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Globally attracting synchrony in a network of oscillators with all-to-all inhibitory pulse coupling
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The synchronization tendencies of networks of oscillators have been studied intensely. We assume a network
of all-to-all pulse-coupled oscillators in which the effect of a pulse is independent of the number of oscillators
that simultaneously emit a pulse and the normalized delay (the phase resetting) is a monotonically increasing
function of oscillator phase with the slope everywhere less than 1 and a value greater than 2ϕ − 1, where ϕ is the
normalized phase. Order switching cannot occur; the only possible solutions are globally attracting synchrony
and cluster solutions with a fixed firing order. For small conduction delays, we prove the former stable and all
other possible attractors nonexistent due to the destabilizing discontinuity of the phase resetting at a phase of 0.
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I. INTRODUCTION

The synchronization tendencies of networks of oscillators
have been studied intensely in the context of fireflies [1],
cardiac cells [2–4], Josephson junctions [5], laser arrays
[6], chemical oscillators [7], hybrid dynamical systems [8],
pulse-coupled sensor networks [9], neural networks [10],
and neutrino flavor oscillations [11]. There are three general
approaches to studying synchronization of oscillators [12]:
One can assume a form for the oscillator and for the nature
of the coupling and derive results for that particular system,
or one can use phase resetting theory with the assumption
that the coupling is weak, or phase resetting theory with
the assumption that the coupling is pulsatile. We make the
assumption of pulsatile coupling. We reduce each node in the
network to a single variable, its phase ϕ, and use network
interactions consisting of instantaneous phase resetting by the
other nodes. Our results generalize to any physical system
under the same assumptions of pulse-coupled phase oscillators
[1,13–17]. Systems with conduction delays [18,19] are of
particular interest in neurobiology and other applications such
as laser arrays, electronic circuits, microwave devices, and
communications satellites. In some cases, conduction delays
can stabilize synchrony [20–22]. We use phase resetting
theory [23–25] and stability results based on event-driven
maps to prove that in a network of pulse-coupled phase
oscillators with a small conduction delay δ, inhibition can be
globally synchronizing. The phase of each oscillator increases
monotonically at a fixed rate until an input is received, then the
phase is instantaneously increased (an advance) or decreased (a
delay). This constitutes the hybrid continuous-discrete system:

dϕi

dt
= 1 −

j=N−1,j �=i∑
j=1

f (ϕi)δ(t − tj − δ). (1)

An oscillator emits a pulse when its phase ϕi reaches 1, and
then its phase is reset to zero. The argument of the Dirac delta
function reflects the emission of a pulse by the j th oscillator
at times tj when the phase ϕj reaches 1, and then the receipt of
the pulse by oscillator i after a conduction delay equal to the
quantity δ. When an oscillator receives a pulsatile input, the
timing of the next emitted pulse can be advanced or delayed
depending upon of the phase at which it is received. For a free-

running oscillator, this implies that the cycle period containing
the input is either lengthened or shortened. The phase resetting
curve [PRC or f (ϕi)] for a single isolated oscillator plots the
normalized change in the cycle period due to the receipt of a
single pulse as a function of the phase.

Much of the literature on pulse-coupled oscillators implic-
itly defines a PRC, but does not explicitly use the PRC in the
derivation of stability results. Hence the application of this
literature is limited to oscillators with PRCs that match the
implicitly defined ones. For example, Peskin [2] examined a
system of two identical pulse-coupled leaky integrate and fire
(LIF) oscillators, where for each oscillator i, the time course
of the membrane potential is given by dVi/dt = SO − γVi(t).
LIF oscillators [26] model the action potential simply as a
resetting of the membrane potential from the threshold to a
reset potential. The parameter SO drives repetitive firing if
it is greater than or equal to the action potential threshold,
and γ is the leak parameter. A LIF oscillator maps onto
a phase oscillator because every value of the membrane
potential in a repetitively firing LIF model is associated with
a unique oscillatory phase within the cycle. Peskin assumed
a very simple type of excitatory pulse coupling in which
a pulse emitted by one oscillator increased the membrane
potential of the oscillator to which it projects by a fixed
amount ε or brought the neuron to threshold, whichever was
less. This implicitly defines a phase resetting curve (dashed
curve in Fig. 1) f (φ) = min[ln(1 − γ εS−1

