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Enhanced processing in arrays of optimally tuned nonlinear biomimetic sensors:
A coupling-mediated Ringelmann effect and its dynamical mitigation
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Inspired by recent results on self-tunability in the outer hair cells of the mammalian cochlea, we describe
an array of magnetic sensors where each individual sensor can self-tune to an optimal operating regime. The
self-tuning gives the array its “biomimetic” features. We show that the overall performance of the array can, as
expected, be improved by increasing the number of sensors but, however, coupling between sensors reduces the
overall performance even though the individual sensors in the system could see an improvement. We quantify
the similarity of this phenomenon to the Ringelmann effect that was formulated 103 years ago to account for
productivity losses in human and animal groups. We propose a global feedback scheme that can be used to greatly
mitigate the performance degradation that would, normally, stem from the Ringelmann effect.
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I. INTRODUCTION

Biological sensory systems are remarkable in their ability
to detect extremely weak signals. As examples, the human
eye is able to count single photons [1], hair cells in the
cat cochlea are able to detect displacements of the basilar
membrane smaller than 10−10 m [1], the olfactory system of
the domesticated silk moth (Bombyx mori) can detect single
molecules of pheromone [2], and thermal receptors in crotalid
snakes are able to recognize the temperature difference of
0.003 ◦C [3]. All these systems share a simple design principle
based on sensor array architectures; high sensitivity is achieved
through the use of a large number of sensory receptors.

If the signals are discrete (photons and molecules), large
numbers of receptors are necessary to increase the probability
of a detection event. If the signals are continuous, e.g., acoustic
stimuli, large numbers of receptors are known to work in
parallel to reduce the system noise and enhance fidelity. In
all the above-mentioned cases, the system sensitivity is pro-
portional to the number of receptors. A specific example of the
extreme sensitivity in biological sensory systems is afforded
by owls. In the frequency range 5–10 kHz, owls demonstrate
better sensitivity to weak acoustic signals than other birds
and mammals [4]. This frequency range corresponds to one
octave. But the mechanoreceptors tuned to this frequency
range cover almost half the length of the basilar papilla (the
hearing organ which contains the mechanoreceptors), i.e.,
6 mm/octave [5]; this is greater than the values reported for
other birds (0.35–1 mm), and mammals (1–4 mm) [6,7]. This
example shows that the high concentration (in the frequency
domain) of the mechanoreceptors leads to both the exceptional
sensitivity to weak acoustic signals and the high frequency
resolution.

Another key design principle of biological sensory systems
is adaptability. Biological systems typically tune their internal
parameters to accommodate changes in the signal strength.
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Such adaptation, similar to automatic gain control, not only
increases the dynamic range but also protects sensitive systems
to damage from large signals. Two well known examples are
the mammalian ear, which has a dynamic range of 120 dB but
can also detect sound intensities of less than 1 pW/m2, and
the human eye, which can register single photon detection but
has a luminesence range of 1014. These remarkable features
of biological sensory systems have motivated scientists and
engineers to adopt a “biomimetic” approach for the design of
advanced sensory systems [8–10]. We describe such an ap-
proach in this paper, utilizing sensor adaptation in conjunction
with array processing to improve the performance of a system
based on fluxgate magnetometers.

Specifically, we study Takeuchi and Harada (TH) magnetic
sensors assembled into an array; the aim is to increase the
total array gain and improve the (total) output signal-to-noise
ratio (SNR) over a wide dynamic range. The magnetic sensor
invented by Takeuchi and Harada is a simple and small
system [11], it displays very good sensitivity to weak magnetic
fields because it employs positive magnetic feedback resulting
in oscillatory instability; the instability can be exploited to
enhance sensitivity. We modify the TH sensor to include
a self-tuning mechanism inspired by nonlinear dynamical
features of the auditory system of animals; this biomimetic
sensor can achieve a large dynamic range, with a concomitant
lower noise floor, via adaptation to input signals.

The TH magnetic sensors are, of course, detectors of the
target (usually at dc or extreme low frequency) magnetic field;
however, they also interact (electromagnetically) with each
other when they are placed in an array. This interelement
coupling is unavoidable and turns out to be an important and
interesting feature of the array, with analogies to work on
coupled systems carried out by Ringelmann, an agricultural
engineer, over 100 years ago.

The paper is structured as follows. We start by presenting a
phenomenological model of the TH magnetic field sensor [11];
this is our “test bed” throughout this paper. We then develop
the sensor model further by adding a self-tuning mechanism
that biases the sensor into an optimal operating regime, in
a single (i.e., uncoupled) sensor. The self-tuning is inspired
by the adaptive amplification mechanism that is mediated by
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hair cells in the cochlea [12]. The next step is to introduce
an array of coupled identical TH elements, together with
the phenomenological (including the self-tuning mechanism)
dynamics for each element in the array. We quantify the
degradation (stemming from the coupling) of the output SNR,
and compare this with a well-known (in the social sciences
literature) effect first studied by Ringelmann some 103 years
ago [13].

In his studies, Ringelmann focused on the maximum
performance of human groups (he also studied the performance
of teams of oxen yoked to a plough) involved in experiments
wherein they used different methods to push or pull a
load horizontally [13]. Ringelmann showed that the maximal
“productivity” (P ) of a group (of size N ) is less than the
expected value that would, nominally, be the sum of the
maximal productivities of the group members performing
alone:

Pgroup < Pexpected ≡
N∑

i=1

Pi,alone, i = 1 . . . N. (1)

Equation (1) encapsulates the essence of the Ringelmann effect
(RE). We provide a more detailed description of the RE later
in this paper, when we demonstrate that the coupling-mediated
losses in our array bear a striking resemblance to phenomena
studied 103 years ago by Ringelmann; we speculate that the
origin of this common behavior is almost certainly due to
similar coupling effects in Ringelmann’s original studies.

