described behavior.
One intriguing answer is given by comparing with a scalar field
in AdS gravity which shows remarkable similarities. Indeed,
the twofold structure with (partially) chaotic and ordered
delayed collapses has been described in that context; see the
references provided in the previous section.

In summary, we have found an interesting structure in the
space of evolutions leading to collapse, within the simple
setup of Eq. (1). There are neat similarities with those
encountered in the context of gravitational dynamics in AdS.
Since the inherent physics and the evolution equations are
rather different in both cases, a natural question is what
underlying mechanisms are at work. Both cases have an
attractive nonlinearity that can bunch together the energy and
produce a collapse that alters the otherwise smooth evolution.
The harmonic potential and the AdS boundary act as boxes that
impede the escape of the perturbation to infinity and cause
the bounces. Moreover, they both provide a fully resonant
spectrum for the linear modes. In both cases, there is an
effective equation (6) and the resonant channels and conserved
quantities coincide. These observations might be useful to
identify other frameworks in which similar phenomena take
place. Nevertheless, solid conclusions can only be derived
from full-fledged numerical analysis.

Turbulence and energy cascades constitute an active area of
research in the context of the GPE; see, e.g., Refs. [45,61–63],
and especially Ref. [64] for a recent review with references.
Our setup differs from these works in several aspects, including
the presence of the harmonic term and the assumed radially
symmetric evolution. It could be interesting to explore whether
insights from the quoted studies have implications in the
present context.

V. OUTLOOK

The GPE-NLSE is an ubiquitous formalism in nonlinear
waves, and this fact can pave the way for tabletop experiments
with qualitative analogies to AdS gravity. The experimental
control reached in BECs might provide an ideal framework to
realize the delayed collapse phenomenology. Our formalism
is not a complete description of any such system since, for
instance, it does not include anisotropies or losses by three-
body recombinations. However, our results suggest that it
might be worth revisiting, theoretically and/or experimentally,
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the transition from a stable BEC with attractive nonlinearity
to a Bosenova collapse (cf. Fig. 2 of Ref. [14]). Depending
on the width of the initial wave function, tc can decrease with
the strength of the interaction |a|, which is a counterintuitive
behavior. Moreover, there are narrow regions of parameter
space where tc changes chaotically. Whether these properties
stemming from Eq. (1) can be consequential in a realistic setup
is a challenging question for the future.

Our model can also be used as a mathematical tool to
provide new insights to the problem of AdS instability.
The GPE evolution equation is much simpler than those of
AdS gravity but, as we have discussed, its study might be
instrumental in understanding which peculiarities of general
relativity are essential for the delayed collapse behavior
and which are shared by other kinds of nonlinear systems.
Moreover, it provides turning knobs that can be used to
investigate which qualitative features (e.g., full resonance,
efficient turbulent cascades, etc.) underlay the remarkable
nonlinear dynamics that has been discovered in the AdS
context in recent years. For instance, the behavior of the Cijkl

coefficients (7) can be tuned by considering larger dimensions,
nontrivial spatial profiles for the nonlinear coupling, or other
generalizations of Eq. (1). On the other hand, full resonance
can be broken by slightly modifying the potential. We hope
that a detailed scrutiny of these issues will shed new light on
this fascinating nonlinear dynamics.
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APPENDIX

In this appendix we lay out some technicalities related to the
main text. We write down some useful well-known equations
concerning the dimensionful Gross–Pitaevskii equation (GPE)
and the radially symmetric eigenmodes of a harmonic potential
in d � 2 dimensions. Then, we specify some details regarding
the employed numerical methods and cross-checks. Finally,
we explain how the asymptotic form of the Cijkl coefficients
can be derived from the integrals.

1. The d = 3 dimensionful Gross–Pitaevskii equation

The Gross–Pitaevskii mean-field description of a dilute
Bose–Einstein condensate of bosons of mass m in an isotropic
harmonic potential of frequency ω is

ih̄∂t̃ ψ̃ = − h̄2

2m
∇̃2ψ̃ + mω2

2
r̃2ψ̃ + 4πh̄2a

m
|ψ̃ |2ψ̃, (A1)

where ∇̃2 is the three-dimensional Laplacian, a is the s-wave
scattering length which can be positive (repulsive interaction)

or negative (attractive interaction), and Ñ = ∫ |ψ̃ |2d3r̃ corre-
sponds to the number of bosons in the sample. Equation (1) is
recovered by appropriately rescaling t̃ , r̃ , and ψ̃ . The relation
between normalizations is

Ñ = 1

4π |a|

√
h̄

mω
N.