O
eAφ)/A, φ − 1],

where A = ln(SO/SO − γ ). The minimum is required for
ε > 0 (excitatory coupling) because the phase after a pulse
is φ − f (φ), and φ cannot exceed 1. Using the one-to-one
mapping between V and φ, a return map can be derived
that gives the phase of 1 oscillator immediately after its
partner fires, by assuming an alternating firing pattern, then
reversing the roles of the two oscillators on each iteration of
the map. This map has a unique, unstable fixed point that repels
trajectories toward synchronization at a phase of 1, where
the coupling term drops out because each neuron is already
at threshold when its partner fires; hence synchronization is
globally attracting. Peskin’s result depends critically on the
implicitly defined shape of the PRC, specifically (1) the highly
stabilizing region of unit slope as φ = 1 is approached from
the left, and (2) the destabilizing negative slope everywhere
else, as explained in [21].
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FIG. 1. PRCs for leaky integrate and fire oscillator. SO = 1.0 and
γ = 0.9. These PRC shapes result when an instantaneous change in
voltage of magnitude epsilon is applied to an oscillator with a mono-
tonically increasing concave down membrane potential waveform
between threshold crossings that result in a reset. Excitatory pulse
coupling (dashed lines) and inhibitory pulse coupling (solid lines)
each have two regions, a linear region where the slope is 1 due to the
requirement to keep the phase between zero and 1, and a region in
which the advance or delay increases with phase.

Mirollo and Strogatz [1] generalized these results in
two important ways. First, instead of a LIF oscillator, any
“concave” membrane potential trajectory with dV/dt > 0 and
d2V/dt2 < 0 was allowed. These conditions, coupled with the
assumed simple form of the excitatory pulse coupling and the
assumption that all oscillators are identical, guarantee that,
once established, the firing order is invariant, and that the
PRC has the same general shape as for a LIF. This allows for
the second major generalization, to a network of N all-to-all
pulse-coupled oscillators. Using similar methodology, they
proved that all cluster solutions with fixed firing order are
unstable, with the very strong result that global synchrony is
globally attracting provided their assumptions are met. The
equivalence of the maps constructed by Mirollo and Strogatz
with those based directly on the PRC is shown in [15].

In order to apply a map strategy [27] to networks of
identical neurons with inhibitory pulse coupling, the phase
resetting was redefined (see solid curve in Fig. 1) as f (φ) =
max[ln(1 − γ εS−1

O
eAφ)/A, φ] where A = ln(SO/SO − γ ).

The maximum is required for ε < 0 (inhibitory coupling)
because the phase after a pulse is φ − f (φ), and φ was not
allowed to drop below 0. They showed that two oscillators
coupled by inhibition could stably synchronize in the presence
of conduction delays whereas excitatory pulse coupling led to a
phase lag equal to the conduction delay. In a subsequent paper
[28], they simulate identical all-to-all inhibitory pulse-coupled
Hodgkin-Huxley neurons with alpha functions with a delay,
and get two to three clusters in networks of 50 neurons. It is
likely that these clusters would be predicted by the methods
presented herein.

No biological networks consist of identical all-to-all cou-
pled networks, but such networks are theoretically more
tractable, and may provide useful insights that can be applied
to sparsely connected networks of heterogeneous neurons.
Some results have been obtained for sparse coupling: For
inhibitory pulse coupling with arbitrary coupling, Timme and
Wolf [29] showed that synchrony is locally stable provided
the synaptic conductances are normalized so that each neuron
receives the same amount of total inhibitory conductance, that

the implicitly defined phase resetting curve has the appropriate
stabilizing shape, and that there is a path through the network
that connects every oscillator to every other oscillator. The
derivation also included a small delay, and, although it is not
noted in the study of Timme and Wolf, this small delay is
required [20,21,30] in order to avoid the highly destabilizing
discontinuity as a phase of 1 is approached from the left (Fig. 1,
solid trace), as proven in this study for networks of N neurons.

The results in the earlier studies described above, as well as
other studies of pulse coupling with conduction delays [31],
are attributed to the assumed “concavity” of the membrane
potential waveform (but see [32] for exceptions), and are also
highly dependent on the nonphysiological form assumed for
the pulse coupling. The coupling assumption that the phase
resetting is dependent only upon the instantaneous value of
the membrane potential in the specific way assumed by the
authors is not valid in general [33–35]. Physiological PRCs can
take forms other than those shown in Fig. 1; for example, they
can be sinusoidal for weak coupling near a Hopf bifurcation
[34]. Therefore, the most general strategy is to use the phase
resetting curve directly as we do in this study, rather than
implicitly as in previous studies.

