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We report on the dynamics of localized structures in an inhomogeneous Swift-Hohenberg model describing
pattern formation in the transverse plane of an optical cavity. This real order parameter equation is valid close to
the second-order critical point associated with bistability. The optical cavity is illuminated by an inhomogeneous
spatial Gaussian pumping beam and subjected to time-delayed feedback. The Gaussian injection beam breaks
the translational symmetry of the system by exerting an attracting force on the localized structure. We show
that the localized structure can be pinned to the center of the inhomogeneity, suppressing the delay-induced
drift bifurcation that has been reported in the particular case where the injection is homogeneous, assuming a
continuous wave operation. Under an inhomogeneous spatial pumping beam, we perform the stability analysis
of localized solutions to identify different instability regimes induced by time-delayed feedback. In particular,
we predict the formation of two-arm spirals, as well as oscillating and depinning dynamics caused by the
interplay of an attracting inhomogeneity and destabilizing time-delayed feedback. The transition from oscillating
to depinning solutions is investigated by means of numerical continuation techniques. Analytically, we use an
order parameter approach to derive a normal form of the delay-induced Hopf bifurcation leading to an oscillating
solution. Additionally we model the interplay of an attracting inhomogeneity and destabilizing time delay by
describing the localized solution as an overdamped particle in a potential well generated by the inhomogeneity.
In this case, the time-delayed feedback acts as a driving force. Comparing results from the later approach with
the full Swift-Hohenberg model, we show that the approach not only provides an instructive description of the
depinning dynamics, but also is numerically accurate throughout most of the parameter regime.
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I. INTRODUCTION

Dissipative localized structures have been theoretically pre-
dicted and experimentally observed in various fields of natural
science such as biology, chemistry, ecology, physics, fluid
mechanics, and optics (see, e.g., [1–16]). Localized structures
of light in the transverse section of passive and active optical
devices are often called cavity solitons. Since the experimental
evidence of cavity solitons in semiconductor cavities [17–21],
they have attracted growing interest in the nonlinear optics
community due to potential applications for, e.g., all-optical
delay lines or logic gates [22,23]. Recently, much attention
was paid to the investigation of the influence of delayed
optical feedback on the stability properties of these structures
[24–27]. Delayed feedback control is a well-established
technique that has been applied to various nonlinear systems
(see, e.g., [28–37] and references thereafter). In particular,
it was theoretically demonstrated that a simple time-delayed
feedback loop provides a robust and controllable mechanism
responsible for the motion as well as for complex oscillatory
dynamics of localized structures and spatiotemporal patterns
(see, e.g., [24,25,27,36,38–40]). Especially for the case of
the delay-induced motion in a homogeneous system it was
shown that the neutrally stable modes, so-called Goldstone
modes that exist due to the translational invariance of the
system under consideration, are destabilized by time-delayed
feedback, leading to a drift of the localized structure. Since the
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existence of Goldstone modes depends only on the symmetries
of the system in question and its solutions, this behavior
can be observed in any system with continuous symmetries
possessing localized solutions. However, for a more realistic
description of any experimental setup, it is often necessary
to take into account spatial inhomogeneities that break the
translational symmetry of the system and thus change the
dynamics induced by delay. Recently, the competition between
a drifting localized structure and spatial inhomogeneities has
been studied experimentally in [41] and theoretically in a
Swift-Hohenberg model [42,43], although in the latter case the
drift of the localized structure has been introduced by simply
adding an advection term to the Swift-Hohenberg equation.

In this paper, we investigate the competition between
unstable translational modes due to delay and spatial inho-
mogeneities. For this purpose, we consider a passive cavity
filled with a two-level medium driven by a coherent radiation
beam and focus on the regime of nascent optical bistability
where the spatiotemporal dynamics are described by the
Swift-Hohenberg equation with time-delayed feedback. Apart
from its applications in nonlinear optics, the Swift-Hohenberg
equation often serves as a paradigm for general pattern-
forming systems. It has been first derived in the context of
fluid dynamics [44] and was also applied to, e.g., chemical
[45] and ecological [46] systems.

We show that the inclusion of spatial inhomogeneities
strongly alters the delay-induced dynamics of localized
structures. In particular, two different dynamical solutions
resulting from unstable translational eigenmodes are discussed
analytically and numerically. For small or moderate values of
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the delay strength, the localized structure oscillates around the
inhomogeneity, whereas for larger delay strengths the structure
depins from the inhomogeneity and drifts freely. Continuation
techniques are used to further examine the transition between
the two solutions.