2. Eigenfunctions of harmonic oscillator

The angle-independent eigenfunctions of the linear quan-
tum harmonic oscillator with d � 2 are

ψn = e−iμ
(d)
n tf (d)

n (r), (A2)

with a fully resonant spectrum μ(d)
n = 2n + d/2 and

f (d)
n (r) =

√
n!�

(
d
2

)
πd/2�

(
d
2 + n

) L(d−2)/2
n (r2)e−r2/2. (A3)

The L
(d−2)/2
n are generalized Laguerre polynomials, � rep-

resents Euler’s gamma function and the multiplicative con-
stant is chosen to satisfy the orthonormality condition∫

f (d)
n f (d)

m ddr = δnm.

3. Numerical details and quality checks

In the region of delayed collapses, small changes in initial
conditions can lead to rather different results. Thus, a method
for fast, stable, and precise computation is needed and we
briefly describe here the one we have used. Our integration
algorithm relies on an explicit finite difference scheme con-
sistent with fourth-order accuracy and convergence. Spatial
derivatives are discretized with standard stencils, and time
evolution uses a fourth-order Runge–Kutta method. The
Courant factor c depends on the discretization density since
the equation is parabolic. Stability enforces this number to be
quite small. For 2w points in the spatial grid, we have used
c = 0.004 × 212−w with w = 12, . . . ,17.

At the origin, we ensure regularity by enforcing ∂rψ(t,r =
0) = 0. The harmonic potential confines the wave function
and therefore ψ decays exponentially with r . We have
checked that choosing rmax = 50 keeps ψ(rmax) ∼ 10−15 so
that setting its value to zero, and truncating r to a finite
interval 0 < r < rmax, does not affect the simulation. We also
performed computations by using a truly compact coordinate
r = z/(zmax − z) and found consistent results.

We have used the conservation of the norm (2), the
Hamiltonian (3), and the variance identity (4) as quality tests
to monitor the computation. For initial conditions of the form
(8), they take the values

N =
(π

2

) d
2
ε2σd,

H = d

2

(π

2

) d
2
ε2σd

(
1

σ 2
+ σ 2

4
− ε2

2
d
2 d

)
. (A4)

The value of the second derivative of the variance at t = 0 is

d2V

dt2

∣∣∣∣
t=0

= 2d
(π

2

) d
2
ε2σd

(
1

σ 2
− σ 2

4
− ε2

2
d
2 +1

)
. (A5)
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FIG. 7. A simulation with d = 3, ε = 2.79, w = 14, σ 2 = 1/2.
Panel (a) represents |ψ |2 at the origin. Panels (b) and (c) depict
the relative deviations for the norm and Hamiltonian, respectively.
Panel (d) compares the second derivative of the variance from the
numerical computation to that from the right-hand side of Eq. (4)
computed at each step. Finally, panel (e) shows the convergence
level along the whole simulation. On a grid of 2w points, Qw =
||ψw+1 − ψw||/||ψw+2 − ψw+1|| where || · || stands for a L2 norm.
The plot shows convergence at fourth order with high accuracy. The
tests show that the numerical method is reliable until times very near
collapse.

We define the relative deviations δN = Nnum−N

N
, δH = Hnum−H

H
,

where Nnum, Hnum are the values obtained from numerical
integration and N, H are the values given in Eq. (A4). To
keep them satisfied at relative orders δH, δN < 10−6 we have
implemented global (in space) refinement. This is seen to be re-
quired when the profile becomes extremely sharp at the origin
and needs more resolution to keep numerical control. Figure 7
depicts a check for one of the simulations yielding a delayed
collapse.

We implemented our codes for CPU computation and,
in order to speed up the simulation, we also adapted them
for GPGPU. The computation times that we achieve are
approximately one order of magnitude lower in the latter
case.

4. Asymptotic values of Ci j kl

We now obtain the asymptotically-large-n behavior of
Cn(ijkl). The form of the coefficients is given by the integral
in Eq. (7) for the eigenfunctions of Eq. (A3). We follow the
procedure of Ref. [65]. Consider the identity [66]

L(α)
n (νx) ≈ e

1
2 νx

2αx
1
2 α+ 1

4

[ξ 1/2Jα(νξ )], (A6)

valid in the limit n → ∞, x  1. Jα(x) are Bessel functions
of the first kind and α = d

2 − 1, ν = 2μ(d)
n , ξ ≈ √

x. Taking
r2 = νx, we get an expression for the eigenfunctions. Notice
that the limit x  1 is justified because x = r2/n with
n → ∞.

Now the Bessel functions are Jα(ν1/2r) and performing a
change of variables in the integral (7), we can remove the
dependence in n from the argument. Using the asymptotic
value for the normalization constants [cf. the prefactors in
Eq. (A3)] Nn ∼ n−α/2, we obtain Cn(ijkl) ∼ n

d
2 −2

∫
dzK(z)

where K(z) does not depend on n. Thus, we get Eq. (9).
We checked that this expression is in agreement with the

values of Cnnnn and Cn,4n,2n,3n found by numerical integration
for d = 2, . . . ,7; see Fig. 4.
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