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Traveling waves and breathers in an excitatory-inhibitory neural field
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We study existence and stability of traveling activity bump solutions in an excitatory-inhibitory (E-I) neural
field with Heaviside firing rate functions by deriving existence conditions for traveling bumps and an Evans
function to analyze their spectral stability. Subsequently, we show that these existence and stability results
reduce, in the limit of wave speed c → 0, to the equivalent conditions developed for the stationary bump case.
Using the results for the stationary bump case, we show that drift bifurcations of stationary bumps serve as a
mechanism for generating traveling bump solutions in the E-I neural field as parameters are varied. Furthermore,
we explore the interrelations between stationary and traveling types of bumps and breathers (time-periodic
oscillatory bumps) by bridging together analytical and simulation results for stationary and traveling bumps and
their bifurcations in a region of parameter space. Interestingly, we find evidence for a codimension-2 drift-Hopf
bifurcation occurring as two parameters, inhibitory time constant τ and I-to-I synaptic connection strength w̄ii ,
are varied and show that the codimension-2 point serves as an organizing center for the dynamics of these four
types of spatially localized solutions. Additionally, we describe a case involving subcritical bifurcations that lead
to traveling waves and breathers as τ is varied.
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I. INTRODUCTION

Traveling waves of activity have been observed in a variety
of brain regions under different conditions [1–13] and also in
brain slice preparations [1,14,15]. Synaptic inhibition is known
to control the spread of excitation, yet propagating waves of
activity can occur in the presence of robust inhibition [1].
Theoretical results from neural fields have already begun to
show successful control of wave propagation in cortical slice
experiments [15].

Neural fields are spatially extended nonlinear integrod-
ifferential equations that represent the large-scale dynamics
of populations of neurons mediated by synaptic interactions
and other neuronal processes (e.g., firing rate adaptation
and synaptic depression) and support a wide range of spa-
tiotemporal dynamics, including traveling waves [16–20].
Two variations on the original excitatory-inhibitory (E-I)
neural field introduced in [16] that employ the Heaviside
firing rate simplification [21] have been studied by Pinto and
Ermentrout [22] and Blomquist et al. [23]; our work herein
concerns the latter.

Traveling waves in neural fields have been examined in
a variety of contexts, including neural fields with adapta-
tion [24–30], asymmetric connectivity [31], synaptic depres-
sion [32,33], refractoriness [34], transmission delays [35,36],
recurrent inhibition [37], spatial inhomogeneities and horizon-
tal connections [38–41], and noise [42,43]. Spectral stability
of traveling waves can be analyzed with an Evans function,
which was initially developed for neural fields in [25] and
has been calculated and used in neural fields where threshold
conditions occur in only one neuronal population [26–28,30]
or in a pair of interacting neural fields but in the simpler
case of traveling fronts [42] which reduces the number of
threshold crossings that the wave depends on nonlinearly.
Drift bifurcations—wherein stationary bumps destabilize and
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give rise to traveling waves—have been briefly examined in a
neural field with nonlinear adaptation [44] and an interacting
pair of E-I neural fields [45] and in more detail in [46–48].
Hopf bifurcations of stationary bumps have been studied
in various neural fields [22,23,44,49–52] and can produce
different forms of stationary oscillatory activity bumps, e.g.,
stationary breathers. It is also possible for localized traveling
waves to undergo Hopf bifurcations that give rise to stable
temporally oscillating traveling waves. Such waves occur both
in neural fields, taking the form of traveling breathers [27],
and also in synaptically connected spiking neuronal networks,
where they can take the form of lurching waves [53].

Studies of traveling waves of activity in various formu-
lations of E-I neural fields are limited and have primarily
examined numerical simulations only [16,45,54,55]. Amari
developed existence conditions for traveling waves analyti-
cally in the special case of an E-I neural field wherein the
I population dynamics at location x is governed by synaptic
inputs from the E and I populations at location x only [21],
which shares some aspects with the adaptation variable in the
model of Pinto and Ermentrout [24]. Thus, while each point in
the E population receives inhibition from many locations x, the
synaptic inhibition from each location x is determined solely
by the local E-I population at x; consequently, wave existence
is determined by the threshold conditions in the E population
only. To contrast, the E-I neural field considered herein allows
synaptic inputs (afferents) to both E and I populations to arise
from populations at any location in space (or feature space),
and wave existence is determined by threshold conditions in
both E and I populations.

In this paper, we develop existence and stability conditions
for traveling bumps in a general E-I neural field. One difference
from previous studies is that traveling bump existence in the
neural field here requires solving a four-dimensional (4D)
nonlinear system of equations rather than a 2D system. The or-
ganization of the paper is as follows. We begin by introducing
the E-I neural field model (1) and some assumptions upon it. In
Sec. II, we develop existence conditions for a traveling bump
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solution and an expression for the traveling bump profile that
are valid for both cases of (i) no input and (ii) a traveling bump
that is locked to a localized input traveling with constant speed.
Subsequently we compare results of numerical simulations of
the E-I neural field with those of the existence conditions.
In Sec. III, we analyze the spectral stability of traveling
bump solutions, derive an Evans function to calculate their
stability, and compare its results with numerical simulations.
In Sec. IV, we examine the reduction in limit as wave speed
c → 0 for both cases of the existence conditions and the
Evans function. In Sec. V, we discuss the drift bifurcation
as a mechanism for traveling bump generation, and combine
a mixture of existence, stability, bifurcation, and numerical
simulation results for both stationary and traveling bumps
to examine their behavior and interrelation with stationary
and traveling breathers extensively in a particular region of
parameter space. Finally, in Sec. V F we examine a different
example of traveling wave and traveling breather generation
resulting from subcritical bifurcations in a different region of
parameter space.

We consider excitatory-inhibitory (E-I) neural field [23],

∂ue

∂t
+ ue = wee ∗ fe(ue) − wei ∗ fi(ui) + Ie,

τ
∂ui

∂t
+ ui = wie ∗ fe(ui) − wii ∗ fi(ui) + Ii, (1)

posed on the space C1
unif(R,R2) where τ > 0 is the relative

inhibitory time constant, Ij (x,t) represent inputs, the nonlin-
earities fj are Heaviside functions of the form

fj (u) = H (u − θj ), j ∈ {e,i},
θe,i denote the thresholds for excitatory and inhibitory popu-
lations, respectively, and wjk ∗ fk(u) is expressed as

[wjk ∗ fk(u)](x,t) =
∫ ∞

−∞
wjk(x − y)H [uk(y,t) − θk]dy.

Synaptic weight distributions wjk(x) for j,k ∈ {e,i} are
assumed to be positive, even-symmetric, continuously differ-
entiable functions and integrable over (−∞,∞). In a related
neural field, spectral stability was shown to imply nonlinear
stability when posed on the space C1

unif(R,R2) with wjk(x) ∈
C1

unif(R,R) ∩ W 1,1(R,R) [30].
E-I neural field (1) is a mean field model that treats neural

tissue as a spatial continuum (or a continuum in some feature
space) where ue(x,t) and ui(x,t) represent the activity of the
population of excitatory and inhibitory neurons, respectively,
at location x and time t . Neural fields are amenable to modeling
areas of the neocortex due to their layered structure of networks
of excitatory and inhibitory neurons with approximate regular
patterns of space-dependent and feature-dependent synaptic
connections. A layer of neural tissue can be collapsed to a
two-dimensional sheet if the activity is approximately uniform
along vertical lines through the layer, e.g., due to strong
vertical connections. Neural field (1) represents a layer of
excitatory and inhibitory neurons in vivo or in vitro, with
intralayer synaptic connections wjk assumed to be isotropic
and distance dependent, reflecting, to a first approximation,
the short-range connections to both excitatory and inhibitory
neurons in various regions of cortex. The two-dimensional

layer here is further reduced to a one-dimensional layer for
simplicity; however, all of the solutions studied herein have
natural localized two-dimensional analogs. Inputs Ie,i(x,t) to
the E and I populations can be construed in various ways,
such as external current inputs from electrodes, or prescribed
synaptic input from a different pool of neurons within the
same or different layer (or different brain region), or reflecting
regions where neurons are more depolarized or activity is
modulated by other prescribed processes.

II. EXISTENCE CONDITIONS FOR TRAVELING
BUMP SOLUTIONS

We seek traveling bump solutions of the form
(ue(x,t),ui(x,t)) = (Ve(ξ ),Vi(ξ )) where ξ = x − ct is the
traveling wave coordinate, c is the wave speed, and

Ve(ξ )

⎧⎨
⎩

> θe ξ ∈ (ξ e
0 ,ξ e

1 )
= θe ξ = ξ e

0 ,ξ e
1

< θe otherwise
, (2)

Vi(ξ )

⎧⎨
⎩

> θi ξ ∈ (ξ i
0,ξ

i
1)

= θi ξ = ξ i
0,ξ

i
1

< θi otherwise
. (3)

When Ie,i(x,t) = 0, neural field (1) is translation invariant
and, without loss of generality, we can set ξe

0 = 0 with the
wave speed c and the threshold boundaries ξe

1 ,ξ i
0,ξ

i
1 selected

by the network. In the separate case of a traveling bump locked
to a traveling localized input Ij (x,t) = Ij (x − ct), the speed
c of the bump is assumed to match the prescribed speed
of the input. Translation symmetry is broken by the input
inhomogeneity and the four threshold boundaries ξe

0 ,ξ e
1 ,ξ i

0,ξ
i
1

instead are determined by the network and depend on the
position of the input in the traveling coordinate frame ξ .