Finally, we introduce a possible route for mitigating
performance degradation in the array by using a carefully
defined global feedback in the sensor array to (partially) cancel
the loss terms that stem from the interelement coupling. This
“correction” has the effect of raising the output SNR (of the
array) to a value close to (but not in excess of) the theoretical
maximum response SNR; the latter limit is calculated as the
sum of the response SNRs of individual elements in the array,
assuming zero interelement coupling. We conjecture that, at
least in the cochlea, this type of feedback should be present to
mitigate Ringelmann-type losses.

II. MODEL

A. Magnetic field sensor of Takeuchi and Harada

The sensor circuit is shown in Fig. 1(a) [11]. We see that
the sensor is a combination of an oscillator through the L0C0

resonance circuit, and a low-pass filter R2C2.
In the resonance circuit, the inductance L0 is nonlinear

due to a ferromagnetic core. The power loss in the resonance
circuit occurs due to the resistance of the coil and hysteresis
in the ferromagnetic core. For self-sustained oscillations, the
power loss in the resonance circuit should be compensated by a
positive feedback. In the sensor of Takeuchi and Harada (TH),
the positive feedback is implemented with the resistance R1,
and the inductance L1; the operational amplifier is used as a
comparator.

In the oscillating magnetic field of the resonance circuit,
the ferromagnetic core is periodically saturated. If an external
constant magnetic field is applied, the oscillations in the sensor
output take on an asymmetric form due to the nonlinearity of
the ferromagnetic core. Hence the oscillator output averaged
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FIG. 1. (a) Circuit of Takeuchi and Harada. (b) The complete
measuring system.

by the low-pass filter R1C1 is different from zero in this case.
Here, it is assumed that the oscillations are fully filtered out
by the low-pass filter.

The transfer function of the sensor is not monotonic [11].
Here, we introduce a phenomenological model of the transfer
function to simplify our task of analysis of the noisy nonlinear
system. We do not seek a precise quantitative agreement
between our model and the experimental results (see Fig. 2
in this manuscript and Fig. 3 in Ref. [11]); rather, we need
a qualitative agreement only. This simplification has been
carried out precisely to make it possible to explain the RE in
an array of TH sensors locked by their adaptation feedbacks.
Hence we avoid a situation wherein we might be overwhelmed
with a plethora of details and parameters of the complex
system; these details are, as stated above, unimportant to our
stated goal of exploring the RE in an array of these sensors.

The transfer function can be, qualitatively, described by the
following equation:

f (x,q) = sgn(x)
√

q

[
1 − exp

(
−|x|

q

)]
exp

(
−x2

q2

)
, (2)
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FIG. 2. Transfer function of the model for a set of parameters:
q = 0.25, q = 0.5, q = 1.0, and q = 2.0.
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FIG. 3. Bifurcation diagram of the Takeuchi and Harada sensor
(shown schematically). The parameter V represents the amplitude of
the voltage oscillations in the L0C0 resonance circuit. The parameter
q depends on R1. q = 0 corresponds to the Hopf bifurcation.

where x is an applied magnetic field, and q is a parameter
characterizing the feedback of the oscillator. It is assumed
that 0 � q < ∞. Then, the closer the parameter q is to zero,
the smaller is the excitation of the resonance circuit via the
feedback. The case q = 0 corresponds to the Andronov-Hopf
bifurcation in the TH oscillator (see Fig. 3). We note here that
Eq. (2) is, however, not able to describe the Andronov-Hopf
bifurcation itself.

The sensor can be characterized by the maximal value
of the coefficient of amplification, and the dynamic range.
According to Eq. (2), the coefficient of amplification of the
sensor is kq = f (x,q)/x. The maximal value of the coefficient
of amplification can be found, in the limit x → 0, as kq,max =
1/

√
q. In practice, sensors are usually exploited in a range

of inputs wherein their transfer functions are almost linear
functions of the (small) input signals. Therefore, the dynamic
range of the sensor can be defined as the range of x where
the transfer function f (x,q) deviates from the linear function
F (x,q) = kq,maxx up to a small parameter δ,

|F (x,q) − f (x,q)| < δ, δ > 0.

Since δ is small, the transfer function can be well approximated
by the cubic equation

f (x,q) � ax3 + bx2 + cx + d.

From the symmetry of the transfer function f (x,q) =
−f (−x,q), it follows that b = 0 = d. In the limit of small
values of x, the transfer function becomes almost linear
f (x,q) � cx, so that c = kq,max. Therefore,

|F (x,q) − f (x,q)| � |ax3|,
just outside the linear regime of the transfer function. A Taylor
expansion (about the origin) of Eq. (2) yields a � −q−5/2;
hence the dynamic range of x is [−δ1/3q5/6 : δ1/3q5/6]. One
readily observes that (i) the parameter q controls both the
dynamic range and the coefficient of amplification and (ii) the
dynamic range narrows faster than the amplification coefficient
increases.

From this brief analysis it follows that it is possible to reach
very high values of the coefficient of amplification (i.e., high
sensitivity to weak signals) close to the limit q → 0, precisely
where there is a risk of failure in the sensor operation due it

being poised on the brink of the Andronov-Hopf bifurcation.
In this limit, however, the internal noise plays a very important
role in the sensor dynamics because it is amplified by the
sensor either instead of or with the target signal. In the output
of the TH sensor, the noise ξ (t) is colored (i.e., correlated
with correlation time τξ ) because it is passed via a low-pass
filter of first order with large time constant. Previously, we
had introduced the noninertial and noise-less transfer function
Eq. (2). Therefore, to describe the noise dynamics of the sensor
we must assume that noise is present at the input of our model,
x = s + ξ (t), where s is a target dc magnetic field. The noise
can be represented by the Ornstein-Uhlenbeck (OU) process,