We use an equivalent mapping strategy but constrain the
PRC rather than the dynamics of the membrane potential.
In our sign convention, a positive resetting value implies a
delay in the timing of the next threshold event. We assume
a monotonically increasing PRC with 0 < f ′(ϕi) < 1 for
ϕi ∈ [0,1) to ensure that the firing order, once established,
remains constant [13]. Therefore, the only possible solutions
are global synchrony and cluster solutions with a fixed firing
order. Since the phase resetting is monotonically increasing,
and the definition of phase is circular, there is a discontinuity
as a phase of 1 is approached from the left. This discontinuity
destabilizes synchrony with zero conduction delay.

II. EXISTENCE AND STABILITY CRITERIA
FOR CLUSTER SOLUTIONS

We use a single self-connected oscillator as an analog for
each synchronous cluster in a splay mode of n clusters, where
the self-connection is meant to represent feedback from the
cluster in which each oscillator is embedded [Figs. 2(b1) and
2(b2)]. Previously a self-connected neuron has been used as
an analog for a coupled neural network [36]. We then use the
response of each cluster to input at different phases ϕ within
its cycle, the phase resetting curve, to determine existence and
stability criteria for cluster modes. We define fn,δ(ϕ) as the
phase resetting curve (PRC) of a self-coupled oscillator with
feedback conductance from N

n
oscillators (N

n
− 1 oscillators if

no autapses are allowed), feedback delay δ, and an input from
N
n

oscillators as an analog for another cluster in the network to
generate the PRC [Fig. 2(a1)]. A perturbation simulating the
input received from another cluster is applied at each interval
ts after a spontaneous spike, for intervals ranging from zero
to the intrinsic period Pn,δ of the self-connected oscillator.
The interval between the application of the input and the next
spike emitted is called the recovery interval tr . The sum of ts
and tr on any given cycle for any given oscillator is equal to
the perturbed cycle period [see Fig. 2(a2)], so we define the
phase resetting as fn,δ(ϕ) = (ts + tr − Pn,δ)/Pn,δ . We assume
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FIG. 2. PRC protocol, cluster logic, and pulse-coupled firing
patterns. (a) The PRC is measured (a1) by applying a pulse to
a self-connected oscillator (a2) representing a cluster. (b1) In a
two-cluster network each cluster receives an input from itself at a
delay (which is inside the “black box” used for computing the PRC)
and an input from an identical cluster. (b2) The logic is similar for
larger clusters. (c) A fixed firing pattern sequence for n = 4. A pulse
is emitted when a “spike” occurs, and received after a delay δ as an
input by the other clusters.

a n-cluster mode in a network of N identical oscillators with
equal time lags between spikes and delays short enough that no
spikes occur in the interval between when a spike is emitted
by one cluster and received by the other(s) [see Fig. 2(c)].
For a firing pattern in a fully connected network [Fig. 2(c)],
we redefine the intervals in the network in terms of the phase
resetting measured for isolated clusters under the assumption
the phase resetting is the same in the closed loop network as
in the open loop PRC in Fig. 2(a1):

ts = Pn,δϕ1; tii = Pn,δ{ϕi+1 − ϕi + fn,δ(ϕi)} for 1 < i <

n − −1; tr = Pn,δ{1 − ϕn−1 + fn,δ(ϕn−1)}, where ϕi is the
phase of each oscillator immediately before a pulse and
ϕi − fn,δ(ϕi) is the phase immediately afterwards. Moreover,
we can define the following algebraic relationships between
the intervals and the delays because each of the following
quantities is equal to the time lag tl interval between spikes in
successive clusters [see Fig. 2(b)]:

ts − δ = tii = tr + δ.

The sum of the time lags (tl), as well as the sum of the
stimulus intervals (ts), is equal to the network period, which
is determined by summing all the resetting received during a
cycle, multiplying by the intrinsic period Pn,δ , then adding it
to the intrinsic period as follows:

n−1∑
i=1

tli =
n−1∑
i=1

tsi
=

n−1∑
i=1

(Pn,δϕi − δ) = Pn,δ

[
1 +

n−1∑
i=1

fn,δ(ϕi)

]
.