In either case, a traveling bump solution (Ve,Vi) satisfies
the following equation in traveling wave coordinates:

− c
∂Ve

∂ξ
+ Ve = wee ∗ fe(Ve) − wei ∗ fi(Vi) + Ie(ξ ),

−cτ
∂Vi

∂ξ
+ Vi = wie ∗ fe(Ve) − wii ∗ fi(Vi) + Ii(ξ ) (4)

together with the threshold conditions (2) and (3). The
nonlinear terms of the traveling bump (Ve,Vi) in (4) may be
expressed as explicit functions (We and Wi) of the threshold
boundaries of the activity bump, ξe

0 ,ξ e
1 in the E population

and ξ i
0,ξ

i
1 in the I population (which must be determined and

tracked separately), reducing (4) to

− c ∂ξVe + Ve = We

(
ξ ; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

) + Ie(ξ ),

−cτ ∂ξVi + Vi = Wi

(
ξ ; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

) + Ii(ξ ), (5)

where

Wj

(
ξ ; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

) = [
Wje

(
ξ − ξ e

0

) − Wje

(
ξ − ξ e

1

)]
− [

Wji

(
ξ − ξ i

0

) − Wji

(
ξ − ξ i

1

)]
(6)

and Wjk(ξ )=∫ ξ

0 wjk(η)dη for j,k ∈ {e,i}. Based upon the
assumptions on wjk , the functions Wjk(ξ ) are monotonically
increasing over (−∞,∞). Hence, Wjk(ξ−ξk

0 )−Wjk(ξ−ξk
1 )

for ξk
0 < ξk

1 is positive, even-symmetric about ξ = 1
2 (ξk

0 + ξk
1 ),

and monotonically decreasing to 0 as |x| → ∞.
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By variation of parameters, a solution of the form Ve(ξ ) =
αe(ξ )eξ/c and Vi(ξ ) = αi(ξ )eξ/cτ satisfies (5) if the functions
αe(ξ ) and αi(ξ ) satisfy

− ∂ξαe(ξ ) = 1

c
e−ξ/c

[
We

(
ξ ; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

) + Ie(ξ )
]
,

−∂ξαi(ξ ) = 1

cτ
e−ξ/cτ

[
Wi

(
ξ ; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

) + Ii(ξ )
]
. (7)

For the case c > 0, we integrate over [ξ,∞) and assume that
αe(ξ ),αi(ξ ) → 0 as ξ → ∞ to arrive at

αe(ξ ) = 1

c

∫ ∞

ξ

e−η/c [We(η) + Ie(η)] dη,

αi(ξ ) = 1

cτ

∫ ∞

ξ

e−η/cτ [Wi(η) + Ii(η)] dη (8)

and, thereby, obtain the following integral representation for a
traveling bump solution (Ve,Vi),

Ve(ξ ) = 1

c

∫ ∞

ξ

e(ξ−η)/c
[
We

(
η; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

) + Ie(η)
]
dη,

Vi(ξ ) = 1

cτ

∫ ∞

ξ

e(ξ−η)/cτ
[
Wi

(
η; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

) + Ii(η)
]
dη,

(9)

with wave speed c and threshold boundaries ξe
0 ,ξ e

1 ,ξ i
0,ξ

i
1. The

four unknown values of the five variables c,ξ e
0 ,ξ e

1 ,ξ i
0,ξ

i
1 of the

traveling activity bump (Ve,Vi), depending on the absence or
presence of an traveling input, are determined by the set of
nonlinear equations

Ve

(
ξ e

0

) = θe, Ve

(
ξ e

1

) = θe, (10)

Ve

(
ξ i

0

) = θi, Vi

(
ξ i

1

) = θi, (11)

provided such a solution results in a wave profile (Ve,Vi)
satisfying threshold conditions (2) and (3) on all of (−∞,∞).
The traveling bump solution (Ve,Vi) also satisfies (5), so an
alternate expression for the traveling bump profile is

Ve(ξ ) = c
∂Ve

∂ξ
(ξ ) + [

We

(
ξ ; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

) + Ie(ξ )
]
,

Vi(ξ ) = cτ
∂Vi

∂ξ
(ξ ) + [

Wi

(
ξ ; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

) + Ii(ξ )
]
, (12)

which contains terms without explicit integrals of Wj .
The ξ derivative of the bump can be expressed as

c
∂Ve

∂ξ
(ξ ) =

∫ ∞

ξ

e(ξ−η)/c [W ′
e(η) + I ′

e(η)] dη,

cτ
∂Vi

∂ξ
(ξ ) =

∫ ∞

ξ

e(ξ−η)/cτ [W ′
i (η) + I ′

i (η)] dη, (13)

which follows from (9) if We(ξ ),Wi(ξ ) and Ie(ξ ),Ii(ξ ) are
continuously differentiable. The ξ derivative plays a role in
stability of the bump, and the form (13) is used to calculate

the traveling bump profile (Ve(ξ ),Vi(ξ )) explicitly in Sec. II C
using (12) and

W ′
j (ξ ) = [

wje

(
ξ − ξ e

0

) − wje

(
ξ − ξ e

1

)]
(14)

−[
wji

(
ξ − ξ i

0

) − wji

(
ξ − ξ i

1

)]
. (15)

A. Traveling waves with negative wave speeds

For the case c < 0, any left-moving traveling bump profile
(Ve(ξ ),Vi(ξ )) is always a reflection (across ξ = 0) of some
right-moving traveling bump profile, traveling with speed
|c|. This is seen from the invariance of Eqs. (5) under the
transformation

(c,ξ ) �→ (−c,−ξ ),(
ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

) �→ (−ξ e
1 ,−ξ e

0 ,−ξ i
1,−ξ i

0

)
,

which is due to the following symmetry of We,Wi :

Wj

(−ξ ; −ξ e
1 ,−ξ e

0 ,−ξ i
1,−ξ i

0

) = Wj

(
ξ ; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

)
(Wjk is odd symmetric) and the even symmetry of Ie,Ii . One
can also show explicitly that any bump profile with c < 0 is a
reflection across ξ = 0 of a bump profile for the corresponding
value |c| > 0 working with the case c < 0 and keeping track
of threshold points (ξ e

0,1,ξ
i
0,1).

B. Existence equations and simulations

Traveling wave solutions were examined both (i) by solving
the existence equations (10) and (11) numerically for the values
c,ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1 and (ii) by evolving the neural field equation in

numerical simulations and studying the approach of solutions
to stable traveling waves. Estimated values of c,ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

were also calculated from simulations and compared. All
calculations were made with the functions listed in Sec. II C.
Whenever stable waves in numerical simulations of (1) were
generated, their widths and wave profiles consistently matched
those found by numerically solving existence equations (10)
and (11). Wave profiles are shown in Fig. 1 as the relative
inhibitory time constant varies. The increased delay in the I
population allows the leading excitatory activity bump to be
more pronounced and the wave propagates faster. Wave speed
c increases with increasing τ as does the width of the traveling
bump. In Sec. V F, we will return to this parameter regime to
investigate the case of τ < 1.2, examining more closely the
bifurcation structure that gives rise to these traveling waves as
τ is decreased.

C. Explicit calculations of the traveling bump profile
and gradient for Gaussian w j k(ξ ) and I(ξ )

Below we list explicit expressions for a traveling bump
profile (Ve(ξ ),Vi(ξ )) in the case of Gaussian synaptic weight
functions of the form

wjk(ξ ) = 1√
π

w̄jk

σjk

e−(ξ/σjk)2
(16)

and Gaussian input inhomogeneities of the form

Ij (ξ ) = Ij◦e−(ξ/σj )2
. (17)
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FIG. 1. Traveling bump wave profiles Ve(ξ ),Vi(ξ ) in traveling wave coordinates for different time constants of inhibition τ . In this parameter
regime, as τ increases from (a) τ = 1.2 to (b) τ = 1.5 to (c) τ = 2.0, the wave speed increases from c = 0.77 to c = 1.1 to c = 1.3, accordingly.
Waves in this parameter regime are determined to be stable using the Evans function (Sec. III) and numerical simulations. Other parameters
are w̄ee = 1, w̄ei = 0.7, w̄ie = 0.55, w̄ii = 0.24, σee = σei = σii = 1, σie = 1.3, θe = θi = 0.15, I◦ = 0.

In particular, we have

Wjk(ξ ) =
∫ ξ

0
wjk(η)dη = w̄jk

2
erf

(
ξ

σjk

)
. (18)

We define and express the function Gjk(x,ξ,ρ), where j,k ∈
{e,i}, ρ ∈ {c,cτ }, n ∈ {0,1}, as

Gjk

(
x,ξk

n ,ρ
) =

∫ ∞

x

e(x−η)/ρ wjk

(
η − ξk

n

)
dη

= w̄jk

2
e(σjk/2ρ)2

e(x−ξk
n /ρ) erfc

(
σjk

2ρ
+ x − ξk

n

σjk

)

and the function Jj (x,ρ) where j ∈ {e,i} and ρ ∈ {c,cτ },

Jj (x,ρ)

=
∫ ∞

x

e(x−η)/ρ I ′
j (η) dη

= Ij◦

[√
πσj

2ρ
e(σj /2ρ)2

ex/ρ erfc

(
σj

2ρ
+ x

σj

)
− e−(x/σj )2

]
.