τξ

dξ

dt
= −ξ +

√
2Dη(t), (3)

with correlation function

〈ξ (t1)ξ (t2)〉 = σ 2
ξ exp

(
−|t1 − t2|

τξ

)
,

where τξ and σ 2
ξ = D/τξ are the correlation time and the

variance of the OU process correspondingly; η(t) is a Gaus-
sian white noise with zero mean 〈η(t)〉 = 0 and correlation
function 〈η(t1)η(t2)〉 = δ(t1 − t2), with 2D being the noise
intensity. For practical applications, the input values (s + ξ (t))
should be set up inside the dynamic range of x. Therefore,
the relationship between the noise level and the dynamic
range should be σξ < δ1/3q5/6 or, for simplicity, σξ < δ1/3q.
Hence the coefficient of amplification must be bounded from
above as k2

q,max < δ1/3/σξ .
If the target magnetic field s is too weak or too strong, the

sensor output could be out of the dynamic range of the display
or another readout device. Therefore, we need an amplifier
or an attenuator to complete the measurement system [see
Fig. 1(b)]. In the case of a weak output of the sensor, when
its value is comparable with the input noise of the amplifier,
the amplifier will amplify both the output of the sensor and its
own internal noise,

v = ka(f (s + ξ, q) + ξa),

where ka is the coefficient of amplification of the amplifier,
v its output, and ξa the input noise of the amplifier. With the
assumption f (x,q) � kq(x + ξ ), we obtain

v = ka(kqs + kqξ + ξa). (4)

Now, it is easy to obtain the output signal-to-noise ratio,

�out = 〈v〉2

σ 2
v

= s2

σ 2
ξ + σ 2

ξa

/
k2
q

. (5)

Here 〈v〉 is the mean value of the output; σ 2
v and σ 2

ξa

are the variances of the output and noise of the amplifier
correspondingly.

The last equation shows the output SNR to be monotoni-
cally decreasing with increasing kq . In the limit of very high kq ,
the SNR at the output of the measurement system approaches
the SNR at the input of the sensor. Therefore, to improve the
SNR of the complete measurement system we need to increase
the coefficient of amplification of the sensor, kq , as much as
possible.
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B. Biomimeticity: The self-tuning mechanism

It is well known that, in the auditory system, a self-tuning
mechanism allows an adaptation of the dynamical range of
the system to different levels of input signals [12]. In the
absence of input signals the system will increase its coefficient
of amplification until the amplified internal noise in the output
reaches a significant level. If a signal is then applied, both
the signal and noise are amplified together so that the total
output power is increased but to a small level compared with
the signal-less condition. The system is organized so that the
strongest signal is amplified with the smallest amplification
coefficient [12].

We introduce a self-tuning mechanism with similar proper-
ties for our realization of the TH sensor. For signal and noise
inside the dynamic (working) range, the output power of the
sensor can be estimated as

ψ̂ = 〈[f (s + ξ (t),q)]2〉.
In this equation we have tacitly assumed the existence of an
ensemble of sensors so we can use the ergodic hypothesis for
an estimation of the (average) power. Moreover, we replace
the infinite interval of time (over which the averaging is done)
with a finite interval T ,

T
dψ

dt
= −ψ + [f (s + ξ,q)]2. (6)

For sufficiently large T , this provides a good estimator of the
power, ψ̂ � ψ .

To use the entire dynamic range of the sensor, the power pro-
vided by the input signal should be close or equal to the bound-
ary of the dynamic range of the sensor, 〈x2〉 = [δ1/3q5/6]2 �
δ2/3q2. In this case, taking into account the quasilinear
character of the function f (x,q) in the dynamic range, the
power of the output can be estimated as ψ̃ = [f (

√
〈x2〉,q)]2 =

[f ( 3
√

δ q,q)]2 � [kq,maxδ
1/3q]2 = q δ2/3. Hence the value of

the parameter q = ψ δ−2/3 indicates an optimal usage of the
dynamic range of the sensor. Now, the self-tuning mechanism
for our model of the sensor can be described by the equation

τ
dq

dt
= −q + ψ δ−2/3, (7)

where τ is the tuning time. It is assumed that the tuning time
τ is equal to or greater than the averaging time T , i.e., τ � T .
Equations (2), (3), (6), and (7) are the model of the sensor with
the tuning mechanism.

Figure 4 schematically shows a possible setup of the
adaptive system: the input x is transformed into the output
z that is passed via a nonlinear unit (to obtain z2) and a
linear low pass filter to control the parameter q in the transfer

filter

f(x,q)

z 2

x z

q

FIG. 4. Possible setup of the adaptive system.
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FIG. 5. Input-output characteristics of the adaptive system. The
periodic input signal is x = a cos 	t . A is the amplitude of the
main harmonic in the output. It is found as A =

√
A2

1 + B2
1 , where

A1 = 1
π/	

∫ 2π/	

0 z cos(	t)dt and B1 = 1
π/	

∫ 2π/	

0 z sin(	t)dt via
simulations of Eqs. (2), (3), (6), and (7). Parameters: 	 = 2π × 0.01,
δ = 0.01, and T = τ = 10. The theoretical solution was obtained
with Eq. (8).

function f (x,q). The Hopf bifurcation and the adaptation
regime for the TH sensor are schematized in Fig. 3. In Fig. 5
the input-output characteristic of the adaptive system is shown.
The so-called “compression” [12] is readily visible: weak
signals are amplified but strong signals are attenuated. In the
interest of completeness, we evaluate the transfer function of
the sensor using a linear approximation. We start by replacing
the true ψ with its estimate [f (x,q)]2. Then, by assumption,
the parameter q is stationary and can we rewrite Eq. (7),

q = [f (x,q)]2δ−2/3.

Next, we substitute the linear approximation f (x,q) � x/
√

q

into the previous equation to obtain

q = δ−2/3

q
x2.

This, immediately, leads to

q = δ−1/3

√
x2,

whence the transfer function is obtained as

z = f (x,q) � x√
x2

δ1/6.

According to the last expression, if the signal is a periodic
function a cos(ωt), then the output amplitude is

A = √
a δ1/6. (8)

C. Interacting sensors

In the TH sensor, the positive feedback (a resistor-inductor
circuit) passes the oscillating signal component, as well as the
dc component [that is proportional to f (x,q)], to the primary
coil of the magnetic sensor. Hence the magnetic sensor creates
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a “self” magnetic field that interferes with the target magnetic
field s. The magnetic field of the sensor is proportional to
f (x,q),

φ(t) ∝ f (s + ξ,q).