The paper is organized as follows. In Sec. II the inhomoge-
neous Swift-Hohenberg model with time-delayed feedback is
introduced. In Sec. III the linear stability analysis of localized
solutions both without and with spatial inhomogeneities is
discussed. In Sec. IV results from direct numerical simulations
as well as results obtained from numerical continuation tech-
niques are presented. In Sec. V, two semianalytic approaches
are presented, which are able to account for the transitions
from a stable localized structure to an oscillating solution and
to a drifting solution, respectively. We conclude in Sec. VI.

II. INHOMOGENEOUS SWIFT-HOHENBERG MODEL
WITH TIME-DELAYED FEEDBACK

Forty years ago, Swift and Hohenberg derived a real order
parameter equation to describe the Bénard-Marangoni, also
called non-Boussinessq-Bénard, convection [44]. The Swift-
Hohenberg (SH) equation is one of the most studied models
describing nonlinear dynamics in spatially extended systems
[45–52]. Generically, it applies to systems that undergo a
symmetry-breaking instability close to a second-order critical
point marking the onset of a hysteresis loop. These conditions
are satisfied in numerous models of optical systems. In
particular, a driven passive cavity filled with a two-level
medium exhibits a second-order critical point leading to
optical bistability. When the detuning parameter is small,
the symmetry-breaking instability occurs close to the critical
point associated with nascent optical bistability. In this large-
wavelength pattern-forming regime, by using the multiple
scales perturbation method, the Swift-Hohenberg equation
can be derived from the Maxwell-Bloch equations (see a
detailed derivation in [53]). In order to take into account the
delayed feedback, an extra term is added to the SH equation by
assuming a Rosanov-Lang-Kobayashi approximation [54,55].
The obtained SH equation with delay has been extensively
studied in, e.g., [24,25,53,56]. This equation is valid in the
double limit of small delay strength and large delay time.
The light will undergo an excursion in the external cavity of
length L and will be reinjected back into the internal cavity.
The delay time is τ ∝ L/c, where c is the speed of light.
The delay strength α is proportional to the reflectivity of the
external mirrors and inversely proportional to the Fabry-Perot
round-trip time. In addition, the phase of the delayed feedback
is fixed to π . The Swift-Hohenberg model with time-delayed
feedback reads [24,53]

∂tqt = (−a1�− a2�
2 + C)qt + Y0 − q3

t + α(qt − qt−τ ), (1)

where the state variable qt = q(x,t) and the scalar quantity
Y0 represent the deviation of the intracavity and injected field
from their values at the critical point, respectively, and the
Laplacian � = ∂2

x + ∂2
y acts on the transverse plane x = (x,y).

C represents the deviation of the cooperativity parameter from
its critical value, and a1, a2 > 0 are positive constants obtained
by rescaling during the derivation of Eq. (1) [53]. Without
the delayed feedback (α = 0) Eq. (1) possesses a Lyapunov

functional that decreases monotonically in the course of time
[57]. However, in the presence of time-delayed feedback the
Swift-Hohenberg loses its gradient structure.

In translationally invariant systems that posses a Lya-
punov functional, a drift bifurcation is shown to be the
first instability induced when adding time-delayed feedback
due to a destabilization of Goldstone modes associated with
the continuous symmetries of the system [37,58]. Even in
systems without a gradient structure a drift bifurcation is the
first occurring instability in a wide parameter regime [35].
However, physically realistic systems are never completely
invariant under translation, due to boundaries of the system and
due to spatial inhomogeneities. In the following, we are going
to concentrate on the effects of spatial inhomogeneities on the
space-time evolution of the intracavity field subjected to the
time-delayed feedback. The spatial inhomogeneity originates
from the fact that the injected beam is not uniform in the
transverse plane. We consider a Gaussian injection beam
instead of a continuous wave operation,

Y (x) = Y0 + Ae
−x2−y2

B , (2)

where A is the amplitude of the inhomogeneity and B is the
width of the Gaussian. The introduction of the inhomogeneous
injection field breaks the translational symmetry of the system;
i.e., the parameter Y = Y (x,y) in Eq. (1) now depends
explicitly on the spatial coordinates.

The inhomogeneity alters the stationary solutions of the
system [42]. In particular, the homogeneous solution of Eq. (1)
without time-delayed feedback becomes deformed, showing
a low bump at the center of the inhomogeneity. Another
stationary solution consists of a localized structure pinned at
the inhomogeneity. The height and width of this localized
structure depend on the strength of the inhomogeneity; i.e.,
the structure grows with increasing amplitude A or increasing
width B. It has been experimentally and analytically shown
that the inhomogeneity of the pump makes it possible to
stabilize localized structures resulting from fronts connecting
two homogeneous steady states [59]. Apart from the localized
structure positioned directly on the inhomogeneity, there are
several other stationary localized solutions. If the structure
initially is positioned in the vicinity of the inhomogeneity, it
gets either pulled to its center or it gets repelled if the initial
distance to the center is too large, creating a stable solution next
to the inhomogeneity. In the following sections we will focus
on the impact of time-delayed feedback on a localized structure
sitting in the center of the inhomogeneity Y = Y (x,y), given
by Eq. (2).