Since we have assumed that all time lags are equal, then
each oscillator receives its successive inputs at the same
phases. Therefore we can write ϕn−1 in terms of ϕ1, because
ts − δ = tr + δ always gives the phase of the first input in terms
of the phase at the last input: ϕ1 = 1 − ϕn−1 + fn,δ(ϕn−1) +
2δ/Pn,δ . If intermediate phases exist, the phase at which each
intermediate pulse is received can always be written in terms of
the phase at which the previous pulse was received, using ti1 =
ts − δ to give ϕ1 − δ/P2,δ = ϕ2 − ϕ1 + f2,δ(ϕ1) and tii = tii−1

to give ϕi − ϕi−1 + fn,δ(ϕi−1) = ϕi+1 − ϕi + fn,δ(ϕi). Thus
all phases can be written in terms of ϕn−1 which provides
a closed form solution for this phase for each equal time
lag n-cluster mode. This solution is easily separated into a
left-hand side that depends on the phase resetting, and a
right-hand side that does not. The left-hand side is gn,δ(ϕn−1) =
(n − 1)fn,δ(ϕn−1) − ∑n−2

i=1 fn,δ(ϕi), where the sum is only
needed for n > 2. The right-hand side is nϕ − n + 1 − nδ

Pn,δ
.

Equations (2)–(4) give the solutions for clusters where n = 2,
3, and 4, respectively.

f2,δ(ϕ1) = 2

(
ϕ1 − δ

P2,δ

)
− 1, (2)

2f3,δ(ϕ2)−f3,δ

[
1−ϕ2+f3,δ(ϕ2)+ 2δ

P3,δ

]
=3

(
ϕ2−

δ

P3,δ

)
−2,

(3)

3f4,δ(ϕ3) − f4,δ

[
1 − ϕ3 + f4,δ(ϕ3) + 2δ

Pn,δ

]

−f4,δ

{
2 + 3δ

P4,δ

− 2ϕ3 + 2f4,δ(ϕ3)

−f4,δ

[
1 − ϕ3 + f4,δ(ϕ3) + 2δ

P4,δ

]}
= 4

(
ϕ3 − δ

P4,δ

)
− 3.

(4)

The value of the phase ϕ∗
n−1, at which the last input within

its cycle is received by a cluster, is given by the intersection at
which gn,δj ,j (ϕ∗

n−1,j ) = nϕ∗ − n + 1 − nδ
Pn,δj

; see the dashed

lines labeled n = 2, 3, or 4 in Fig. 3 where δ = 0. Figure 3 uses
a linear PRC with a slope of 0.1 to illustrate a case in which the
delay is zero, and the phase of the last inputs for the n = 2, 3,
and 4 cluster modes (open circles) falls on the monotonically
rising part of the curve and not in the discontinuity as a phase
of 1 is approached from the left. The functions gn,δj ,j (ϕn−1,j )
were calculated for a constant PRC (note that it may be weaker
for smaller clusters with fewer oscillators emitting each pulse).
Values of ϕi > ϕn−1 violate the assumption of the firing pattern
and were eliminated from the calculation of gn,δj ,j (ϕn−1,j )
when they occurred. Negative values of ϕ were allowed after
a pulse, but not at the time a pulse was received because the
PRC is undefined in this instance. Moreover, failure of the
phase to recover to a positive value between inputs would lead
to suppression of firing in any case.

A constant firing order is guaranteed for monotonically
increasing PRCs with a slope that is everywhere less than or
equal to 1 [13]. However, firing patterns with constant order but
unequal time lags cannot be analyzed by the graphical method
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FIG. 3. Graphical method. The phase of the last input (ϕ∗
n ,

indicated by the open circles) received by each cluster in an n-cluster
mode with no delay falls at the intersection of these two functions
described in the text.

in Fig. 3, because the entire analysis is based on the assumption
of equal time lags. In Fig. 4, phases ϕji are indexed not only
by firing order i but also by oscillator j since each oscillator
receives inputs at a different set of phases. There is no fixed
relationship between the phases on successive time lags. If one
time lag tlj in the unequal time lags case is shorter than the
time lag tl in the corresponding equal time lag n-cluster mode,
then the phase of the stimulus interval defined by that lag must
be less than the 1 in the equal intervals case, ϕj,1 < ϕ1. The

FIG. 4. Generalization to unequal time lags. For each time lag,
there is a clear relationship between the four phases defined in
relationship to this lag by the definitions of the stimulus, recovery,
and intermediate intervals. However, unless the lags are equal, there
is no fixed relationship between phases at which inputs are received
in adjacent time lag intervals.

phase of the last input in the corresponding equal time lag is
given by ϕn−1 − f (ϕn−1) = 1 − ϕ1 + 2δ/Pnδ , whereas for the
shorter unequal time lag it is ϕj+1,n−1 − f (ϕj+1,n−1) = 1 −
ϕj1 + 2δ/Pnδ . The constraint that 0 < f ′(ϕ) < 1, combined
with ϕj,1 < ϕ1, implies that ϕj+1,n−1 > ϕn−1.