Since the oscillator voltage [proportional to f (x,q)] is applied
to a resistor-inductor circuit at very low frequency, the
impedance of the inductor L1 is very small. Hence the value
of the current (and magnetic field) in the RL1 circuit is mainly
controlled by the resistor R and is proportional to

√
q.

We begin our treatment of the coupled system by consider-
ing two identical sensors separated by the interval l,

T
d

dt
ψ1(t) = −ψ1(t) + [f (s + ξ1(t) + φ1(t),q1(t))]2,

τ
dq1

dt
q1(t) = −q1(t) + ψ1(t)δ−2/3,

(9)

T
d

dt
ψ2(t) = −ψ2(t) + [f (s + ξ2(t) + φ2(t),q2(t))]2,

τ
dq2

dt
q2(t) = −q2(t) + ψ2(t)δ−2/3,

that interact via their (self-)generated magnetic fields:

φ1(t) = g

l3

√
q̂2f (s + ξ̂2 + φ̂2,q̂2),

φ2(t) = g

l3

√
q̂1f (s + ξ̂1 + φ̂1,q̂1). (10)

In Eq. (10) the following parameters are introduced: ξ̂1 =
ξ1(t − r), φ̂1 = φ1(t − r), and q̂1 = q1(t − r); we note that
the parameter r = l/c is the time delay, where c is the speed
of light and g the coupling strength.

The system of delay differential equations (2), (9), and (10)
has the small parameter r . In this case, we may approximate
[14] the delay term in the equations with the following ordinary
differential terms:

φi(t̂ + r) � φi(t̂) + r φ̇i(t̂), (11)

where the new time, t̂ = t − r , has been introduced. From this
we have

r
d

dt
φ1 = −φ1 + g

l3

√
q2f (s + ξ2 + φ2,q2),

(12)

r
d

dt
φ2 = −φ2 + g

l3

√
q1f (s + ξ1 + φ1,q1),

i.e., the model of two coupled sensors has been reduced to
the system of ordinary differential equations that can be easily
solved numerically. Since we have assumed r � 1, in many
cases the dynamics of the variables φi can be approximated by
the equations

φ1 � g

l3

√
q2f (s + ξ2 + φ2,q2),

φ2 � g

l3

√
q1f (s + ξ1 + φ1,q1),

i.e., the dynamics are, in essence, independent of the small
parameter r . Therefore, for simplicity, we retain a fixed value
of the parameter r in all our calculations.

(a) (b) L

L

(c)L L

L

L

FIG. 6. Organization of the 2D sensory arrays: (a) a single sensor,
N = 1; (b) N = 4 and (c) N = 9. The dots denote locations of the
sensory units. The parameter L is the intersensor interval.

For a large number of sensors, Eqs. (9) and (12) take on the
following forms:

zi = f (s + ξi(t) + φi,qi), (13)

T
d

dt
ψi = −ψi + z2

i , (14)

τ
d

dt
qi = −qi + ψi(t)δ

−2/3, (15)

r
d

dt
φi = −φi +

N∑
i=1,i �=j

αi,j

√
qj zj , (16)

where i = 1,2, . . . ,N . Here it is assumed r � 1, and αi,j =
g/l3

i,j , the parameter li,j is a distance between the sensors i

and j . In Eq. (16), the dependence of the small parameter r on
li,j is ignored because it is assumed

φi �
N∑

j=1,i �=j

αi,j

√
qj zj . (17)

The output of the array is Z = ∑N
j=1 f (s + ξj + φj ,qj ).

In this study, we will consider sensory arrays organized
into square lattices as shown, for example, in Fig. 6. Before
moving on, however, it is useful to provide some physical
detail regarding how we envision the setup of the array in
an experimental system. We assume that each TH sensor
is positioned inside its individual Faraday cage made of
nonmagnetic material (e.g., copper, aluminium). The cages
are de facto low pass filters for electromagnetic fields, and
can, significantly, reduce the interaction strength between
TH elements at their natural frequencies. At low frequency,
however, the Faraday cages lose their effectiveness, so that
the sensors are affected by the target magnetic field (this field
is dc or at very low frequency) and the quasistatic parasitic
magnetic fields from neighboring sensors, as well as the low
frequency components of the noise.

III. SIGNAL-TO-NOISE RATIO

The design of the sensor with the tuning feedback leads to
the independence of the output of the sensor when the signal is
truly constant (which in practice is never the case). Therefore,
we actually observe a target field s that is time dependent. To
characterize the performance of the system we now estimate
the signal-to-noise ratio at the output of the array.

For a periodic signal a cos(	t) at the input, the output of
the sensor, z, contains a periodic component A cos(	t + θ ).
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Computer simulations show that the phase θ is close to zero
for a broad range of parameters of the system. Therefore, we
may ignore it and assume the output to be A cos(	t).

The amplitude A can be found via the Fourier transform,

A = 2

Tp

∫ Tp

0
z(t) cos(	t)dt,

where Tp = 2π/	. Since s(t)/a = cos(	t), the last expres-
sion can be rewritten as

A = 2

Tp

1

a

∫ Tp

0
z(t)s(t)dt,

or

A = lim
t2−t1→∞

2

t2 − t1

1

a

∫ t2

t1

z(t)s(t)dt = 2

a
z(t)s(t).

The total power at the output is z2. The power in the periodic
component in the output is Ps = A2/2. Thus the noise power
is Pn = z2 − Ps . Now, we can introduce the signal-to-noise
ratio,

� = Ps

Pn

=
A2

2

z2 − A2

2

=
A2

2z2

1 − A2

2z2

.

Here,

A2

2z2
= [z(t)s(t)]2

a2

2
z2

.