III. LINEAR STABILITY ANALYSIS

As a first approach to analyze the destabilization of a
localized structure by time-delayed feedback, we perform a
linear stability analysis of the system. Linearizing Eq. (1)
for α = 0 around the stationary solution q0(x) yields a linear
operator L[q0(x)]. By solving the resulting linear eigenvalue
problem L[q0(x)]ϕk(x) = μkϕk(x) numerically, one obtains
the eigenvalues μk of the undelayed system as well as
the corresponding eigenfunctions ϕk(x). In the following
we first analyze the spectrum of a localized structure in
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FIG. 1. (a) Stable localized solution q0(x) obtained by 2D numer-
ical integration of Eq. (1), as well as three localized eigenfunctions
ϕk(x) as solutions of the linear eigenvalue problem for α = 0: (b)
translational mode; (c) growth mode; (d) deformation mode. Other pa-
rameters are Lx = Ly = 19.6, a1 = 2.0, a2 = 4

3 , Y0 = −0.4, C =
1.0, A = 0, B = 0.

the homogeneous case both without and with time-delayed
feedback and then discuss the changes in the discrete spectrum
of the problem in question induced by the introduction of a
spatial inhomogeneity.

A. Linear stability analysis without inhomogeneities

In the case of a single stationary localized structure q0(x)
[see Fig. 1(a)], the spectrum of the linearized Swift-Hohenberg
operator consists of a discrete part close to zero with
corresponding localized eigenfunctions and a well-separated
continuous part [25]. Without time delay, the solution is stable;
i.e., all real eigenvalues μk � 0. Neglecting inhomogeneities,
the discrete part of the spectrum in two dimensions (2D)
consists of two eigenvalues μ0 = 0 with eigenfunctions that
correspond to an infinitesimal translation of the structure in
two spatial directions. These so-called Goldstone modes are
neutrally stable due to the translational invariance of Eq. (1)
[58]. One of these two modes is depicted in Fig. 1(b). The
discrete spectrum corresponding to μk < 0 consists of one
eigenfunction that would lead to a growth or shrinkage of the
structure [Fig. 1(c)] and two eigenfunctions that correspond
to a deformation of the structure in different spatial directions
[Fig. 1(d)] [25].

Applying time-delayed feedback, i.e., α �= 0, τ �= 0, does
neither change the stationary solutions of the systems nor the
eigenfunctions, due to the special form of the delay term in
Eq. (1), which is often refereed to as Pyragas control [60].
However, the time-delayed feedback changes the eigenvalues
of each eigenfunction; i.e., it may change the stability of the
stationary solutions. The new eigenvalues λk,m with time delay
are given by a transcendental equation [25],

λk = μk + α(1 − e−λkτ ), (3)

which can be solved in terms of the Lambert W function,

λk,m = μk + α + 1

τ
Wm[−ατe−τ (μk+α)], m ∈ Z, (4)

where Wm is the mth branch of the Lambert W function [61],
which is defined as the multivalued inverse of z → zez. As
shown in Eq. (4), the addition of time-delayed feedback creates
an infinite amount of complex eigenvalues λk,m for each real-
valued eigenvalue of the undelayed system μk , due to the
multivalued character of the Lambert W functions Wm.

Since we are interested in the destabilization of the discrete
spectrum of the localized solution q0, our main interest lies
in the eigenvalues λk,0, corresponding to the main branch of
the Lambert W function, because these are the eigenvalues
with the highest real parts; i.e., the first eigenvalues to become
unstable.

As mentioned above, the first eigenfunctions which become
unstable with increasing time-delayed feedback parameters
are the Goldstone modes leading to the above-mentioned
drift of the localized structure. Without inhomogeneities,
the stability threshold ατ = 1 of these eigenfunctions can
be calculated analytically [24,25]. By increasing the time-
delayed feedback further, one can induce instabilities of other
localized eigenfunctions or even destabilize the homogeneous
background of the localized structure, thus inducing traveling
waves or homogeneous oscillations [25,37].

Note that instead of solving Eq. (4) for different values
of α and τ to calculate the stability threshold of a given
eigenfunction corresponding to an eigenvalue μk , one can use
the following expression to determine the critical delay time
τc that induces a change of stability [36]:

τc = ± arccos
[
1 + Re(μk)

α

] + 2πn

Im(μk) ± α

√
1 − [

1 + Re(μk)
α

]2
, n ∈ N. (5)

The expression (5) for the critical delay time τc can be easily
derived by separating Eq. (4) into a real and an imaginary part
and setting Re(λk) = 0. For a more detailed derivation we refer
the reader to [36]. Note that, besides α, the stability threshold,
in general, also depends on both the real and the imaginary
part of the eigenvalue μk .