Next we need to show that there is always one time lag in the
unequal time lag mode that is shorter than the lags in the equal
time lag mode. For n = 2, it is clear that no unequal times lags
modes can exist for a monotonically increasing PRC, because
the constraint that both oscillators receive the same amount of
phase resetting f (ϕ1) = f (ϕ2) to achieve the same network
period cannot be satisfied. For n > 2, we will first assume that
all times lags are indeed longer than those in the equal time
lags, and prove by contradiction that this cannot be true.

The assumption that ϕj1 − δ/Pn,δ > ϕ1 − δ/Pn,δ im-
plies that ϕj1 > ϕ1 and by the same logic used above,
that ϕj+1,n−1 < ϕn−1. The assumption that ϕj,i+1 − ϕji +
fn,δ(ϕji) > ϕi+1 − ϕi + fn,δ(ϕi) implies that ϕj,i+1 > ϕi+1

provided that ϕj,i > ϕi . Since ϕj+1,n−1 < ϕn−1 and ϕj+1,n−1 >

ϕn−1 cannot both be true, a contradiction is reached. Therefore
at least one oscillator in the unequal time lags mode always
receives an input at a larger phase than the phase at which
the last input is received in the corresponding equal time
lags mode. This result has important implications for global
stability; see below.

III. STABLE SYNCHRONY BUT
NO TWO-CLUSTER SOLUTION

We are particularly interested in conditions that guarantee
both that global synchrony is stable and that the two-cluster
mode does not exist. Again, we assume f2,δ(ϕ) is positive
and monotonically increasing for ϕ ∈ [0,ϕD) except for a
discontinuity at ϕD = 1 causing an effectively infinite local
negative slope as a phase of 1 is approached from the left, which
is maximally destabilizing. Local, or asymptotic, stability
is analyzed by determining whether a perturbation to an
oscillatory solution with constant phasic relationships will
increase or decrease with time. In general, we assume a steady
phase locked mode in which oscillator j receives inputs from
the other n−1 clusters at a phase of ϕ∗

i,j where i ∈ [1,n − 1],
and further assume that each phase is perturbed by �ϕi,j [k]
on cycle k. We then construct a discrete linear system (map)
of how these perturbations evolve in time. A discrete system is
unstable if any single eigenvalue has an absolute value greater
than 1. Synchrony with δ = 0 is always unstable because
according to [20,37] perturbing the synchrony by slightly per-
turbing the firing pattern of half the neurons in a synchronous
cluster yields the eigenvalue λ = [1 − f2,0(0+)][1 − f2,0(1−)]
or λ = [1 − f2,0(0+)][1 − f2,0(1−)], either of which results in
instability due to an eigenvalue with an effectively infinite
absolute value as a phase of 1 is approached from the left. In
a synchronous mode with δ > 0, for small δ > 0 each cluster
receives the input from the other cluster at a phase of δ

Pn,δ
= ϕS ,

and treating two clusters as two oscillators, the delay switches
the form of the eigenvalue to λ = 1 − 2f2,0( δ

Pn,δ
) [20]. Thus

a PRC slope at the input phase of 0 < f ′(ϕS) < 1 guarantees
stability of global synchrony, provided the stimulus interval
is less than the network period, that is, for δ < Pn,δ . Phase
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FIG. 5. How delays destroy cluster modes. The intersection of
the g functions with the dashed lines labeled with n = 2, 3, or 4 gives
the phase of the last input for cluster modes. (a) With no delay and
a linear PRC with slope 0.85, cluster modes 2, 3, and 4 are stable.
(b) A normalized delay shown by the labeled bar shifts all lines to
the left, destroying all cluster modes and leaving virtual (or ghost)
repellers in their wake. This particular PRC with the illustrated delay
guarantees that global synchrony is globally attracting; see text.

resetting due to delayed feedback from within the same cluster
need not be considered in the analysis, because it was already
incorporated into the oscillator for which the phase resetting
is calculated. Now that we have established the conditions for
which synchrony is stable, we examine criteria for the stability
of the two-cluster mode.