Assuming z = 0 and s = 0, we can rewrite the last expression
as

A2

2z2
= [z s − z s]2

(s2 − [s]2) (z2 − [z]2)
= C2.

Here, we have introduced the coefficient C that bears the
hallmarks of a correlation coefficient (see next paragraph).
In terms of C, we can write down the SNR as

� = C2

1 − C2
. (18)

We note that the coefficient C describes the statistical
dependence of the output of the array Z on the target field
s,

C = Z s − Z s

σZσs

, (19)

where σ 2
Z = Z2 − (Z)2, σ 2

s = s2 − (s)2, and the overline
denotes the time averaging, s = (t2 − t1)−1

∫ t2
t1

s dt and s2 =
(t2 − t1)−1

∫ t2
t1

s2 dt . Here we have assumed that (t2 − t1) →
∞. The structure of Eq. (19) is similar to a correlation
coefficient. Indeed, the difference arises through the form of
the averaging: time averaging is used in Eq. (19), and ensemble
averaging is used in the correlation coefficient. Therefore,
Eq. (19) and the correlation coefficient could, in general, yield
different results (due to the difference in averaging) when s is
nonstationary.

Before considering the form of the RE in this system, it is
necessary to compute an ideal (or theoretical) limit for the
net SNR resulting from an uncoupled array (meaning the
separation L becomes extremely large) of identical sensors.
With only a single sensor, and a very weak periodic signal s =
a sin(	t), we can use a linear approximation, Z1 = kq(s + ξ ),
for the transfer function. According to Eq. (19) the coefficient
C is

C2
1 =

k2
q

a4

4

k2
q

a2

2

(
a2

2
+ σ 2

ξ

) =
a2

2
a2

2
+ σ 2

ξ

. (20)

The signal-to-noise ratio can then be rewritten as

�1 = a2/2

σ 2
ξ

. (21)

The output of an array of N sensors for a weak periodic
signal can be written, in the linear approximation, as

ZN = kq

(
Ns +

N∑
i=1

ξi

)
.

The coefficient C takes on the form

C2
N =

a2

2
a2

2
+ σ 2

ξ

N

, (22)

where we assume a statistical independence of the noises ξi .
From Eq. (21) and Eq. (22) it follows that

�N = N �1. (23)

This allows us to predict a theoretical dependence of the signal-
to-noise ratio for an array with N units if �1 is known, for the
“ideal” case of widely separated sensors (i.e., the coupling is
negligible).

IV. RESULTS AND DISCUSSION

Figure 7 shows that, in the case of a weak periodic signal,
the performance of the sensory system is better when the
intersensor intervals are longer (weak coupling). It is easy
to see that the obtained results are always below the capacity
defined as the theoretical dependence.

If the periodic signal is strong (see Fig. 8), the dependence
of the SNR on the intersensor spacing is also strong. One
readily finds that the amplitude of the output increases with
the amplitude of the input signal [see Eq. (8)]. This means
that the increased amplitude of the input signal leads to an
increase in the magnetic field created by the sensor and,
hence, to an increased strength of the interactions between
the sensors. Every sensor in the array amplifies both the target
signal and the magnetic field of other sensors of the array. The
unwanted positive feedback stemming from coupling between
the sensors “confuses” their tuning mechanisms so that the
amplitude A of the array output is greater than expected
(see Fig. 9), and the magnitude of the inputs of the sensors
can be outside the working dynamic range. Therefore, the
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FIG. 7. Ringelmann effect in an array of sensors. The signal-to-
noise ratio �N as a function of the number N of sensors in the array.
The array is organized into the square lattices (see Fig. 6) with the
intersensor intervals L. The target field is the weak periodic signal x =
a sin(	t), where a = 0.001 and 	 = 2π × 0.01. The noises ξi(t) are
independent OU stochastic processes. The theoretical dependence is
shown with the dashed line. It was found with Eq. (23). It is easy to
see that the obtained results are always below the theoretical capacity.
This is a sign of the Ringelmann effect in our coupled array. The
inset shows a clear increase in the summed SNR response (for fixed
N = 36) as the sensor separation in the array increases, corresponding
to a lower coupling strength.

sensors become nonlinear systems that pass the signal with
a nonlinear distortion. From the SNR definition Eq. (18), the
higher harmonics of the signal make a contribution to the noise
in the outputs of the sensors, so that the SNR is reduced. It is
easy to see that

�actual < �expected ≡
N∑

i=1

�i,alone, i = 1 . . . N. (24)
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Γ N=36N

N

FIG. 8. Ringelmann effect in an array of sensors. Same parame-
ters as Fig. 7 but with a = 0.01.
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A

FIG. 9. Synergetic effect of the coupling on the gain in the array.
Here A is the output amplitude of the array. The periodic input signal
is x = a cos 	t . Parameters: 	 = 2π × 0.01, a = 0.01, δ = 0.01,
T = τ = 10, and L = 0.18. The expected theoretical dependence was
obtained with Eq. (8) and assumption that the amplitude is A = N ×
A0, where A0 is the amplitude of the unit (of the array) performing
alone.

Comparing Eq. (1) and Eq. (24), we conclude that the
inequality Eq. (24) satisfies the definition of the RE, with
the one caveat: instead of the maximal productivity, we use
the SNR in the system as a performance measure. The SNR is
almost the same whether the sensor is optimally tuned or not, as
long as the input x of the transfer function f (x,q) is within the
dynamic range. Hence the maximum SNR is equivalent to the
optimal SNR. Therefore, we may use the term “Ringelmann
effect” in the context of the reduction of the SNR in the array
of sensors.

In contrast to Fig. 7, Fig. 8 shows that the SNR is a
nonmonotonic function of the number of the units in the
array. In fact, there arises a situation wherein the number of
mutual interactions grows faster than the number of units in
the array. Every interaction makes its individual contribution
to the positive feedback of the system and increases strength
of the interactions.