Terms inW ′
j (ξ ) are all of the form wjk(ξ ) or I ′

j (ξ ); accordingly,
the ξ derivative of the traveling bump is

c
∂Ve

∂ξ
(ξ ) = [

Gee

(
ξ,ξ e

0 ,c
) − Gee

(
ξ,ξ e

1 ,c
)]

− [
Gei

(
ξ,ξ i

0,c
) − Gei

(
ξ,ξ i

1,c
)] + Je(ξ,c),

cτ
∂Vi

∂ξ
(ξ ) = [

Gie

(
ξ,ξ e

0 ,cτ
) − Gie

(
ξ,ξ e

1 ,cτ
)]

− [
Gii

(
ξ,ξ i

0,cτ
) − Gii

(
ξ,ξ i

1,cτ
)] + Ji(ξ,cτ ).

(19)

The traveling bump profile (Ve(ξ ),Vi(ξ )) can then be expressed
explicitly using (12) and (19) together with (6) and (18) which
avoids integrals of Wj explicitly.

III. STABILITY CONDITIONS FOR TRAVELING
BUMP SOLUTIONS

Linearizing (1) in traveling wave coordinates about the
traveling bump solution (Ve(ξ ),Vi(ξ ))T, the perturbations
(ϕ̃e,ϕ̃i)T to first order formally satisfy

∂ϕ̃e

∂t
− c

∂ϕ̃e

∂ξ
+ ϕ̃e = Nee ϕ̃e − Nei ϕ̃i ,

τ
∂ϕ̃i

∂t
− cτ

∂ϕ̃i

∂ξ
+ ϕ̃i = Nie ϕ̃e − Nii ϕ̃i , (20)

where Njk is a nonlocal compact linear operator

Njk ϕ̃k = wjk ∗ [
H′(Vk − θk) ϕ̃k

]
=

∫ ∞

−∞
wjk(ξ − η) δ

(
Vk(η) − θk

)
ϕ̃k(η,t) dη

= wjk(ξ − ξ k

0 )

|V ′
k(ξ k

0 )| ϕ̃k(ξ k

0 ,t) + wjk(ξ − ξ k

1 )

|V ′
k(ξ k

1 )| ϕ̃k(ξ k

1 ,t).

Setting (ϕ̃e(ξ,t),ϕ̃i(ξ,t))T = (ϕe(ξ ),ϕi(ξ ))Teλt in (20) we ob-
tain the spectral problem

(L + N)

(
ϕe

ϕi

)
= λ

(
ϕe

ϕi

)
, (21)

where linear operators L and N are defined by

L = c
∂

∂ξ
−

[
1 0
0 1

τ

]
,

N
(

ϕe

ϕi

)
=

(
Nee ϕe − Nei ϕi

1
τ
Nie ϕe − 1

τ
Nii ϕi

)
.

N is a compact operator. The essential spectra of (L + N) and
L are the same, since L + N is a compact perturbation of L,
and comprise the two lines in the complex plane,

λ = −1 + iα, λ = − 1

τ
+ iγ,

where α,γ ∈ R. As τ > 0, these lines lie in the open left half
complex plane and do not contribute to instability.
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Spectral stability of the traveling bump is consequently
determined by elements of the point spectrum where Re λ >

max{−1,− 1
τ
}. The wave is linearly stable if eigenvalue λ = 0

associated with translation invariance is simple and no other
eigenvalues lie in the closed right half plane. To identify the
point spectrum in this region, we derive an Evans function, by
constructing a bounded inverse of operator (L + N − λ) as a
solution to

(L + N − λ)ϕ = f , (22)

with f = (fe,fi)T, to identify where invertibility fails.
Since N(ϕe,ϕi)T involves the nonlocal evaluation of ϕe,ϕi

at points ξ = ξ e
0 ,ξ e

1 ,ξ e
0 ,ξ i

1, we treat this as a nonhomogeneous
term and use a self-consistency condition with the constructed
solution to determine these values. By variation of parameters,
solutions ϕ = (ϕe,ϕe)T of (22) can be expressed in the form

ϕ = �

(
βe(ξ )

βi(ξ )

)
, � = [φ1|φ2],

where φ1(ξ ) = ( 1
0 )e(λ+1)ξ/c and φ2(ξ ) = ( 0

1 )e(λ+τ−1)ξ/c com-
prise a fundamental set of solutions for (L − λ)u = 0. Conse-
quently,

(
βe(ξ )
βi (ξ )

)
satisfies

−c �(ξ )
∂

∂ξ

(
βe

βi

)
=

(
Nee ϕe − Nei ϕi − fe

1
τ
Nie ϕe − 1

τ
Nii ϕi − fi

)
. (23)

For c > 0, Re λ > max {−1,− 1
τ
}, integrating over [ξ,∞) and

assuming that βe(ξ ),βi(ξ ) → 0 as ξ → ∞ results in(
βe(ξ )
βi(ξ )

)
=

(
1
c

∫ ∞
ξ

e−[(λ+1)/c]η[Nee ϕe − Nei ϕi − fe ] dη

1
cτ

∫ ∞
ξ

e−(λ/c+1/cτ )η[Nieϕe − Niiϕi − τfi]dη

)
.

It then follows that (ϕe,ϕi)T must satisfy the system of integral
equations

ϕe(ξ ) = 1

c

∫ ∞

ξ

e[(λ+1)/c](ξ−η)[Nee ϕe − Nei ϕi − fe] dη,

ϕi(ξ ) = 1

cτ

∫ ∞

ξ

e(λ/c+1/cτ )(ξ−η)[Nie ϕe − Nii ϕi − τfi] dη.

(24)

Next, defining the functions Kjk and Fj where

Kjk

(
ξ ; ξk

n ,ρ,λ
) = 1

ρ
∣∣V ′

k

(
ξk
n

)∣∣
∫ ∞

ξ

e(λ/c+1/ρ)(ξ−η)wjk

(
η−ξk

n

)
dη,

Fj (ξ ; ρ,λ) = −1

c

∫ ∞

ξ

e(λ/c+1/ρ)(ξ−η) fj (η) dη, (25)

where j,k ∈ {e,i}, n ∈ {0,1} and defining ιe = 1 and ιi = −1,
we reexpress (24) as

ϕe(ξ ) −
∑

k∈{e,i}

1∑
n=0

ιk Kek

(
ξ ; ξk

n ,c,λ
)
ϕk

(
ξk
n

) = Fe(ξ,c),

ϕi(ξ ) −
∑

k∈{e,i}

1∑
n=0

ιk Kik

(
ξ ; ξk

n ,cτ,λ
)
ϕk

(
ξk
n

) = Fi(ξ,cτ ). (26)

The unknown values ϕe(ξ e
0 ),ϕe(ξ e

1 ),ϕi(ξ i
0),ϕi(ξ i

1) in (26), col-
lected in vector ψ below,

ψ = (
ϕe

(
ξ e

0

)
,ϕe

(
ξ e

1

)
,ϕi

(
ξ i

0

)
,ϕi

(
ξ i

1

))T,

are determined by setting ξ = ξ
j

0 ,ξ
j

1 for j ∈ {e,i} in (26) to
obtain a compatibility condition on ψ below

[I − M(λ)]ψ = F, (27)

where M(λ) is a 4×4 matrix given by

M =
[
Mee −Mei

Mie −Mii

]
,

whose submatrices for k ∈ {e,i} are given by

Mek =
[
Kek

(
ξ e

0 ; ξk
0 ,c,λ

)
Kek

(
ξ e

0 ; ξk
1 ,c,λ

)
Kek

(
ξ e

1 ; ξk
0 ,c,λ

)
Kek

(
ξ e

1 ; ξk
1 ,c,λ

)
]
,

Mik =
[
Kik

(
ξ i

0; ξk
0 ,cτ,λ

)
Kik

(
ξ i

0; ξk
1 ,cτ,λ

)
Kik

(
ξ i

1; ξk
0 ,cτ,λ

)
Kik

(
ξ i

1; ξk
1 ,cτ,λ

)
]
,

and F = (Fe(ξ e
0 ,c),Fe(ξ e

1 ,c),Fi(ξ i
0,cτ ),Fi(ξ i

1,cτ ))T.
Compatibility condition (27) gives rise to a unique solution

(ϕe,ϕi)T whenever λ is such that

det[I − M(λ)] �= 0.

In this case, the operator (L + N − λ) is one-to-one with a
continuous inverse that is defined on its range and given by
integral representation (24) where ψ satisfies (27). These λ

comprise the resolvent set of (L + N).
(L + N − λ) is not one-to-one on the set of λ where Re λ >

max {−1,− 1
τ
} when det[I − M(λ)] = 0 in which case there

exist nontrivial solutions to (L + N − λ)ϕ = 0. Such λ lie in
the point spectrum of (L + N). Therefore, an Evans function
E(λ) for the traveling bump is

E(λ) = det[I − M(λ)] (28)

for c > 0 and Re λ > max {−1,− 1
τ
}. The zero set of the Evans

function is the set of all eigenvalues in this region.

A. Stability calculations and simulations

The stability of traveling bump solutions was investi-
gated using the Evans function and numerical simulation.
In Sec. III B, the Evans function is calculated explicitly for
the case of Gaussian synaptic weight functions and inputs.
In all cases examined, the stability properties of traveling
waves arising in numerical simulations of neural field (1)
were in agreement with the stability properties of the traveling
wave according to the point spectrum identified by the Evans
function E(λ).