B. Linear stability analysis with inhomogeneities

Considering now a localized solution positioned in the
center of the inhomogeneity in the full inhomogeneous system,
one can proceed in the same way as in the homogeneous case,
i.e., first performing the linear stability analysis without delay
and then calculating the eigenvalues with delay using Eq. (4).
Although the localized solution as well as the eigenfunc-
tions change slightly in the presence of the inhomogeneity
compared to the homogeneous case, one can still clearly
identify two translational modes, one growth mode, and two
deformation modes as they are depicted in Figs. 1(b)–1(d).
However, even without time-delayed feedback, the eigenvalues
corresponding to each eigenfunction change compared to the
homogeneous case.

The eigenvalues of the different localized eigenfunctions as
a function of the amplitude A of the inhomogeneity without
delay are shown in Fig. 2. In the absence of an inhomogeneity
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FIG. 2. Eigenvalues μk of Eq. (1) for α = 0 corresponding to the
drift-inducing modes (blue solid line), the growth-inducing mode (red
dash-dotted line), and the deformation-inducing modes (green dotted
line) for different amplitudes A of the inhomogeneity Y .

(A = 0), the translational eigenfunction is neutrally stable, i.e.,
corresponds to μ = 0. By increasing A the eigenvalue gets
lowered and the structure gets pinned on the inhomogeneity.
As can be seen in Fig. 2, the order of the eigenvalues changes
with increasing amplitude A of the inhomogeneity, leading to
two different regimes: For small amplitudes the drift-inducing
translational modes still posses the highest eigenvalue μ. For
larger amplitudes, however, the deformation-inducing modes
become the modes with the highest eigenvalue. Note that
changing the width B of the inhomogeneity instead of its
amplitude basically reproduces the same behavior of the
eigenvalues μk .

Adding time-delayed feedback in the inhomogeneous case
can be treated in the same way as in the homogeneous
case; i.e., the stability thresholds can be calculated using
Eq. (5), whereas the eigenvalues λk,m can be calculated
using Eq. (4). Two different examples of Fig. 2 showing
Re(λk,m) in dependence of the amplitude A for two different
values of the delay parameters are presented in Appendix A.
Considering the destabilization of the translational modes,
one should note that even for only real-valued μk , the
corresponding eigenvalues λk,0 are generally complex, thus
allowing oscillatory dynamics. In case of the translational
mode, the two highest eigenvalues λ0,0 and λ0,−1 stay real,
if the original eigenvalue without delay is μ ≈ 0, i.e., in the
homogeneous case, whereas they become complex if μ �= 0.
That is, by adding an inhomogeneity to the system, one
changes the dynamics induced by an unstable translational
mode drastically, allowing oscillatory behavior.

IV. DIRECT NUMERICAL SIMULATIONS

Once one has calculated the stability thresholds of different
localized eigenfunctions using Eq. (5), it is necessary to
determine how unstable eigenfunctions affect the dynamics of
the system and which eigenfunctions govern the dynamics in
regions of multiple instabilities. Therefore, we perform direct
numerical simulations of Eq. (1) for different values of α and A

using a semi-implicit Euler time stepping and a pseudospectral
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FIG. 3. Frequency ω of the oscillations of the localized structure
around the inhomogeneity obtained from direct numerics in one
dimension (dotted line) and the imaginary part of the eigenvalue
corresponding to the unstable translational mode (solid line). The
dotted vertical line marks the onset of the oscillations, i.e., the first
bifurcation point. The error bars are given by �ω = 2π

�t
, where �t is

the sampling time of the simulation.

method on a periodic domain to calculate the spatial derivatives
of q(x,t).

Fixing the delay time at τ = 1 and the width of the
inhomogeneity at B = 4, and varying the delay strength α and
the amplitude A of the inhomogeneity, different dynamical
solutions can be observed. In particular, starting with a small
amplitude A = 0.2 one can identify three dynamical regimes.
For delay strengths α < αcrit = 1.0219 the localized structure
is still stable. For values α � αcrit the translational mode
becomes unstable, inducing a movement of the localized
structure. However, the inhomogeneity still has an attracting
effect on the localized structure; i.e., the inhomogeneity pulls
the structure back, leading to an oscillatory motion of the
localized structure around the defect, as can be seen in Fig. 4
on the left. The possibility of such a periodic behavior is
evident, considering that the highest eigenvalue λ0 is now
complex due to the inhomogeneity. In fact, the frequency ω of
the oscillatory behavior at the bifurcation point coincides with
the complex part of the eigenvalue Im(λ0) (cf. Fig. 3). Note
that the onset of the instability at αcrit can be observed both in
the linear stability and in the direct numerical simulations.