Figure 8 (inset) shows that the reduction of the inter-sensor
intervals L (meaning an increase in the coupling strength)
leads to a reduction of the performance of the sensory system,
i.e., the SNR rapidly drops. Obviously, there is a critical L that
corresponds to a transition of the system behavior from the
amplification of the external magnetic fields to the generation
of a spontaneous magnetic field magnetization) that is mostly
independent of external fields. This phenomena is similar
to a phase transition [15]. An analogous effect is apparent
as a function of N (see Fig. 8). For strong coupling (small
separation L), the “self” fields (arising from the spontaneous
magnetization of the core) of each sensor are amplified far
more than the external magnetic field. In the large L (i.e.,
weak coupling) limit the response approaches the theoretical
maximum, particularly for weak target signals. These two
regimes are, loosely, connected via a maximum in the SNR

versus N curve as visible in Fig. 8. As N decreases, the
maximum shifts to a lower N value.
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To illustrate the influence of the coupling on the sensory
system we consider a square matrix consisting of sensor
elements that have the individual SNRs,

�m,n = c2
m,n

1 − c2
m,n

, (25)

where the coefficients cm,n are

cm,n = zm,n s − zm,n s

σzm,n
σs

,

zm,n = f (s + ξm,n,qm,n), m = 1, . . . ,
√

N , and n =
1, . . . ,

√
N .

We now consider the (numerical) results for the almost
independent sensors, i.e., the sensors are weakly coupled due
to the long intersensor intervals (we take L = 1 for this case).
It is easy to see that the individual signal-to-noise ratios �m,n

in all matrices are almost identical and close to value of the
SNR of the single sensor (N = 1). We illustrate this by using a
strong signal (amplitude a = 0.01) and computing, for a single
sensor, �1 = 6.326391. For a 2D square lattice of varying size,
we can calculate the individual signal-to-noise ratios �m,n as
follows.

N = 4: (
6.159971 6.433196
6.456477 6.349792

)
. (26)

Total �4 is 22.818512.
N = 9: ⎛

⎝6.297275 6.458169 6.403746
6.374942 6.431465 6.333464
6.556485 6.643418 6.327900

⎞
⎠. (27)

Total �9 is 45.484923, and so on. It is easy to see that the total
SNR is less than the sum of all SNRs, i.e., much redundant
information passes through the sensory system.

Another illustrative example can be considered, wherein
the coupling is strong due to the short inter-sensor intervals,
L = 0.18. As in the preceding case we can calculate �1 =
6.234534 for a single element. In this case, we find, as above,
the following.

N = 4: (
11.158677 11.292682
11.451936 11.118461

)
. (28)

Total �4 is 23.293699.
N = 9:⎛

⎝14.360633 16.886906 14.651738
16.707638 19.346849 17.575212
14.750152 16.593489 15.213220

⎞
⎠. (29)

Total �9 is 33.708725.
The sensors are “cooperating”. The individual SNRs are

greater than the SNR of the single sensor, and correlations
between the individual responses of the sensors and the
external signal are increased. But, the cooperative work
counters the performance of the whole system; the total SNR
is (for increasing N ) below that of the weakly coupled sensors
(the previous case for L = 1), with correlations between
individual responses being increased in this case.

V. RINGELMANN EFFECT: SOCIOLOGY
MEETS PHYSICS

The coupling-induced phenomena detailed above bear re-
semblances to the phenomena described by Max Ringelmann
103 years ago [13]; the so-called Ringelmann effect (RE)
is frequently cited in the social sciences literature [16,17].
We believe the similarity is much more than a qualitative
coincidence and is based on similar dynamical principles
mediated by the coupling.

In his studies, Ringelmann focused on the maximum
performance of humans involved in experiments wherein they
used different methods to push or pull a load horizontally
[13]. The RE has already been introduced in Sec. I; here,
we provide some more detail. Ringelmann discriminated two
main contributions to human productivity losses (see, e.g.,
Fig. 10), namely the motivation loss (now referred to in the
contemporary literature as “social loafing”) and a “coordi-
nation” loss; he concentrated, however, on the coordination
loss as an explanation for the reduction of performance [17].
Ringelmann believed that coordination loss was the more
important contributor to the RE because similar reductions
in performance occurred not only in groups of humans and
animals (horses and oxen [18]), but also in technical systems
wherein social loafing was, clearly, impossible. For example, in
multicylinder combustion engines, the engines with the larger
number of cylinders produced less power per cylinder [13,17].

One hundred years ago it was too difficult to create a math-
ematical description of the Ringelmann effect (RE) because
of a lack of understanding of complex systems. Consequently,
the coordination losses observed by Ringelmann have never
been explained or understood. In contrast, the performance
loss due to social loafing has been well studied by social
scientists. They found that social loafing was not limited to
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FIG. 10. There are the two major causes of productivity losses
in groups working on additive tasks. The portion between the
dashed line and the dotted line represents motivation loss (social
loafing), and the portion between the dotted line and the solid line
represents coordination loss. “Pseudogroups” are defined as groups of
individuals who were actually working alone, but thought they were
working as part of a group. The design of the figure was adopted from
Ref. [16].

032211-8



ENHANCED PROCESSING IN ARRAYS OF OPTIMALLY . . . PHYSICAL REVIEW E 95, 032211 (2017)

groups that needed to exert physical effort. The social loafing
could, in fact, be observed when groups worked at diverse
tasks, e.g., maze performance [19], evaluating a poem [20],
song writing [21], brainstorming [22], reacting to proposals
[23], judgmental tasks [24], research [25], software developing
[26–28], pumping air [29], clapping [30], rowing [31], pulling
a rope [32], swimming in relay races [33], job selection
decisions, typing, and creativity problems [16,34].

Social scientists paid far greater attention to the social
loafing component of the RE, because it was believed that these
studies might provide the framework to organize a team that
could improve its performance by increasing individual efforts
in groups [16,34]. Today, these studies are motivated by the in-
terest of industrial organizations for achieving an improvement
of their efficiency through the most optimal organization.