Furthermore, it was possible to destabilize the traveling
bump solution in a Hopf bifurcation. An example is shown
in Fig. 2 which depicts the graphs of the zero sets of the real
and imaginary parts of the Evans function for two different
values of w̄ii on either side of the bifurcation point for the
parameter values listed. As a result of translation symmetry
in the absence of an input, λ = 0 is always an eigenvalue.
When w̄ii = 0.185, the traveling bump has a pair of complex
conjugate eigenvalues with negative real part close to 0. In this
case, an E-I traveling activity-bump-like initial condition, with
a spatial offset between the E and I bumps, evolves towards
the stable traveling bump solution. Figure 3 shows decaying
oscillations in the width of the (excitatory) activity bump as
it approaches the constant wave profile of the stable traveling
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FIG. 2. Graphs of the zero sets of the real (dark) and imaginary
(light) parts of the Evans function E(λ) for Re λ > −1/τ in the
complex plane where (a) w̄ii = 0.24 and (b) w̄ii = 0.16. Eigenvalues
in the region identify as intersections of the zero sets of the real and
imaginary parts of the Evans function. In addition to the persistent 0
eigenvalue, panels (a) and (b) show a pair of complex conjugate
eigenvalues crossing the imaginary axis into the open right half
plane as w̄ii is decreased, destabilizing the traveling bump in a Hopf
bifurcation at w̄ii ≈ 0.172. Other parameters are as in Fig. 1.

bump. Numerical simulations suggest the Hopf bifurcation is
subcritical, with the activity bump collapsing to the rest state
(uniform zero solution) when w̄ii is set just beyond the Hopf
bifurcation point.

In Sec. V, we further examine the emergence of traveling
bump solutions and stable traveling breathers within the larger
context of stationary bumps. Initially, we examine a different
parameter regime and, subsequently, in Sec. V F, revisit the
case of parameters listed in Figs. 1 and 2 for τ < 1.2.
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FIG. 3. Graph of the width of a propagating activity bump vs time
t (in units of the excitatory time constant) as it evolves towards a stable
traveling bump in a simulation of EI neural field (1) for parameters
in Fig. 2 with w̄ii = 0.185 (only E population shown). At this point,
a pair of complex eigenvalues with negative real part is positioned
near the imaginary axis. The imaginary part is 1.221 which closely
matches the oscillation frequency in the simulation (crest-to-crest
time interval length is approximately 5.15). At the bifurcation point
w̄ii ≈ 0.172, the Hopf frequency is ωH = 1.355.

B. Explicit calculation of the Evans function E(λ) for a traveling
bump for a Gaussian wuv(ξ ) and I(ξ )

In the case of Gaussian wjk(ξ ) and Ij (ξ ) as in (16) and (17)
we can express the functions Kjk given in (25) as

Kjk

(
x; ξk

n ,ρ,λ
) = 1

ρ
∣∣V ′

k

(
ξk
n

)∣∣
∫ ∞

x

e(λ/c+1/ρ)(x−η)wjk

(
η − ξk

n

)
dη

= wjk

2ρ
∣∣V ′

k

(
ξk
n

)∣∣ e(λ/c+1/ρ)2(σjk/2)2
e(λ/c+1/ρ)(x−ξk

n )

× erfc

[
σjk

2

(
λ

c
+ 1

ρ

)
+ x − ξk

n

σjk

]
(29)

with V ′
k(ξk

n ) for k ∈ {e,i}, n ∈ {0,1} calculated in (19). Thus,
the Evans function E(λ) for Re λ > max {−1,− 1

τ
} and c > 0

is given by (28) with Kjk(x; ξk
n ,ρ,λ) in (29) and with c and

(ξ e
0 ,ξ e

1 ,ξ i
0,ξ

i
1) determined by (10) and (11).

IV. REDUCTION IN THE LIMIT c → 0: CONDITIONS
FOR THE EXISTENCE AND STABILITY

OF STATIONARY BUMPS

The existence and stability results for traveling bumps in
Secs. II and III reduce, in the limit as speed c → 0+, to the
case of stationary bumps as developed in [23,52]. To show
this, we establish the following identity for ρ > 0:

lim
ρ→0+

1

ρ

∫ ∞

ξ

e(ξ−η)/ρf (η) dη = f (ξ ), (30)

assuming that f (ξ ) is continuous and bounded over R.
To prove (30), we recognize that for all ρ > 0 and all

continuous and bounded f , the function e−η̃f (ρη̃ + ξ ) is
Lebesgue integrable over [0,∞) for each fixed ξ ∈ R. So the
following integral converges and can be rewritten as

1

ρ

∫ ∞

ξ

e(ξ−η)/ρf (η) dη =
∫ ∞

0
e−η̃f (ρη̃ + ξ ) dη̃. (31)

From the continuity of f it also follows that

lim
ρ → 0+

f (ρη̃ + ξ ) = f (ξ ).

Then, by the Lebesgue dominated convergence theorem,

lim
ρ→0+

1

ρ

∫ ∞

ξ

e(ξ−η)/ρf (η) dη =
∫ ∞

0
lim

ρ→0+
e−η̃f (ρη̃ + ξ ) dη̃

=
∫ ∞

0
e−η̃f (ξ ) dη̃ = f (ξ ).

A. Stationary bump: Profile and existence

Let V ◦
e (ξ ) and V ◦

i (ξ ) denote the bump profiles resulting
from taking the limit c → 0+ in (9), i.e.,

V ◦
e (ξ ) ≡ lim

c→0+
Ve(ξ ), V ◦

i (ξ ) ≡ lim
c→0+

Vi(ξ ).

Consequently, applying (30) to (9) we have that

V ◦
e (ξ ) = lim

c→0+

1

c

∫ ∞

ξ

e(ξ−η)/c
[
We

(
η; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

) + Ie(η)
]
dη

= We

(
ξ ; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

) + Ie(ξ ). (32)
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And, since τ > 0, then ρ = cτ −→ 0+ as c → 0+ so that

V ◦
i (ξ )= lim

ρ→0+

1

ρ

∫ ∞

ξ

e(ξ−η)/ρ
[
Wi

(
η; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

)+Ii(η)
]
dη

=Wi

(
ξ ; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

) + Ii(ξ ). (33)

Equations (32) and (33) match the stationary bump profiles
in E and I populations developed for the stationary bump
case in [23,52] assuming, by translation symmetry, that the
bump (and localized input, when present) is centered about
the origin and threshold boundaries are accordingly taken to
be (ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1) = (−ξe,ξe,−ξi,ξi).

The existence conditions for a stationary bump,

V ◦
e (±ξe) = θe, V ◦

i (±ξi) = θi,

naturally follow as they are based upon the stationary bump
profiles (32) and (33). Analogously, from (13) we have the
following limiting result for the gradient of the stationary bump
(which is relevant for stability):

∂V ◦
e

∂ξ
(ξ ) ≡ lim

c→0+

∂Ve

∂ξ
(ξ )=W ′

e

(
ξ ; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

)+I ′
e(ξ ),

∂V ◦
i

∂ξ
(ξ ) ≡ lim

ρ→0+

∂Vi

∂ξ
(ξ )=W ′

i

(
ξ ; ξ e

0 ,ξ e
1 ,ξ i

0,ξ
i
1

)+I ′
i (ξ ), (34)

where W ′
j is given in (15).

B. Stationary bump stability and Evans function

Analogous to Sec. IV A, we examine the Evans function
E(λ) given in (28) in the limit as speed c −→ 0+. The matrix
elements of the Evans function E(λ) in (28) are expressed in
terms of functions Kjk(ξ ; ξk

n ,ρ,λ) for Re λ > max {−1,− 1
τ
}

which can be rewritten as

Kjk

(
ξ ; ξk

n ,ρ,λ
)

= 1

ρ
∣∣V ′

k

(
ξk
n

)∣∣
∫ ∞

ξ

e(λ/c+1/ρ)(ξ−η)wjk

(
η − ξk

n

)
dη

= 1

ρ
(

λ
c

+ 1
ρ

) 1∣∣V ′
k

(
ξk
n

)∣∣
∫ ∞

0
e−η̃ wjk

(
η̃

λ
c
+ 1

ρ

+ ξ − ξk
n

)
dη.

Applying identity (30) to Kjk(ξ ; ξk
n ,ρ,λ), for the case j = e

where ρ = c, results in

K◦
ek

(
ξ ; ξk

n ,λ
) ≡ lim

c→0+
Kek

(
ξ ; ξk

n ,c,λ
)

= 1

(λ + 1)

1∣∣V ′
k

(
ξk
n

)∣∣ wek

(
ξ − ξk

n

)
and, for case j = i where ρ = cτ , we similarly have

K◦
ik

(
ξ ; ξk

n ,λ
) ≡ lim

c→0+
Kik

(
ξ ; ξk

n ,cτ,λ
)

= 1(
λ + 1

τ

) 1

τ
∣∣V ′

k

(
ξk
n

)∣∣ wik

(
ξ − ξk

n

)
.