With increasing delay strength α, the effect of the unstable
translational mode increases, too, resulting in a larger am-
plitude of the oscillations. Eventually, the delayed feedback
leads to a destabilization of the periodic solution; i.e., the
localized structure gets depinned from the inhomogeneity
and starts to drift freely (see Fig. 4, on the right). For the
sake of simplicity, the simulations in Fig. 4 are performed
in one spatial dimension. However, one can observe similar
dynamics in two spatial dimensions, where only the value of
αcrit changes slightly. Results of direct numerical simulations
in two dimensions are presented in Appendix B. In the
oscillatory regime, phase-independent oscillations in two
spatial directions lead to a wiggling motion of the structure
around the defect. For larger values of α, the localized structure
depins; however, the direction of the occurring drift is arbitrary.

In order to investigate the transition from a bound os-
cillatory movement to a free drift in detail, we used path
continuation techniques provided by the MATLAB package
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FIG. 4. Direct numerical simulations in one dimension with a
fixed delay time τ = 1. (Left) A localized solution oscillates around
the inhomogeneity for α = 1.035. (Right) A localized structure gets
depinned from the inhomogeneity and starts to drift freely for α =
1.073. The amplitude of the inhomogeneity is fixed to A = 0.2. Other
parameters are a1 = 2.0, a2 = 4

3 , Y0 = −0.4, C = 1.0, B = 4.0.

DDE-BIFTOOL [62] for delay differential equations. To this
aim the behavior of the system in one spatial dimension
x has been investigated. Since DDE-BIFTOOL is designed to
continuate delay differential equations, Eq. (1) is approximated
by a set of coupled delay differential equations. Therefore,
we replace the spatial derivatives in Eq. (1) by fourth-order
central differences with periodic boundary conditions. The
accuracy of this approximation strongly depends on the spatial
discretization used, i.e., on the number of coupled delayed
differential equations.

Continuation of the period time T of the periodic solution
in α indicates that a stable limit cycle evolves at αcrit and loses
its stability in a bifurcation at a critical value αcrit2 > αcrit (see
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FIG. 5. Period time T of the oscillatory solution depending
on the delay strength α obtained by numerical continuation using
DDE-BIFTOOL. The magnified version shows the parameter region
in the vicinity of the bifurcation point αcrit2, where the saddle-node
bifurcation of limit cycles sets in. The small box at the top shows
the Floquet multipliers μF of the stable (black solid line, *) and the
unstable (red dotted line, +) periodic branch at the marked positions.
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Fig. 5). At this bifurcation point αcrit2, the localized structure
gets depinned from the inhomogeneity in the direct numerical
simulations. Looking at the corresponding Floquet multipliers
one can identify the bifurcation as a saddle-node bifurcation
of a limit cycle, where the stable limit cycle (black solid line)
merges with an unstable one (red dotted line) and annihilates.

As shown in the previous section, the order of the
eigenvalues μk without delay changes with an increasing
amplitude A of the inhomogeneity. In two dimensions, for
A = 2 the deformation modes are the ones with the largest
eigenvalue, i.e., the first modes to be destabilized by time-
delayed feedback. A destabilization of these modes leads to
a deformation of the localized structure as shown in Fig. 1.
Due to this deformation, the localized structure loses its rota-
tional symmetry, which in combination with the time-delayed
feedback leads to a rotation of the spreading spiral structure
(see Fig. 6). However, in the following section, the focus lies
on the description of depinning localized structures, i.e., the
parameter regime of small amplitudes of the inhomogeneity A,
where the translational mode is the first to become destabilized
by time-delayed feedback.

V. SEMIANALYTIC DESCRIPTION OF A PINNED
LOCALIZED STRUCTURE

In this section we are going to focus on the behavior of
a localized structure pinned on the inhomogeneity and its
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destabilization, leading to an oscillating or drifting structure
(cf. Fig. 4). We discuss two different approaches to describe the
transition from a stationary localized solution to an oscillating
and finally to a depinning solution. The first approach describes
the system in the vicinity of the first bifurcation at αcrit

and leads to the derivation of a normal form of the delay-
induced Hopf bifurcation. The second, more general, approach
describes the full parameter regime, i.e., the first bifurcation
as well as the depinning process. For the sake of simplicity,
we restrict the analysis to a one-dimensional system. However,
both approaches can be easily generalized to more than one
dimension and may also be applied to other inhomogeneous
systems.