In this work, we have studied (for a coupled sensor array)
another type of contribution to productivity loss; this contri-
bution stems from interactions between members of a group
which we believe is also the origin of the coordination loss
reported by Ringelmann. To illustrate the interaction-induced
loss we start by discussing Ringelmann’s original experiments
relating to a human horizontally pulling a rope attached to a
dynamometer [13]. In the experiments, the subject’s feet are in
contact with the ground and the body slopes to create tension in
the rope with the help of gravity; as the slope and hence pulling
force increases so does the balancing frictional force on the
ground. For some critical slope the pulling force equals the
maximum sustainable frictional force giving rise to a “critical
point”. Exceeding this slope (force) results in loss of stability.
Thus, for the “best” performance, the subject should remain
close to the critical point while not going past it (i.e., remain
within the “working range”). We can assume that the subject
uses the following control “algorithm” to adjust (tune) his
body to the critical position. The subject increases his slope
until slippage starts to occur; he, then, stumbles backwards
to correct the sliding. This process is then repeated with the
subject trying to “bias” his position as close to the critical point
as possible without slipping. Near the critical point fluctuations
are amplified; therefore, the body of the subject moves
randomly with multiple corrections required to prevent, or as
a consequence of, slippage. If a group of humans are pulling
the rope, unintentional random movement of one member will
dramatically affect the “tuning” processes of other members of
the group. To avoid loss of stability in the presence of common
fluctuations, the members of the group will keep the positions
of their bodies away from the critical state. Hence the net
performance of the humans will be reduced.

In his pulling-the-rope experiments, Ringelmann asked the
subjects to maintain a maximum effort for 4–5 s [13]. Given
this relatively long duration it is not really conceivable that
subjects were unable to pull at the same time, i.e., they would
have been able to synchronize their efforts. Consequently, the
coordination losses measured by Ringelmann were, almost
certainly, caused by the (unintentional) movement of the rope
that was fed back to members through the mechanical coupling
of the rope itself.

In this paper we have studied a physical system that is not
similar to the group of humans in Ringelmann’s experiments,
but the coupling-induced dynamics does have a similar
impact on performance; the coupling channels fluctuations

from individual sensor outputs to adjacent sensors which are
themselves already optimally tuned (i.e., their dynamic range,
and hence SNR, is maximized). The fluctuations therefore
perturb the sensors away from their optimal working point
thus lowering overall performance.

From an application perspective mitigation of the RE is
necessary to enhance performance. We now provide a possible
path to mitigating the losses in arrays of nonlinear engineered
devices.

Can the Ringelmann effect be mitigated?

According to Figs. 7 and 8, the RE can be mitigated by
increasing the element separation L in the sensory array. But,
in this case the size of the array will either become prohibitively
large or result in sensors picking up different spatially localized
signals. Hence an alternative way of reducing the RE is
required.

Since the RE takes place due to the coupling between the
sensory units we could, at least on paper, cancel the coupling
term φi in Eq. (13) to improve the SNR response of the array.
However, in contrast to the mathematical model, the simple
“cancellation of the coupling term” is usually impossible in a
real sensory system. Therefore, we construct the canceling
term �c,i to the coupling term φi in Eq. (13), from data
available from measurements in a possible real experiment;
ideally, the canceling term should be �c,i = −φi . In keeping
with our desire to achieve the mitigation of the RE through
realistic (i.e., experimentally accessible) scenarios, however,
we assume that it is impossible to measure the quantity φi .
According to Eq. (17), however, this quantity can be estimated
from a knowledge of the parameters g, li,j , qi , and zi , where
i = 1, . . . ,N . For simplicity, we will assume that the dynamics
of all parameters qi are similar and all qi take on almost the
same values, qi � qj . Then the canceling term will be

�c,i = −g
√

qi

N∑
j=1,i �=j

zj

li,j
, (30)

where zj is the output of the j th unit. Hence Eq. (13) can be
rewritten as

zi = f (s + ξi(t) + φi + �c,i,qi). (31)

The term �c,i in Eq. (31) implies a global feedback in the
sensory system, as shown in Fig. 11. In Fig. 11(a) the circuit
of a single unit of the array with the output z and the additive
input �c is shown. Figure 11(b) shows the global feedback
for each unit. The results stemming from the feedbacks can
be seen in Fig. 12. The SNR is significantly improved but
the theoretical limit is not reached due to the (still) nonideal
structure of the canceling term �c,i [see Eq. (30)].

Throughout this paper, the biomimetic nature of the
magnetometer array was inspired by what is generally accepted
to occur in the auditory system [36,37]. Consequently,
our approach raises a number of interesting questions.
If the receptors are mechanically coupled via the basilar
membrane–tectorial membrane system (see Fig. 13), could the
RE occur in the auditory system? If yes, then can the auditory
system mitigate the RE? In (the schematic) Fig. 13, we show
that the central nervous system not only receives signals from
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FIG. 13. (a) Outer hair cell (OHC) interacting with the basilar
membrane–tectorial membrane system and with the central nervous
system (CNS) [35]. The OHC can schematically be split into the
sensor and motor components. The dotted green loop shows that the
sensory part of the OHC is adaptive subsystem [36]. (b) The coupling
in the auditory system of mammals [37]. The afferents are shown
with dash-dotted red arrows targeted to the CNS, and the efferents
are shown with dashed blue arrows. Mechanical coupling between the
OHCs, and inner hair cells (IHCs) and the basilar membrane–tectorial
membrane system are shown with solid black arrows.

inner hair cells but tries to control parameters of outer hair
cells. We could speculate that the feedback circuits, OHCs →
IHCs → afferents → CNS → efferents → OHCs, schematized
in Fig. 13 could play the role of a RE mitigating system. We
stress that Fig. 13 is our rendition of the adaptive amplification
process in the cochlear, based on our reading of references
[36,37]. This “provocative speculation” on our part might
stimulate further investigations into the nonlinear dynamic
phenomena that are considered integral to the auditory
system.