As described above, the intersection point g2,δ(ϕ1) =
2(ϕ1 − δ

P2,δ
) − 1 determines the phase ϕ∗

1 = ϕAP at which
and input is received by each cluster in the antiphase mode.
Stability of the two-cluster mode can be calculated by treating
the two clusters as two oscillators, provided synchrony within
each cluster is stable [37]; otherwise a more complicated
analysis applies [38]. Since we are only interested in cases
in which synchrony is stable, this caveat is not relevant.
The two-cluster solution is stable if the absolute value of
the eigenvalue λ = [1 − f2,δ(ϕAP)]2 is less than 1 for both
zero delays and short delays [16], which implies stability for
0 < f ′

2,δ(ϕAP) < 2 and ϕAP < ϕD . Note: This stability criterion
holds while the conduction delay δ is less than the time lag
tl between successive spikes in different neurons in Figs. 2(b)
and 4; otherwise the assumed pattern of updating the phases in
the matrix above is invalidated. In brief, the effect of a pulse in
one oscillator will take more than one cycle to affect the timing
of a spike in the same oscillator for longer delays. However,
firing patterns in which a spike in one oscillator takes more
than one cycle to affect the firing of another spike in the same
oscillator via feedback through the network are in general less
stable than those in which feedback is received within a single
cycle [20], so in practice the magnitude of the delay should
not have an upper limit. In any case, we are interested in cases
in which the two-cluster mode does not exist.

Since we have already constrained 0 < f ′
n,δ(ϕ) < 1, it is

clear that in order to destroy the cluster mode, we must have
ϕAP = ϕD . Figure 5 illustrates how to destroy the two-cluster
mode using delays. For example, for a linear PRC,f2,δ(ϕ) =
mPRCϕ and ϕD = 1, and a two-cluster mode is guaranteed
to be stable for δ

P2,δ
< 1−mPRC

2 . Conversely, the two-cluster

mode is guaranteed to be nonexistent for 1−mPRC
2 < δ

P2,δ
< 1.

Figure 5(a) shows a linear PRC with a slope of 0.85 with a
stable two-cluster mode indicated by the black open circle.
If we assume the size of the cluster does not affect the PRC,
the three- and four-cluster modes are also stable because the
phase at which the last input is received in each cycle falls
on the monotonically increasing part of the PRC. Note that
increasing the slope from 0.1 in Fig. 3 to 0.85 in Fig. 5 greatly
reduces the range in which the g functions with indices greater
than 2 are defined because of the requirement that the value
of the phase at which the last input is received must be greater
than the calculated values of the phases at which earlier inputs
are received. Adding a normalized delay greater than 0.075
shifts the n = 2 line to the right by 0.15, the n = 3 line by
0.225, and the n = 4 line by 0.3, causing all these modes
to be destabilized. In the next section we will prove that for
stability to be globally attracting under our assumptions, it is
sufficient to show the two-cluster mode does not exist while
global synchrony remains stable.

IV. GLOBALLY ATTRACTING SYNCHRONY

Here we consider cases in which synchrony is stable but
the two-cluster mode does not exist, that is, cases for which
the PRC is monotonically increasing with 0 < f ′

δ (ϕ) < 1, and
fδ(ϕ) > 2ϕ − 1 for ϕ ∈ [0,1) in order to prove that synchrony
is globally attracting under certain assumptions. We drop the
subscript n on the PRC because we now assume that the
effect of a pulse is independent of the number of oscillators
that simultaneously emit a pulse so that fn,δ(ϕ) = fn−1,δ(ϕ)
[1,13]. This assumption is exact if the PRC for a single pulse
is saturated. The assumption that the PRC is independent of
cluster size allows the generalization of the analysis to include
all clusters of unequal size in the analysis for each n. This
assumption can be weakened as described below.