A. Derivation of a normal form

As a first approach we use an ansatz similar to [36] that
describes the solution of the system in the vicinity of the Hopf
bifurcation as the stationary solution q0(x) with an additional
perturbation q̃(x,t) in the form of an oscillation in the spatial
form of the translational eigenmode ϕ(x),

q(x,t) = q0(x) + q̃(x,t)

= q0(x) + ξ (t)ϕ(x)eiωt + ξ (t)ϕ(x)e−iωt + ξ0(x,t), (6)

where ξ (t) is a slowly varying complex order parameter, ξ (t)
is its complex conjugate, ω = Im(λ0) is the frequency of the
oscillation at the bifurcation point, and ξ0(x,t) accounts for
further contributions of stable eigenmodes.

Inserting the ansatz (6) into Eq. (1), comparing different
orders of O(eiωt ), and eliminating ξ0 = X0|ξ |2 leads to the
desired normal form,

ξ̇ (t) = (μ − iω)ξ (t) + b|ξ (t)|2ξ (t)

+α[ξ (t) − ξ (t − τ )e−iωτ ], (7)

where μ is the eigenvalue of L′ corresponding to the eigen-
function ϕ and

b = 〈ϕ|L′′X0ϕ〉
〈ϕ|ϕ〉 + 1

2

〈ϕ|L′′′ϕϕϕ〉
〈ϕ|ϕ〉 . (8)

The notation 〈·|·〉 stands for the scalar product defined by
integration over the full domain and L(n) denotes the nth
Fréchet derivative of the nonlinear right-hand side of Eq. (1)
without the delayed terms.

Without time delay (α = 0), Eq. (7) takes the normal form
of a supercritical Hopf bifurcation below the bifurcation point,
since μ, b < 0; i.e., a change of stability has to be induced by
the additional delay term.

Without the delay, as well as for sufficiently small values
of α, the stable solution of Eq. (7) is ξ = 0 corresponding
to a stable solution q(x,t) = q0(x). For larger values of α the
complex order parameter ξ starts to oscillate between its real
and imaginary part with a constant amplitude |ξ |; i.e., one can
observe a delay-induced Hopf bifurcation.

Solving Eq. (7) numerically with a classical fourth-order
Runge-Kutta time step for different values of α, one can
compare the maximum shift of the localized structure with
the amplitude of the oscillations from the direct numerical
simulations. As can be seen in Fig. 7, the order parameter
model shows a bifurcation at αcrit; i.e., the approximations
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FIG. 7. Maximum amplitude of the oscillations Rmax in depen-
dence of the delay strength α obtained by direct numerical simulations
(crosses) and by the order parameter model (7) (black solid line). The
dotted line marks the first Hopf bifurcation point αcrit = 1.0219 found
both in the direct numerical simulations and in the order parameter
model. However, Eq. (7) is only valid in the direct vicinity of αcrit and
loses its validity for increasing delay strengths.

made for the derivation of the order parameter equation seem
to be justified in the direct vicinity of the bifurcation point.
However, for larger values of α, the model quickly loses
its validity and a significant difference between the direct
numerical simulations and the order parameter model can be
observed; i.e., Eq. (7) only serves as a normal form for the
delay-induced Hopf instability but does not provide a good
approximation of the full system.

B. Localized structures as overdamped particles
in a potential well

The main idea of the second approach is to describe
the oscillations occurring after the bifurcation at αcrit as
the overdamped dynamics of a particle in a potential well
generated by the inhomogeneity, where the time-delayed
feedback acts as a driving force. Therefore, we decompose
the right-hand side of Eq. (1) into a homogeneous part
Nhom containing everything but the delayed terms and the
inhomogeneity, an inhomogeneous part Ninh containing the
inhomogeneity, and the time-delayed terms, i.e.,

∂tq(x,t) = Nhom[q] + Ninh[x] + α[q(x,t) − q(x,t − τ )]. (9)

We assume the solution q(x,t) to be constant in shape; i.e.,
we neglect any shape deformations due to the oscillation. A
similar ansatz without time-delay has been used in [63]. It
yields

q(x,t) = q0[x − R(t)] = q0h[x − R(t)] + w[x − R(t)], (10)

where q0 is the stationary solution of the inhomogeneous
system, q0h is the stationary solution of the homogeneous
system, w(x,t) is the shape deformation of the stationary
solution caused by the inhomogeneity, and R(t) is the position
of the center of the localized structure. The goal is to derive
a differential equation that describes the time evolution of the
position R(t).

Inserting the ansatz (10) into Eq. (9) yields

−Ṙ(t)∂xq0[x − R(t)] = Nhom{q0[x − R(t)]}
+Ninh[x] + α{q0[x − R(t)] − q0[x − R(t − τ )]}. (11)
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FIG. 8. Potential well V (R) and attracting force F (R) of an
inhomogeneity Y calculated numerically for A = 0.2, B = 4.0.