VI. CONCLUSIONS

In this work, we have introduced a model of an array of
nonlinear interacting sensors. The individual sensors can be
tuned to their optimal regimes for the best performance, when
uncoupled. However, in the presence of the other sensors,
this optimization (in the individual units) is lost because of
coupling induced interaction. This is a “coupling” loss that can
lead to a reduction in performance of the entire sensory system.

The performance loss is most evident at smaller intersensor
intervals (corresponding to higher coupling strength). The
overall performance, quantified by a total SNR, is bounded
from above by the theoretical (or ideal) limit given by
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N × �N=1 [Eq. (23)]; this value is approached only in the
limit wherein the sensors are, effectively, decoupled.

Clearly, it would be a significant improvement if we could
mitigate (or reduce) the losses stemming from the RE in
a sensory array of the type considered in this work. One
possible route to this, via global feedback, has been proposed.
Equation (30) derived from the feedbacks depends on both the
geometrical parameters of the array (the separation between
sensors li,j ) and the outputs zi of the individual units of the
array. Note that Eq. (30) is an approximation of the ideal
canceling term �c,i = −φi but, in contrast to the ideal cancel-
lation term, it can be realized via the electrical circuit shown
in Fig. 11. Since �c,i differs from −φi (as already mentioned
above), it is not able to completely cancel the parasitic coupling
φi between the individual elements and sensors. Therefore,
the theoretical limit of ideal performance cannot be reached in
practice (unless the coupling is, identically, zero) and the RE
still limits the array performance, albeit in a greatly reduced
form.

We note, here, that social and behavioral scientists often find
it difficult to quantify the individual performances of working
units that contribute to a total (i.e., group) result; specifically,
they usually cannot quantify any of the losses depicted in
Fig. 10. Thus, in an effort to quantify individual performances
in a group effort it is, often, common practice to scale the
performance metric that characterizes the overall performance
by the number of working units in the group. Applying this
reasoning, the individual (in our case, sensor) performances in
each coupled array would be obtained by simply computing
the overall SNR performance and scaling it by N to yield
the individual performances. Hence, unlike the results of the
preceding section, all the component elements in each coupled
array would have the same SNR response. For example, in the
L = 0.18 case, we would obtain � = 6.23 (N = 1), 5.82 (N =
4), 3.74 (N = 9), etc. Clearly, if the social scientists could,
separately, quantify the individual performances of elements
in their systems, their results might be similar to the results of
this article.

At this point it is worth noting that there does in fact
exist at least one exception (that we are aware of) in the
social sciences literature, wherein the loafing and coordination
losses were, separately, quantified. Latane et al. [38] carried
out an experiment involving clapping and shouting by a
group of human subjects. Among the tests, one in particular
stands out: participants were asked to shout as loudly as they
could when alone, in pairs, in sixes, etc. The subjects were
blindfolded and wearing headphones subject to a masking
signal; therefore they were unaware of the presence of
other subjects. The trials included situations wherein the
subjects (still blindfolded and wearing headphones) were led
to believe that they were actually part of a group. A novel
testing and measurement procedure allowed the researchers
to quantify individual performances when the subjects knew
they were alone, and when they thought they were in a
group. This allowed the researchers to, separately, quantify
the loafing and coordination losses in the group performance.
The following extract, directly from the abstract of [38], is
self-explanatory: “Two experiments found that when asked
to perform the physically exerting tasks of clapping and

shouting, people exhibit a sizable decrease in individual
effort when performing in groups as compared to when they
perform alone. This decrease, which we call social loafing,
is in addition to losses due to faulty coordination of group
efforts”.

Other problems in the quantification of human performance
could arise when one confronts a heavy-tailed distribution
of contributions of individual group members. For example,
in an analysis of open source software production, it was
reported that the distribution of contributions per software
developer was heavy-tailed, meaning the first two statistical
moments (mean and variance) were undefined [28]. Due to the
difficulty in correctly defining the performance of software
developers and due to problems relating to an estimation of
this quantity from available data, the authors of two separate
papers [26,27] came to opposite conclusions regarding the
presence of a Ringelmann effect in the software production
process. It is easy to understand that a similar situation could
arise in a sensory array when the TH sensors, that are the
backbone of this paper, are replaced with different sensors that
might be tuned to different critical behavior, e.g., a phase
transition [15] or self-organized criticality [39], instead of
the Hopf bifurcation. Such sensors could be very sensitive
to weak signals but their noise-floor distributions could be
heavy-tailed. Clearly, then, if the first and second moments of
the noise distributions are not defined then it will be difficult
to correctly quantify the signal-to-noise ratio and estimate the
performance of the sensory system.

The results of our work hold for any array of nonlinear
sensors (and the coupling can have any form) that can be,
individually, tuned to a regime wherein their response to a
target signal is optimized. Then, the Ringelmann effect appears
to provide the underlying thread between the purely social
interactions originally examined by Ringelmann and the (quite
complex) sensor arrays that are increasingly possible with
today’s advanced technology. More importantly, the principles
of coupling-induced performance loss should be generic to
many systems across the physical, biological, engineering, and
social sciences. Adaptive (self-tuning) schemes for operating
isolated subunits (e.g., people [16], animals [18], optical
sensors and systems [40], parallel inverters and converters
in power electronics [41], and antenna arrays [42]) close to
their optimal operating points can be devised but become less
effective when coupled into a complex interacting network. We
have demonstrated that, in addition to the local optimization
(adaptation), some form of global optimization, e.g., via
feedback, can help to mitigate Ringelmann-type effects. These
principles are expected to be generic across a wide class of
nonlinear dynamic systems.

It seems fitting to conclude this paper with an exclamation
point. While the coupling-induced loss and the RE can occur
in many coupled nonlinear dynamic systems (see previous
paragraph), it is the self-tuning to an optimal point (effectively
poised on the threshold of the Andronov-Hopf bifurcation in
our case) that is a central feature of signal processing in the
cochlea. Thus our sensor array (and, in fact, the single TH
sensor as well) is not biomimetic unless we incorporate the
self-tuning mechanism in each sensor prior to setting up the
array.
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