For two clusters, g2,δ(ϕn−1) is simply the PRC parametrized
by the internal conduction delay. However, as explained above,
a more complicated expression applies for larger numbers of
clusters:

gn,δ(ϕn−1) = fδ(ϕn−1) +
n−2∑
i=1

{fδ(ϕn−1) − fδ(ϕi)}. (5)

Note that fδ(ϕ) is only defined for ϕn−1 > ϕi for i < n−1.
From Figs. 2(b) and 4 it is clear the phase of the oscillator
receiving the last input of its cycle must be greater than
the phase of any other oscillator both before and after its
last input is received, because in the absence of additional
inputs, this oscillator fires next. Recall that we assume
fδ(ϕ) is monotonically increasing for ϕ ∈ [0,ϕD) except for
a discontinuity at ϕ = ϕD , causing an effectively infinite
local negative slope at ϕ = ϕD . Then the terms in brackets
in Eq. (5) are positive by monotonicity, which implies that
gn,δ(ϕ) > g2,δ(ϕ), as illustrated in Figs. 3 and 5. Then gn,δ(ϕ)
also becomes discontinuous at ϕ = ϕD , where ϕD = 1. For the
n = 2 case [21], the value of ϕ at the intersection of the line
(y = 2ϕ − 1) with fδ(ϕ) [which is also in this case g2,0(ϕ)]
determines the phase of an input from the other cluster in an
antiphase two-cluster solution with no delay. For the linear
PRC shown in Fig. 3(a), the only intersection is at ϕD = 1,
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where the slope is maximally destabilizing, so there are no
stable two-cluster solutions at zero delay. In general, there
are no stable two-cluster solutions if 2ϕ − 1 < g2,0(ϕ) for
ϕ ∈ [0,1). Furthermore, since ϕ < 1, then (ϕ − 1) < 0, and
n(ϕ − 1) < 2(ϕ − 1) as is also clear from the observation that
the n = 3 and n = 4 lines are always below the n = 2 line at
every value of ϕ in Figs. 3 and 5. Thus nϕ − n + 1 < 2ϕ − 1 <

g2,0(ϕ) < gn,0(ϕ) for ϕ ∈ [0,1).
The above inequality states that an absence of stable two-

cluster equal time lag solutions implies that there are no stable
cluster solutions for any n at zero delay. The inequality can be
extended to finite delays as follows:

n

(
ϕ − δ

Pn,δ

)
− (n − 1) < 2

(
ϕ − δ

P2,δ

)
− 1

< g2,δ(ϕ) < gn,δ(ϕ) for ϕ ∈ [0,1),

if Pn,δ is equal to P2,δ , meaning that the effect of a pulse from
the other oscillators within the same cluster is also independent
of the number of oscillators within a cluster. These results hold
strictly for the delays smaller than the time lags labeled tli in
Figs. 2(b) and 4. As explained above, longer delays will not
be stabilizing, so again, in practice the magnitude of the delay
should not have an upper limit. The assumption that fn,δ(ϕ) is
independent of cluster size can be weakened to simply require
that the decrease in strength of fn,δ(ϕ) with cluster size must
be smaller than the sum of the bracketed terms in Eq. (5) for
the inequality g2(ϕ) < gn(ϕ) to hold.

Moreover, if the equal cluster solutions do not exist because
ϕn−1 = ϕD , then unequal modes that are perturbations of these
modes, as shown in Fig. 4, cannot exist either because there
are no possible phases greater than 1. Since 0 < f ′(ϕ) < 1
for ϕi ∈ [0,1), global synchrony is stable for delays greater
than zero. Combining the stability of the synchronous solution
with the lack of existence of any cluster solution, synchrony
is globally attracting for delays above the minimum required
to destabilize the two-cluster mode. Numerical simulations
[39] suggest that these results hold for sparsely connected
networks unless both the connectivity is very strong and the
delays are very short, on the order of the jitter induced by
sparse connectivity [40].

V. CONCLUSIONS

We have shown that conduction delays, which are of interest
in many fields, can stabilize global synchrony in a network of
oscillators mediated by inhibition. Under the assumptions that
the PRC is independent of cluster size and is monotonically
increasing, with 0 < f ′(ϕ) < 1 and f(ϕ) > 2ϕ − 1 for ϕi ∈
[0,1), synchrony is globally attracting for all conduction delays
greater than zero. Other PRCs can be shown to lead to globally
attracting synchrony above a minimum delay that is greater
than zero. Our results may be of particular interest in biology
and neuroscience because a linear PRC with a slope near 1 is
characteristic of a nearly constant latency to the next spike after
a strong inhibition, for example, in neurons with Hodgkin’s
type 2 excitability [41] that exhibit postinhibitory rebound
[42]. Inhibition at chemical synapses does not act simply as
an injected hyperpolarizing current; instead it depends on the

reversal potential (Esyn) of the ion carrying the current through
the neurotransmitter-gated channels Isyn = gsyn(Vpost − Esyn),
where Isyn is the current; gsyn is the conductance and is
the membrane potential of the postsynaptic neuron. Thus
for strong inhibition, the membrane potential approaches the
hyperpolarized value of Esyn and Isyn approaches zero. A
strong inhibition may completely reset the phase such that
the value of the phase after a pulse is approximately constant
no matter the phase at which the pulse is applied. Therefore the
phase resetting becomes a linear function of the phase with a
slope of 1. We are most interested in monotonically increasing
PRCs whose slope always remains slightly less than 1.