In addition, expanding Nhom{q0[x − R(t)]} around q0h[x −
R(t)] results in

Nhom[q0] = Nhom[q0h] + L′[q0h]w

+ 1
2L′′[q0h]ww + 1

6L′′′[q0h]www . (12)

Looking at Eq. (12) one can easily verify that 〈ϕG[x −
R(t)]|Nhom{ q0[x − R(t)]}〉 = 0, where ϕG is the translational
mode of the homogeneous system, i.e., a Goldstone mode.
Indeed, Nhom[q0h] = 0, because q0h is a stationary solution
of the homogeneous system. The linear term in w vanishes,
because L′ is a self-adjoint operator and the eigenvalue
corresponding to ϕG is μ = 0. The quadratic and cubic terms
vanish, because even and odd functions are multiplied and
integrated over the full domain. Projecting 〈ϕG[x − R(t)]| onto
Eq. (9) therefore leads to

Ṙ(t) = −1

〈ϕG(x)|∂xq0(x)〉 {〈ϕG(x)|Ninh[x + R(t)]〉

−α〈ϕG(x)|q0[x + R(t) − R(t − τ )]〉}. (13)

The first term on the right-hand side of Eq. (13) yields a
function

F (R) = −〈ϕG(x)|Ninh[x + R(t)]〉
〈ϕG(x)|∂xq0(x)〉 , (14)

which can be interpreted as the attracting force of the
inhomogeneity acting on the localized structure. Figure 8
depicts the potential well V (R) of the inhomogeneity, which
is defined as −∂RV (R) = F (R).

Without time-delayed feedback, the potential V (R) can
also be used to estimate the basin of attraction of the
inhomogeneity Y . Placing a localized structure in the direct
vicinity of the inhomogeneity leads to the structure being
pulled to the minimum of the potential at R = 0, since all
integrals necessary for the calculation of F (R) vanish for
R = 0. However, the potential also has two maxima in the
periphery of the inhomogeneity; i.e., for larger values of R, the
potential acts repelling on the localized structure. These results
are in good agreement with the behavior of localized struc-
tures observed in direct numerical simulations described in
Sec. II.

With time-delayed feedback (α �= 0), the stable solution
R = 0 gets destabilized for values of α > αcrit, leading to
an oscillation in the potential well, where the time-delayed
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FIG. 9. Maximum amplitude of the oscillations Rmax in depen-
dence of the delay strength α obtained by direct numerical simulations
(crosses) and by the potential well model (black line). The dotted lines
mark the two bifurcation points in the direct numerical simulations.
The first bifurcation leading to an oscillation of the structure appears
at the same value αcrit = 1.0219 in the direct numerical simulations
and in the potential well model, respectively. The depinning instability
occurs in the potential well model at α > αcrit2, i.e., for a larger delay
strength than in the direct numerical simulations.

feedback acts as a driving force. Solving Eq. (13) with a
classical Runge-Kutta scheme yields the oscillatory dynamics
of R(t). Figure 9 shows the amplitude Rmax of the oscillations
in comparison to the results from direct numerical simulations.
As can be seen, the first bifurcation in the potential well
model occurs at αcrit, i.e., at the value expected from the linear
stability analysis and direct numerical simulations, e.g., from
evaluating Eq. (5). The predictions from the potential well
model (13) are accurate throughout most of the parameter
regime, where oscillations occur. Only close to the secondary
instability at αcrit2, where the localized structure depins
from the inhomogeneity, can notable differences between
the potential well model and the direct numerical results be
observed. These differences can be ascribed to the deformation
of the localized structure that is neglected in the presented
potential well approach. The potential well model (13) still
reproduces the depinning, i.e., a process, where the localized
structure escapes from the potential well due to a large
driving force induced by time-delayed feedback. However, this
secondary instability occurs at a value of α = 1.079, which is
slightly larger than the value obtained from direct numerics
αcrit2 = 1.072.