Defining the functions

α(ξ ) = wee(ξ )∣∣ ∂
∂ξ

V ◦
e (ξe)

∣∣ , β(ξ ) = − wei(ξ )∣∣ ∂
∂ξ

V ◦
i (ξi)

∣∣ ,
γ (ξ ) = wie(ξ )

τ
∣∣ ∂
∂ξ

V ◦
e (ξe)

∣∣ , δ(ξ ) = − wii(ξ )

τ
∣∣ ∂
∂ξ

V ◦
i (ξi)

∣∣ ,

where ξ e
0,1 = ±ξe, ξ

i
0,1 = ±ξi as discussed in Sec. IV A, and

defining the matrix

M◦=

⎡
⎢⎢⎢⎣

α(0)

α(2ξe)

γ (ξe − ξi)

γ (ξe + ξi)

α(2ξe)

α(0)

γ (ξe + ξi)

γ (ξe − ξi)

β(ξe − ξi)

β(ξe + ξi)

δ(0)

δ(2ξi)

β(ξe + ξi)

β(ξe − ξi)

δ(2ξi)

δ(0)

⎤
⎥⎥⎥⎦,

then for Re λ > max {−1,− 1
τ
} it can be shown that in the limit

as the wave speed c → 0, the Evans function for the stationary
(c = 0) bump becomes

E◦(λ) ≡ lim
c→0+

E(λ)

= 1

(λ + 1)
(
λ + 1

τ

) det(D − M◦),

where

D = diag
(
λ + 1,λ + 1,λ + 1

τ
,λ + 1

τ

)
.

The condition E◦(λ) = 0 is equivalent to the equation derived
in both [23,52] which determines the eigenvalues in the
case (c = 0) analyzed by assuming the form of a stationary
bump rather the traveling bump analyzed herein. For Re λ >

max {−1,−τ−1}, eigenvalues form the zero set of the function
E◦(λ) thus reflecting an Evans function. Recall that the set of λ

with Re λ = −1 or −τ−1 comprises the essential spectrum.
This analysis moreover determines stability conditions for
stationary bumps used in two contexts in this paper: (1) when
considering a drift bifurcation from a stationary to a traveling
bump as discussed in Sec. V A, and (2) in conjunction with
results in Sec. V on stationary and traveling bumps.

V. BIFURCATIONS AND SIMULATIONS: STATIONARY
AND TRAVELING BUMPS AND BREATHERS

IN AN E-I NEURAL FIELD

A. Drift bifurcation of a stationary bump to a traveling
bump in the case of no input (Ie,i = 0)

In the case of no input inhomogeneity (Ie,i = 0), a stable
traveling bump solution can emerge when a stationary bump
undergoes a drift bifurcation, i.e., a pitchfork bifurcation oc-
curring with respect to the translation mode of the linearization
in addition to the persistent zero eigenvalue associated with
translation symmetry. As developed in [52], and analogous
to [50], the linearized operator about the stationary bump
contains two spatial two-dimensional eigenmodes whose
spatial structure is distinguished by even and odd symmetries.
Let λ⊕

± be the eigenvalues associated with the symmetric mode,
and λ�

± be those associated with the odd-symmetric mode. The
odd-symmetric mode (difference mode) forms the translation
mode of the system. Generically, λ�

+ = 0 is a persistent 0
eigenvalue when no input inhomogeneity (Ie,i = 0) is present,
reflecting the translational symmetry of the network. As a
consequence, it can be shown that the other eigenvalue in the
difference mode is

λ�
− = −1 − 1

τ
+ wee(0) − wee(2ξe)

�e

− wii(0) − wii(2ξi)

τ�i

,
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where �e, �i > 0, and

�e = [wee(0) − wee(2ξe)] − [wei(ξe − ξi) − wei(ξe + ξi)],

�i = [wie(ξi − ξe) − wie(ξi + ξe)] − [wii(0) − wii(2ξi)],

as shown in [52] (see also [23]).
A drift bifurcation is expected to occur when the noniden-

tically zero eigenvalue λ�
− associated with the odd-symmetric

mode increases through 0 while the other pair of eigenvalues
λ⊕

± remain in the open left half plane. Any parameter that
changes the stationary bump widths ξe,ξi generically changes
this eigenvalue since it depends explicitly on ξe,ξi . There
are various ways λ�

− may be increased through 0, thereby
destabilizing the stationary bump in a drift bifurcation; two
particular ways, examined herein, are by varying the time
constant τ and the I-to-I synaptic strength w̄ii The time
constant τ is different from other parameters in that it does
not determine the stationary bump widths ξe,ξi , only its
stability (naturally it does affect the width of a traveling
bump). Thus, since ξe,i do not change as τ changes, and since
wii(0) − wii(2ξi) > 0 and �i > 0, an increase in τ necessarily
causes eigenvalue λ�

− to increase due to the resulting decrease
in the magnitude of the negative terms,

− 1

τ
− wii(0) − wii(2ξi)

τ�i

. (35)

Consequently, it is possible for stable stationary bumps to
destabilize in a drift bifurcation as τ is increased.

The equation λ�
− = 0, can be solved for τ to find the

corresponding value of τ > 0 to be

τD
crit =

1 + wii (0)−wii (2ξi )
�i

−1 + wee(0)−wee(2ξe)
�e

.

Note that τD
crit > 0 whenever wee(0) − wee(2ξe) > �e which is

always the case since

wei(ξe − ξi) − wei(ξe + ξi) > 0.

Alternatively, a reduction in the I-to-I connection strength
w̄ii may increase λ�

− by reducing the I-to-I term in (35)
depending on the magnitude of changes in �i and the excitatory
term which depend on ξe and ξi .

B. Curves of drift and Hopf bifurcations of stationary bumps

To explore the transition from stationary to traveling
bumps in simulations of the E-I neural field, a curve of drift
bifurcations of stationary bumps was calculated in a particular
region of parameter space (listed in Fig. 4). This was done by
assuming an even-symmetric stationary bump profile, solving
the corresponding existence equations [where Ve,i are given
in (32) and (33)]

V ◦
e (ξe) = θe V ◦

i (ξi) = θi

for the stationary bump half widths ξe,i , and simultaneously
requiring the conditions for a drift bifurcation of a stationary
bump to be met while τ and w̄ii were varied. This curve of
drift bifurcations is labeled D� in Fig. 4.

Hopf instabilities occur in the E-I neural field and a curve
of Hopf bifurcations of stationary bumps (even-symmetric
mode), denoted by H⊕ in Fig. 4, was similarly plotted by

FIG. 4. A curve of drift bifurcations of stationary bumps, denoted
by D�, and a curve of Hopf bifurcations of stationary bumps,
denoted by H⊕, in the τ w̄ii plane. Other (fixed) parameters
are w̄ee =1, w̄ei = 0.84, w̄ie = 0.8, σee = σei = σii = 1, σie = 1.3,

θe = 0.16, θi = 0.24, Ie◦ = Ii◦ = 0.

varying the parameters τ and w̄ii in the same parameter regime.
Analogous to the case of drift bifurcations, it can be shown
that, under the condition that the eigenvalues λ⊕

± associated
with the even-symmetric mode are complex (see [52]), the
critical value of τ corresponding to a Hopf bifurcation is given
by

τH
crit =

1 + wii (0)+wii (2ξi )
�i

−1 + wee(0)+wee(2ξe)
�e

.

In Fig. 5, the curves of drift (D�) and Hopf (H⊕) bifurca-
tions are subdivided into branches D�

± and H⊕
±, respectively,

wherein the symbols − (+) denote the branch of each curve
along which the opposite spatial eigenmode has eigenvalues
with negative (positive) real part. In particular, stationary
bumps are stable in region I.

Stationary bumps in region I destabilize in a drift bifurcation
across curve D�

− into region IIa. The traveling wave existence
equations were solved numerically in the immediate vicinity
of D�

− . Traveling bump solutions were found only in region
IIa and not in region I. Wave speed c increased (from speed
0) with distance from curve D�

− into region IIa. In the
immediate vicinity along D�

− in region IIa, traveling bumps
were determined to be stable according to the Evans function.
This suggests that the drift bifurcation is supercritical along
curve D�

− . Extending beyond, stable traveling waves exist in
a large region formed by allowing τ to increase from curve
D�

− . Hopf bifurcations of traveling bumps were encountered
as reflected by the Evans function. Curves of Hopf bifurcations
of traveling bumps are calculated in Sec. V C and plotted for
the parameter regime listed in Fig. 6. Numerical simulations
are investigated further in Sec. V D.
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FIG. 5. Subbranches of curves of drift (D�
±) and Hopf (H⊕

±)
bifurcations of stationary bumps. Subscripts − (+) denote where the
opposite spatial eigenmode has eigenvalues with negative (positive)
real part. Roman numerals denote regions: region I: Re λ⊕

±,λ�
− < 0;

region IIa: λ�
− > 0, Re λ⊕

± < 0; region IIb: Re λ⊕
± > 0, λ�

− < 0; region
III: Re λ⊕

±,λ�
− > 0.

Alternatively, stable stationary bumps in region I destabilize
in a Hopf bifurcation (even-symmetric mode) across curve
H⊕

− into region IIb. Numerical simulations in the vicinity
of curve H⊕

− in regions I and region IIb are consistent
with a supercritical Hopf bifurcation giving rise to stable
stationary breathers when crossingH⊕

− . Numerical simulations
in this region and the stable attractors are further discussed in
Sec. V D.

Traveling bumps were additionally examined in the vicinity
of curve D�

+ of drift bifurcations in Fig. 5 by numerically solv-
ing the existence equations and were found only in region III
and not in region IIb. Wave speed c increased (from speed 0)
from curve D�

+ into region III. These solutions were deter-
mined to be unstable according to the Evans function, having
a pair of complex eigenvalues with positive real part, which
reflects the same structure as the stationary bump undergoing
the bifurcation.