We have focused on using the measured PRC in the context
of event-related maps and pulsatile coupling. As mentioned
in the Introduction, there are other approaches which often
require knowledge of the equations that characterize the
evolution of the dynamical system, so they are not gener-
alizable to systems for which the equations are unknown.
One such method to calculate the stability of synchrony
and cluster states uses the evaporation Lyapunov exponents
[43,44] that characterize the evolution of perturbations in
transversal directions. For example, Olmi et al. [45] use an
event-driven discrete-time map to determine the interspike
interval of the splay mode, using logic similar logic to ours.
They then utilize Floquet theory and the evaporation exponent
to determine the stability of synchrony and splay modes with
equal time lags. Their analysis implicitly assumes that an
excitatory synaptic current simply speeds up the oscillator
whereas an inhibition slows down the oscillator, and that
the magnitude of the phase resetting effect is determining
by simply integrating the current. Another line of research
uses the assumption of weak coupling in which the magnitude
of the resetting scales linearly with the amplitude of the
perturbation, which is not a good approximation for strong
coupling [37]. For example, Pazó and Montbrió [46] focused
on pulse-coupled oscillators using a Winfree model [47] based
on the concept of an infinitesimal PRC with a sinusoidal shape,
which characterizes the response of an oscillator that results
from a Hopf bifurcation to weak perturbations [34], and is
associated with Hodgkin’s type 2 excitability [48,49]. They
were able to reduce an N -dimensional system of oscillators
with a heterogeneous frequency distribution to only two
ordinary differential equations. Both studies are elegant, but
clearly do not apply to the noninfinitesimal PRCs with the
shapes we study here, nor to the biological instantiation of
this type of PRC in networks of oscillators with Hodgkin’s
type 2 excitability that exhibit postinhibitory rebound in
response to strong saturating inhibitory input. The master
stability function [50] (MSF) is an elegant method that is often
applied in physics because it separates the network properties
from the dynamical properties of individual oscillators. This
method also requires one to assume a form for the dynamic
system, such as a normalized SNIPER (Saddle-Node Infinite
Period) bifurcation, Fitzhugh-Nagumo or Stuart-Landau [51].
Moreover, the derivation of the master stability function
assumes linear coupling between the state variables of the
oscillators; diffusive coupling is an example of linear coupling.
There are two types of connectivity between neurons: electrical
synapses and chemical synapses. With an appropriate choice of
coupling function, diffusive coupling is a good approximation
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of electrical, but not synaptic, coupling. Electrical coupling
is not delayed and only exists between neurons within the
same brain area. Chemical synapses are better approximated
by assuming that the effect of each input is pulsatile. Since
coupling between neurons in the mammalian nervous system is
in general mediated by chemical synapses [52], the PRC-based
approach used in this study provides an alternate approach
to studying synchronization, and may be most applicable to
biological neural networks. Unlike the MSF approach, the
method we present is applicable to cluster states that have
unequal time lags between oscillators. Moreover, since we
assume that the PRC in response to a particular synaptic
perturbation can be measured, our approach does not require
knowledge of the equations describing the intrinsic oscillatory
dynamics, which are very complex for physiological neurons
[53]. Under the assumption of weakly coupled oscillators
[54–56], the infinitesimal PRC (response to a brief, weak
input) is used to characterize the intrinsic dynamics, and the
synaptic dynamics are considered separately, but here we have

combined the two types of dynamics by using the PRC in
response to the specific synaptic perturbations received in the
intact network.

The results presented here complement those using similar
methods to analyze pulse-coupled systems of oscillators with
conduction delays that have examined, under different assump-
tions of PRC shape, the basins of attraction for synchrony [57],
cluster solutions [58], the destabilization of synchrony [18],
and solutions for no predetermined firing order [59]. Although
our results were obtained for all-to-all coupling, they can be
generalized to sparsely coupled networks with the caveat that
jitter induced by sparse connectivity [29,40] can increase the
minimum delay required for global synchrony [39].
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