VI. CONCLUSIONS

An inhomogeneous Swift-Hohenberg model that describes
pattern formation in the transverse plane of an optical cavity
subjected to time-delayed feedback is investigated in details.
A linear stability analysis of the system has shown that in the
presence of spatial inhomogeneities, the discrete eigenvalues
corresponding to localized eigenfunctions get altered, leading
to different complex dynamical behaviors. In particular, the
eigenvalues of the translational eigenfunction change drasti-
cally and become complex. This behavior is attributed to the
spatial inhomogeneity that breaks the translational symmetry
of the system. The interplay between destabilized translational
modes due to delay and an attracting inhomogeneity leads to
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an oscillatory behavior in both transverse dimensions of the
cavity. For larger delays (i.e., larger delay time τ or larger delay
strength α), the localized structure depins from the inhomo-
geneity. In the last part of the paper, we have presented two dif-
ferent approaches to treat the interplay between inhomogeneity
and drift analytically. (i) The derived order parameter equation
presented in Sec. V A only reproduces the behavior of the sys-
tem in the vicinity of the bifurcation point at αcrit and provides a
normal form of the delay-induced Hopf bifurcation. However,
aside from the bifurcation point, the results of this ansatz differ
from those of the full model. One possible explanation for the
small scope of the order parameter model is that the assumption
that the frequency of the oscillation can be approximated
as the imaginary part of the eigenvalue ω = Im(λ) is only
valid in the neighborhood of the bifurcation point (cf. Fig. 3).
However, due to the form of the order parameter equation (7),
it provides a better understanding of the manifestation of
the Hopf instability. (ii) The potential well model which
qualitatively describes the behavior of the localized structure
in the complete parameter regime, including the first and the
secondary instability. It is also quantitatively accurate for most
values of α that are not too close to the secondary instability at
αcrit2. The potential well model has proven itself very useful in
providing a simple and instructive way to deal with inhomoge-
neous systems, where the complex dynamics of a delay-driven
localized structure in the vicinity of an inhomogeneity are
reduced to the mechanical problem of an overdamped particle
in a potential well with a driving force. However, it would
be beneficial to refine the method by also considering shape
deformations of the oscillating localized structure.

The described dynamical solutions presented in this paper
depend only on the competition between unstable translational
modes and attracting inhomogeneities. Due to the generality
of these results, we expect to observe similar dynamics
in practical applications in nonlinear optical systems with
inhomogeneities.
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APPENDIX A: EIGENVALUES IN THE PRESENCE
OF INHOMOGENEITIES AND DELAY

In the following, we show the influence of time-delayed
feedback on the eigenvalues μk of the undelayed system. The
eigenvalues μk for different values of the amplitude of the
inhomogeneity A are depicted in Fig. 2. Figures 10 and 11
show the corresponding eigenvalues for different values of α

and τ that have been used for the direct numerical simulations
in Figs. 12, 13, and 6. The eigenvalues with delay are obtained
by solving Eq. (4).
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FIG. 10. Eigenvalues λk,0 of Eq. (1) for α = 1.1, τ = 1 (the
same values as used in Figs. 12 and 13) corresponding to the
drift-inducing modes (blue solid line), the growth-inducing mode
(red dash-dotted line), and the deformation-inducing modes (green
dotted line) for different amplitudes A of the inhomogeneity Y . One
can clearly see that for a wide range of different amplitudes A, the
translational eigenfunctions are unstable, whereas the other localized
eigenfunctions are stable.

Figures 10 and 11 show the real part of the eigenvalues λk,0

corresponding to the main branch of the Lambert W function.
There is a noticeable kink in the branch of the eigenvalue for
the translational modes, which corresponds to the branching
point of the Lambert W function, i.e., the eigenvalues λk,0

become complex at this point.

APPENDIX B: DIRECT NUMERICAL SIMULATIONS IN 2D

In addition to the numerical results shown in Sec. IV, we
conclude with two simulations showing the depinning process
in two spatial dimensions. Figure 12 shows an oscillatory
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FIG. 11. Eigenvalues λk,0 of Eq. (1) for α = 0.31, τ = 5.7 (the
same values as used in Fig. 6) corresponding to the drift-inducing
modes (blue solid line), the growth-inducing mode (red dash-dotted
line), and the deformation-inducing modes (green dotted line) for
different amplitudes A of the inhomogeneity Y . Depending on the
choice of the amplitude A, either an instability of the translational
eigenfunctions, both the translational and deformation modes, or only
the deformation modes is induced.
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FIG. 12. Pinned oscillatory solution in two dimensions. The
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α = 1.1, τ = 1, Lx = Ly = 32.0, a1 = 2.0, a2 = 4

3 , Y0 = −0.4,

C = 1.0, A = 1.0, B = 4.0.

motion of a localized structure around the center of the
inhomogeneity. The motion in the two spatial directions
is independent with no fixed phase difference between the
oscillations in two perpendicular directions; i.e., different
trajectories are possible.

In Fig. 13, the localized structure depins from the inhomo-
geneity. In contrast to the results in Sec. IV, we kept the delay
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FIG. 13. Depinning solution in two dimensions. The black cross
marks the center of the inhomogeneity Parameters are α = 1.1,

τ = 1, Lx = Ly = 64.0, a1 = 2.0, a2 = 4
3 , Y0 = − 0.4, C = 1.0,

A = 0.2, B = 4.0.

parameters α and τ fixed in both simulations. The transition
from an oscillating to a depinning solution was induced by
lowering the amplitude A of the inhomogeneity from A = 1.0
to A = 0.2.

The semianalytical approaches presented in Sec. V can be
easily applied to the two-dimensional case. We restricted the
analysis to the one-dimensional case for the sake of simplicity.
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[30] P. Hövel and E. Schöll, Phys. Rev. E 72, 046203 (2005).
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