Finally, curves D�
− and H⊕

+ of drift and Hopf bifurcations
of stationary bumps converge at point Y in Fig. 5. A close
examination and analysis of solutions for w̄ii near the level
of Y suggests that the stationary bump widths ξe,i → ∞ in
a narrow interval as w̄ii increases to the level of Y . (This
is denoted by the dashed gray line.) Note that wjj (ξj ) → 0
as ξj → ∞ for j ∈ {e,i} which means that τH

crit → τD
crit; thus

these curves converge at Y .

C. Curves of Hopf bifurcations of traveling bumps

Hopf bifurcations of traveling waves were found to occur
in regions IIa and III and were identified using both the Evans
function and numerical simulation. In the parameter regime
indicated in Fig. 4, two curves of Hopf bifurcations were found

FIG. 6. Curves of Hopf bifurcations HTW
1,2 of traveling bumps

indicated in blue. Other curves as described in Fig. 5.

to exist and were calculated by numerical continuation from
an initial point on each curve, by simultaneously requiring the
conditions for the existence of a traveling wave (10) and (11)
and a Hopf bifurcation to be met. These curves are plotted and
labeled as HTW

1,2 in Fig. 6 and serve as the boundaries of the
region of stable traveling waves which lies in between.

Curve HTW
1 was continued to the immediate vicinity of

intersection point X of the curves of D� and H⊕ of drift
and Hopf bifurcations of stationary bumps where it became
difficult to continue closer to X , possibly due to sensitivity
(terms with c−1) arising from the wave speed c tending to
zero along this curve as plotted in Fig. 7. As wave speed
c → 0, curve HTW

1 of Hopf bifurcations of traveling bumps
should coincide with the intersection of D� and H⊕ since the
conditions of drift and Hopf bifurcations of a stationary bump
are met simultaneously.

The properties (e.g., wave speed, bump widths, spatial
offset) of the stable traveling waves in the immediate vicinity
of the curve of Hopf bifurcations were compared between
the solutions of the existence equations (10) and (11) and

FIG. 7. Wave speed c vs τ along curve HTW
1 .
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numerical simulations; these were found to match consistently.
Continuing the traveling wave speed, bump widths, and offset
of traveling bumps from sampling the existence equations
along curves in the region in Fig. 6, it was found that
the traveling bumps that destabilize in a Hopf bifurcation
traversing curve HTW

1 continue as the same unstable traveling
bumps that bifurcate from drift bifurcations along curve D�

+
(discussed in Sec. V B).

D. Neural field simulations in the vicinity of the curves
of drift and Hopf bifurcation in Fig. 6

Numerical simulations of neural field (1) with Gaussian
weight functions and no input (Ij◦ = 0) were used to study
the stable attracting solutions in the regions delineated by
the curves of drift (D�

−) and Hopf (H⊕
−) bifurcations of

stationary bumps and Hopf bifurcations (HTW
1,2 ) of traveling

bumps plotted in Fig. 6 for the parameter region listed in
Fig. 4. The stable attractors, illustrated in Fig. 8, fall into four
solution types: stationary bumps, traveling bumps, stationary
breathers, traveling breathers.

Initial conditions were taken to be localized activity bumps
in both the E and I populations that were either centered around
the same point (syntopic) or positioned with some spatial offset
between centers (allotopic). This was chosen with the interest
of (1) studying the approach to both stationary and propagating
stable activity bumps and to identify any bistability that might
exist, (2) examining the dynamics associated with the different
eigenmodes of the linearization about a stationary bump,
and (3) investigating the super- or subcritical nature of the
bifurcations present in a region of parameter space.

FIG. 8. Space-time plots of ue(x,t) illustrating the four solution
types: (a) stationary bump, (b) traveling bump, (c) stationary breather,
(d) traveling breather; [ui(x,t) not shown]. Parameter values are
those listed in Fig. 4 and (a) (τ,w̄ii) = (0.84,0.31), (b) (τ,w̄ii) =
(0.96,0.28), (c) (τ,w̄ii) = (0.83,0.265), (d) (τ,w̄ii) = (0.96,0.243)
which are points encircling point X in the (τ,w̄ii) plane in Fig. 9(b).

Two different types of behavior are found in numerical
simulations in the vicinity of the curveD�

− . Recall, in Sec. V B,
that curve D�

− was determined to be a curve of supercritical
drift bifurcations according to the existence equations and
Evans function. In agreement with this, along the lower
section of the curves (roughly 0.29 < w̄ii < 0.39), numerical
simulations, evolving from the offset E-I bump (allotopic)
initial conditions, approach a stationary bump for parameter
values immediately to the left of D�

− (in region I) and
approached a traveling bump immediately to the right of D�

−
(in region IIa) with the wave speed increasing from speed
0 as τ increased. This gives rise to a large region of stable
traveling bump solutions for increasing τ and within a range
of w̄ii shaded in blue in Fig. 9(b). And the results of numerical
simulations of E-I neural field (1) are in agreement with the
existence and stability results using existence equations (10)
and (11) and Evans function (28).

The region (blue) of stable traveling bumps is primarily
bordered above by curve HTW

2 of Hopf bifurcations of
traveling bumps. The Hopf bifurcations on HTW

2 are super-
critical along the branch for (approximately) τ > 0.94. In
this case, traveling breathers emerge on the upper side of
HTW

2 with the oscillation amplitude increasing from zero.
This region of stable traveling breathers is shaded in green
above HTW

2 in Fig. 9(b). Accordingly, the following sequence
of bifurcations, illustrated in Fig. 10, can then be seen along
line �1 as τ increases: a stable stationary bump undergoes a
supercritical drift bifurcation to a stable traveling bump which,
subsequently, undergoes a supercritical Hopf bifurcation to
a stable traveling breather. Conversely, along the branch of
HTW

2 for (approximately) τ < 0.94 beginning from a point
near the sharp turn in the curve, the Hopf bifurcation appears
to switch to subcritical as suggested by the presence of
large-amplitude traveling breathers existing on both sides
of HTW

2 in simulations. For τ approximately in the range
0.915 < τ < 0.94, there is a bistable region, indicated by the
dark purple region in Fig. 9, where stable traveling bumps
and stable traveling breathers both coexist. The following
sequence of bifurcations, illustrated in Fig. 10, can then be
seen along curve �2 as τ increases: a stable stationary bump
undergoes a supercritical drift bifurcation to a stable traveling
bump; at a critical point, a saddle-node bifurcation of limit
cycles produces a stable-unstable pair of traveling breathers;
at another critical point, the unstable traveling breather
coalesces with the stable traveling bump in a subcritical Hopf
bifurcation at the intersection with curve HTW

2 ; the stable
traveling breather and unstable traveling bump continue into
the green-shaded region. Alongside, for τ approximately in the
range 0.8 < τ < 0.915, the region of stable traveling breathers
extends farther and overlaps with the region of stable stationary
bumps, thereby forming two regions of bistability shown in
Fig. 9: (i) the region shaded in light purple, where stable
stationary bumps and traveling breathers coexist, and (ii) the
region shaded in dark purple, where stable traveling bumps
and breathers coexist. A sequence of bifurcations similar to
�2 can then be seen along curve �3 in Fig. 10 whereupon now
the saddle-node bifurcation of limit cycles that produces a
stable-unstable pair of traveling breathers instead occurs at a
critical point before the drift bifurcation (i.e., to the left of curve
HTW

2 ) where stationary bumps are stable, with the stationary
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FIG. 9. Bifurcation and simulation results: (a) Curves of drift (D�
−) and Hopf (H⊕

−) bifurcations of stationary bumps and the curves of
Hopf bifurcations (HTW

1,2 ) of traveling bumps in a subregion of the τ w̄ii plane (depicted in Fig. 6) that was studied extensively in numerical
simulations of E-I neural field (1). (b) Different regions indicate the stable attractors that occur in numerical simulations evolving from the
offset (allotopic) and centered (syntopic) activity bump initial conditions.

bump continuing through the same sequence of bifurcations as
�2 thereafter. We note that, in the upper part of the green region
of traveling breathers above HTW

2 , the oscillation amplitude
grows with a flare-up type of behavior as w̄ii is increased (since
the inhibition becomes less able to control the excitation) until
there is a rapid transition that leads to outward propagating
fronts approaching the all excited state. The lower boundary of
this region corresponds to the level of w̄ii where the stationary
bump widths ξe,i → ∞ rapidly.

The region (blue) of stable traveling bumps in Fig. 9
is bordered below by curve HTW

1 of Hopf bifurcations of
traveling bumps. We shall now describe a sequence of
transitions in the attractor (ω-limit set) of the allotopic bump
initial condition that are exhibited in numerical simulations
while circumnavigating the point X at the intersection of
curves D�

− ,H⊕
−, andHTW

1 . We mention here that both syntopic
and allotopic initial conditions were examined and no region
of bistability with stationary and traveling bumps or breathers
was found to exist in this region. As discussed previously,
traversing D�

− , a stable bump undergoes a supercritical drift
bifurcation to a stable traveling bump, indicated both in
numerical simulations and by the existence equations and
Evans function. Traversing HTW

1 , a stable traveling bump
undergoes a supercritical Hopf bifurcation to a stable traveling
breather that forms the attractor in the green region in Fig. 9(b).
Continuing further to the left in the τw̄ii plane by decreasing
τ , numerical simulations show a steady transition from a stable
traveling breather to a stable stationary breather with a graded
decrease to speed 0 that occurs when crossing the border from
the green region into the yellow region in Fig. 9(b). In the
yellow region, a stationary breather forms the stable attractor.
This region is bounded on the left by H⊕

− which is a curve

of Hopf bifurcations that simulations suggest are supercritical
bifurcations. Finally, crossing H⊕

− into the white region, a
stationary bump forms the stable attractor, thereby completing
the circumnavigation of X . Note that, at the lower edge in
Fig. 9(b) and below, both stationary and traveling breathers
become increasingly more difficult to approach in numerical
simulations, with the oscillations leading to a collapse of the
activity bump to the rest state.

We have concentrated on stable attractors, but, by solving
the existence equations, we may also continue the stable
traveling bumps that destabilize when traversing HTW

1 as
unstable traveling bumps. The wave speed of these unstable
traveling bumps decreases to 0 when approaching curve D�

+
of drift bifurcations of (unstable) stationary bumps in Fig. 6,
indicating that the unstable traveling bump merges with a
unstable stationary bump in a supercritical drift bifurcation
(Re λ⊕

± > 0).
Combining (i) existence and stability results of stationary

bumps across D�
− and H⊕

−, (ii) the existence and stability
results of traveling bumps across D�

− and HTW
1 , in conjunction

with (iii) numerical simulations suggests a codimension-2
bifurcation we discuss in Sec. V E, illustrated in Fig. 11.

E. Codimension-2 bifurcation

The results discussed in lower Fig. 9 are suggestive of
a codimension-2 bifurcation, which we shall refer to as a
drift-Hopf bifurcation, with a mode interaction occurring
between the odd-symmetric λ�

± eigenmode undergoing a drift
instability and the even-symmetric λ⊕

± eigenmode undergo-
ing a Hopf instability. The codimension-2 point X forms
an organizing center for the dynamics associated with the
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FIG. 10. (a) Schematic bifurcation diagrams along lines �1, �2,
�3 as denoted in (b) the τ w̄ii plane in a subregion of Fig. 9(a). In
the bifurcation diagrams, solid black lines denote stable solutions,
gray dashed lines denote unstable solutions, and black dots denote
bifurcation points. Initials denote different solution branches: SW ,
stationary bumps; TW , traveling bumps; TB, traveling breathers. The
drift bifurcation D�

− from a SW to a TW is supercritical. Numerical
simulations suggest that Hopf bifurcation HTW

2 from a TW to a TB is
supercritical along line �1 but subcritical along lines �2 and �3 with a
stable-unstable pair ofTB instead annihilating in a (presumed) saddle-
node bifurcation of traveling breathers (limit cycles) corresponding
to the red curve.

stationary and traveling types of bumps and breathers. A
bifurcation diagram is depicted in Fig. 11 and is structured
to be consistent with the stable attractors revealed in the
existence equations and simulations in Fig. 9(b). H⊕

− denotes
a curve of Hopf bifurcations of stationary bumps with respect
to the even-symmetric eigenmode. D�

− denotes a curve of
drift bifurcations of stationary bumps with respect to the odd-
symmetric eigenmode. HTW is a curve of Hopf bifurcations of
traveling bumps. DSB denotes a (hypothetical) curve of drift
bifurcations of stationary breathers whereby a stable station-
ary breather destabilizes and gives rise to a stable traveling
breather.

The sequence of stable attractors that exchange stability as
the bifurcation curves in Fig. 11 are traversed is as follows.
Traversing curve D�

− , stable stationary bumps destabilize in
a supercritical drift bifurcation giving rise to stable traveling
bumps. Subsequently, traversing HTW stable traveling waves
destabilize in a supercritical Hopf bifurcation that gives
rise to stable traveling breathers. Alternatively, traversing
H⊕

−, stable stationary bumps destabilize in a supercritical
Hopf bifurcation and give rise to stable stationary breathers.
And, subsequently traversing DSB stable stationary breathers
destabilize in a supercritical drift bifurcation that leads to the
same region of stable traveling breathers. Thus, bifurcation
points along DSB and HTW are connected by a sheet of

FIG. 11. A hypothetical codimension-2 bifurcation with a mode
interaction occurring between the odd λ�

± eigenmode (drift instability)
and the even λ⊕

± eigenmode (Hopf instability) consistent with results
in Fig. 9. Curves are denoted as follows: H⊕

− , curve of Hopf
bifurcations of stationary bumps; D�

− , curve of drift bifurcations
of stationary bumps; HTW , curve of Hopf bifurcations of traveling
bumps; and DSB, curve of drift bifurcations of stationary breathers.
H⊕

− , D�
− , and HTW are calculated from analytical results. Curve DSB

is a hypothetical curve of drift bifurcations of stationary breathers
consistent with the transition from stationary to traveling breathers
(from speed 0) in simulations. Each bifurcation is supercritical with
each region denoting the stable attractor.

stable traveling breathers bifurcating from these curves. The
traveling breathers bifurcating from these curves exhibit two
amplitudes, measured as average wave speed and oscillation
amplitude, which vary oppositely between DSB and HTW . In
particular, average wave speed c̃ increases from speed 0 when
traversing from DSB to HTW , whereas oscillation amplitude
δξe,i decreases to 0 at HTW . Average wave speed c̃ was defined
as the average speed of the center of the activity bump, and
oscillation amplitude δξj was defined to be half the difference
between maximum and minimum widths of the oscillating
bump in population j ∈ {e,i}.

F. A case of subcritical bifurcations

We now revisit the parameter regime corresponding to
the results in Figs. 1 and 2 and consider τ < 1.2, for fixed
w̄ii = 0.24, to investigate the bifurcation scenario that gener-
ates these stable traveling waves that continue for large τ . In
Fig. 12(a), the curves of Hopf H⊕

− and drift D�
+ bifurcations of

stationary bumps are plotted as τ and ŵii vary in this parameter
region. And, as before, in a narrow interval the stationary bump
width ξe,i → ∞ as w̄ii↗0.25 (gray dashed line) with curves
H⊕

− and D�
+ converging in this limit.

Stable stationary bumps exist to the left of curve H⊕
− where

they destabilize in a Hopf bifurcation of a stationary bump.
For fixed w̄ii = 0.24, these stationary bumps are depicted in
Fig. 12(b) as the solid and dashed dark blue horizontal curve
at speed c = 0. At τ = τH

crit = 1.058 23 the branch of stable
stationary bumps destabilizes in a subcritical Hopf bifurcation
H⊕

− occurring with respect to the even λ⊕
± eigenmode.
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FIG. 12. Bumps and breathers in an different bifurcation scenario involving subcritical bifurcations in a alternate parameter region described
in Sec. V F. (a) Curves of Hopf bifurcations H⊕

− and drift bifurcations D�
+ of stationary bumps in the (τ,w̄ii) plane, with other parameters as

in Figs. 1 and 2. Stationary bumps are stable (unstable) to the left (right) of curve H⊕
− . (b) Bifurcation diagram for stationary bumps (SW),

traveling bumps (TW), and traveling breathers (TB) where the vertical axis measures the traveling wave speed c vs the bifurcation parameter
τ for fixed wii = 0.24 [average speed c̃ of the bump center is used in the case of a traveling breather (TB)]. Solid (dashed) curves denote the
stable (unstable) solutions.

Numerical simulations suggest that the Hopf bifurcation is
subcritical with no sharp transition to a stable stationary
breather. Centered (syntopic) perturbations of the unstable
stationary bump lead through a transition from growing
oscillations, to an epoch where it appeared to spend time
near a stationary breather, followed by an abrupt divergence,
after the oscillations grew sufficiently large, that ultimately
approached a traveling breather. Some perturbations also
resulted in a collapse of the activity bump to the rest state. Some
offset (allotopic) perturbations to the unstable stationary bump
rapidly evolved towards stable traveling breathers, which are
discussed further below.

Next, the existence and stability of traveling waves were
investigated in the vicinity of curve D�

+ of drift bifurcations
of (unstable) stationary bumps (λ⊕

± eigenmode has a pair of
complex eigenvalues with positive real part). For w̄ii = 0.24,
the translation mode (λ�

±) destabilizes in a drift bifurcation at
τ = τD

crit = 1.076 21. In Fig. 12(b), the bifurcation was found
to be subcritical, i.e., by solving the existence equations, a
branch of unstable traveling waves was found bifurcating
from the stationary bump at the drift bifurcation point, with
wave speed c increasing from speed c = 0 and continuing
for τ < τD

crit where λ�
+ < 0. The Evans function reveals this

branch is unstable due to a positive real eigenvalue and a pair
of complex eigenvalues with positive real part. The branch
terminates in a saddle-node bifurcation SNTW of traveling
bumps (TW) at τ ≈ 1.066 65 with an upper branch (larger
speed c) of coexistent traveling bumps that includes the stable
traveling bumps shown in Fig. 1 for τ � 1.2. This upper
branch is unstable from SNTB to τ ≈ 1.068 05 where a Hopf
bifurcation of a traveling bump HTW occurs, rendering the
branch of traveling bumps stable for τ > 1.068 05.

The Hopf bifurcation of a traveling bump HTW was
determined to be supercritical from extensive numerical
simulations in the vicinity of the bifurcation point. The
oscillation amplitude of the traveling breathers bifurcating
from the traveling bumps increases from amplitude 0 as τ

decreases from 1.068 05 as illustrated in Fig. 13. Moreover,
the average speed c̃ of the traveling breathers decreases from

the same speed c as the traveling wave at the bifurcation
point HTW as seen in the red curve in Fig. 12. The branch
of traveling breathers was continued to τ ≈ 1.057 65, denoted
by point S in Fig. 12(b) where the traveling breather appears
to vanish, ostensibly in a saddle-node bifurcation of traveling
breathers. Traveling breathers exhibit two amplitudes (average
wave speed c̃ and oscillation amplitude δw̄e,i) which vary
oppositely along this curve. In particular, average wave speed
c̃ increases while oscillation amplitude δw̄e,i decreases when
traversing from S to HTW .

In Fig. 14, two simple bifurcation diagrams are posed that
could connect the bifurcation structure around the branch of
traveling breathers in Fig. 12; other explanations naturally
exist. The proposed diagrams fill in the missing structure by
building on the notion that a traveling breather could bifurcate
from a stationary breather in a drift bifurcation, for which
we found evidence in Fig. 9. Simulations suggested that the
Hopf bifurcation of the stationary bump was subcritical. If the

FIG. 13. The oscillation amplitude δξe of the time-varying width
of the traveling breather TB (red curve) in Fig. 12 plotted as τ varies
from 1.065 to τ ≈ 1.068 05 (large dot) which coincides with the Hopf
bifurcation point HTW occurring on the branch of traveling bumps
TW . This is consistent with a supercritical bifurcation giving rise to a
branch of stable traveling breathers emerging at the bifurcation point.
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(ii)

(i)

FIG. 14. Two hypothetical (schematic) bifurcation diagrams that
may connect the structure of the stable attractors found the in
analytical calculations and simulations in Fig. 12(b). Different
solution types are denoted by colors and symbols: SW , stationary
bump (wave); TW , traveling bump (wave); SB, stationary breather;
and TB, traveling breather. The solid (dashed) curves indicate the
stable (unstable) solutions. The vertical axis abstractly represents
the amplitude of the bifurcating solutions from the stationary bump
(amplitude 0) and, in the traveling breather case, represents a mix of
wave speed and oscillation amplitude. SymbolsSNX ,HX ,DX denote
saddle-node, Hopf, and drift bifurcation, respectively, occurring on a
solution (or solution pair) of type X . Points H⊕

− and D�
+ along the

branch of stationary bumps (SW) denote the points of Hopf and drift
bifurcation as τ is varied. In simulations of stable traveling breathers
(Figs. 12 and 13), the average wave speed c̃ increases as τ increases
from SNTB to HTW whereas the oscillation amplitude δξj (breathing)
increases from amplitude 0 as τ decreases from HTW to SNTB. The
hypothetical component is the connection from the curve of stable
traveling breathers (TB) to the Hopf bifurcation H⊕

− .

traveling breathers subsequently bifurcate from an unstable
stationary breather, it is presumed that the drift bifurcation
is subcritical (i) because the branch of traveling breathers at
point S in Fig. 12 appears to emerge at a nonzero average wave
speed c̃ rather than 0 and (ii) to be consistent with the principle
of exchange of stability.

VI. DISCUSSION

In this paper, we have developed analytical conditions for
the existence and stability of traveling bump solutions in an
E-I neural field. The existence conditions form a 4D system of
nonlinear equations that can be solved numerically but depart
from many previous studies of traveling waves in neural fields
which enjoy existence equations as 2D nonlinear systems
whose solutions can be visualized as intersection points of
zero sets in a plane. As parameters are varied, solutions in
the 4D system can be traced out via numerical continuation
from a known solution that can be discovered in various ways,
including a good initial guess that converges in a numerical
solver, approximate solutions found in numerical simulations,
and expected solutions in the vicinity of drift bifurcations of
stationary bumps. Identifying the point spectrum using the
Evans function is analogous to previous studies by identifying
intersections of the zero sets of its real and imaginary parts;

the natural complication of the higher-dimensional (4×4)
determinant than in previous studies renders calculation of the
zero sets more computationally intensive at high resolution.
Good agreement was found between the numerical results of
analytic calculations and the results of numerical simulations
of the E-I neural field (1) where stable traveling bumps exist.

Existence and stability conditions were found to reduce in
the limit of wave speed c → 0 to the equivalent conditions
for stationary bumps developed in [23,52]. These conditions
were then used to investigate drift and Hopf bifurcations of sta-
tionary bumps. We advance the notion of the drift bifurcation
of a stationary bump (i.e., a pitchfork bifurcation occurring
with respect to the translation mode of the linearization) as
a natural mechanism for generating traveling waves in E-I
neural fields. Although drift bifurcations could conceivably
arise from varying any system parameters, we showed that
the relative inhibitory time constant τ is naturally conducive
to producing drift bifurcations and that the translation mode
always destabilizes at a positive critical value of τ .

To obtain a more global perspective of the dynamics of
localized solutions in E-I neural fields, we combined the ana-
lytically determined existence and stability conditions of both
traveling and stationary bumps with numerical simulations to
explore the different stable attractors and their bifurcations
in different regions of the τw̄ii-parameter plane delineated
by curves of drift and Hopf bifurcations of stationary bumps
and Hopf bifurcations of traveling bumps. We found evidence
for both supercritical and subcritical Hopf bifurcations of
traveling bumps that give rise to stable traveling breathers
and, in certain regions, bistability with stable stationary or
traveling bumps. We also found evidence for a codimension-2
drift-Hopf bifurcation which acts as an organizing center for
four kinds of solutions: stationary bumps, traveling bumps,
stationary breathers, and traveling breathers.

The two parameters τ and w̄ii that were varied embody
different aspects of the dynamics of the inhibitory population,
with τ affecting the temporal response of inhibition to its
inputs and w̄ii modulating the strength of self-inhibition. Both
affect the ability for the inhibitory population to control the
spread of excitation in different ways. Indeed, increasing w̄ii

sufficiently high results in an I population that is unable to
control the spread of excitation from usurping the domain
as the system approaches the uniformly excited state. For
w̄ii below this level, excitation can be controlled if the
inhibitory dynamics are sufficiently fast (smaller τ ), whereas,
as τ increases the system is naturally attracted to traveling
breathers in the form of oscillatory activity bumps whose flare
up of activity increases as the self-inhibition increases. For
moderate w̄ii , there is an interval of self-inhibitory strengths
where stable stationary bumps occur for sufficiently fast
inhibition, otherwise traveling bumps occur where the slower
inhibition allows the activity bump to propagate but prevents
excitation from growing uncontrollably. When self-inhibition
is sufficiently decreased, an imbalance occurs resulting in an
oscillatory interplay between excitation and inhibition in the
form of stationary or traveling breathers (depending on the
relative time constant τ ). As the excitation widens, inhibition is
recruited; in turn, the enhanced inhibition now diminishes the
excitation which leads to a subsequent decrease in inhibition,
with this cycle repeating. For sufficiently weak self-inhibition,
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the inhibition strongly controls excitation and extinguishes it,
with the network returning to the rest state unless inhibition
is sufficiently slow (large τ ) to allow excitation to propagate
as traveling waves. Thus, the strength w̄ii of I-to-I synaptic
connections can tightly control the stability of stationary and
traveling bumps by regulating the recruitment of activity in the
I population.

To investigate other bifurcation mechanisms underlying the
emergence of traveling waves and breathers in the E-I neural
field, we further examined a different region of parameter
space and showed that, as the relative inhibitory time constant
τ is varied, subcritical bifurcations of stationary bumps and
secondary bifurcations can give rise to an interval of traveling
breathers that bridges the gap between two separated regions
of stable stationary and traveling bumps. This result combined
with the previous results presents a variety of combinations of
drift, Hopf, and saddle-node bifurcations capable of generating
stable traveling waves and breathers.

We note that two differences between the E-I neural field
considered herein [23] and the neural field analyzed in [22]
are that the latter contains no self-inhibition (I-to-I) and the
I-to-E synaptic interaction is linear. The results discussed here
elucidate some of the roles self-inhibition plays in regulating
the dynamics of stationary and propagating localized activity.
We also note that the eigenvalues of the rest state of the E-
I neural field are always real in contrast to [29] where the
complex eigenvalues of the rest state lead to richer behavior.
Given the large number of parameters in E-I neural field (1)
one expects many bifurcation scenarios to occur in different
regions of parameter space. In this paper, we have described

how varying the relative inhibitory time constant and I-to-I
synaptic strength can lead traveling waves and breathers in
a particular region in parameter space. In the case of inputs
these results would be valid in regions where the input is
uniformly close to zero and the excitatory synaptic connections
decay sufficiently fast. Note that in a purely inhibitory sparse
network of spiking neurons, the number and strength of I-to-I
synaptic connections over a range were found to play a role in
supporting stable synchronous activity [56].

Advances in voltage-sensitive dyes [4,6], local field po-
tential (LFP) recordings [10], and calcium-epifluorescence
imaging [57] are beginning to reveal the spatiotemporal dy-
namical patterns generated by neural tissue in vivo and in vitro
under different conditions. Developing an understanding of the
different spatiotemporal patterns these networks support is one
of the current objectives of neural field theory, which provides
a more analytically tractable framework for describing the
activity large neuronal populations. Our results reveal how the
basic connectivity of E-I networks are capable of supporting
localized stationary, traveling, and oscillatory activity bumps.
If network parameters are modulated by different neuronal
processes in time or across space, this could permit the network
to switch between these different states that maintain activity
in stationary, propagating and/or oscillatory form, allowing
the same network to perform different tasks. Moreover,
oscillations have been found in many regions of neocortex and
thalamus and may play an important role in synchronizing
activity between different layers or brain regions [58,59];
breathers may be one type of spatiotemporal structure such
oscillations could exhibit.
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