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Ultraslow diffusion and weak ergodicity breaking in right triangular billiards
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We investigate the diffusion behavior of a right triangular billiard system by transforming its dynamics to
a two-dimensional piecewise map. We find that the diffusion in the momentum space is ultraslow, i.e., the
mean squared displacement grows asymptotically as the square of the logarithm of time. The mechanism of the
ultraslow diffusion behavior is explained and numerical evidence corroborating our conclusion is provided. The
weak ergodicity breaking of the system is also discussed.
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I. INTRODUCTION

Diffusion is one of the most intriguing and important
topics in statistical physics. In most cases, the mean squared
displacement (MSD) grows asymptotically in the power law
of time, i.e.,

σ 2
t (q) ∼ tη, (1)

and the power law exponent, η, characterizes subdiffusion
(η < 1), normal diffusion (η = 1), and superdiffusion (η > 1),
respectively [1–5]. There exists, however, also another class
of diffusion behavior where the MSD grows logarithmically
in time:

σ 2
t (q) ∼ (ln t)κ , κ > 0. (2)

This class of anomalous diffusion, termed as ultraslow dif-
fusion or strongly anomalous diffusion, has been found in
more and more cases, including the Sinai model (κ = 4) [6],
random motions of a particle in charged polymers [7–9] or
aperiodic environments [10,11], a certain family of iterated
maps [12], a parabolic map [13], and a non-Markovian random
walking [14]. In the continuous-time random walk theory, such
ultraslow diffusion has been explained by the waiting time
distribution [15].

In this paper we show that the ultraslow diffusion also
happens in a generic right triangular billiard system (RTBS).
As the simplest one of polygonal billiard systems [16,17],
the RTBS is particularly interesting due to its equivalence
to the system of two elastic point masses confined to move
in a one-dimensional box [18]. Perhaps the most important
property of this system lies in the discreteness of its momentum
space, which is at the root of many other properties. For
example, it is generally acknowledged that if the acute angles
of the right triangle are rational multiples of π then the billiard
flow is nonergodic. This nonergodicity property is actually a
consequence of the momentum discreteness. In view of this,
in the following we will first build a full description of the
momentum discreteness; then, with the help of this description,
we will show that the momentum discreteness is necessary but
insufficient for the ultraslow diffusion.

The remainder of this paper is organized as follows. We
will first introduce the model and notations in Sec. II. Then in
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Sec. III, we build a quantitative description of the discretized
momenta, and show the ultraslow diffusion in the momentum
space. In Sec. IV, we explain the mechanism leading to the
ultraslow diffusion. We will also show that if we invalidate the
mechanism by perturbing the system, subdiffusion emerges
instead. After that, we will address the weak ergodicity
breaking problem by studying the disparity between ensemble
and time averages in Sec. V. Finally, we will conclude our
paper in Sec. VI.

II. THE MODEL

A RTBS describes the motion of a particle confined to move
freely in a right triangle. When the particle hits the three sides,
it will be reflected back elastically. The only system parameter
is one acute angle of the right triangle, denoted as α (0 <

α < π/2). Due to singularities in the billiard flow, the phase
trajectories are discontinuous. Based on our understanding
of this fact, we transform the dynamics of the RTBS into a
two-dimensional piecewise map on the ϑ-x plane, where ϑ ∈
(−∞,∞) represents the momentum direction of the particle,
and x ∈ [0, 1] represents the position of the particle. Leaving
details of this transformation for Appendix A, here we directly
give the forward iteration of the map that consists of three
pieces:

L :

⎧⎪⎪⎨⎪⎪⎩
ϑi+1 = λ − 1

ϑi

,

xi+1 = − xi

ϑi

+ 1

ϑi

+ 1,

(3a)

for ϑi < 0, xi > 1 + ϑi ;

M :

{
ϑi+1 = λ − ϑi,

xi+1 = 1 + ϑi − xi,
(3b)

for −1 � ϑi � 1, ϑi � xi � 1 + ϑi ; and

R :

⎧⎪⎪⎨⎪⎪⎩
ϑi+1 = λ − 1

ϑi

,

xi+1 = xi

ϑi

,

(3c)

for ϑi > 0, xi < ϑi .
Here λ ≡ 2 cos 2α ∈ (−2, 2), and the bold-type letters, L,

M, and R, represent, respectively, the mapping operation
of each piece. As shown in Fig. 1, the ϑ-x plane can be
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FIG. 1. The forward regions of the forward iteration Eq. (3). The
three regions, L, M , and R, are partitioned by the two solid lines the
slopes of which equal to 1.

partitioned into three regions, denoted as L, M , and R, that
correspond to L, M, and R, respectively. We call these three
regions the “forward regions.” To map a phase point to its next
image, one takes the mapping operation depending on which
forward region this phase point belongs to. By mapping a phase
point forward repeatedly, we can obtain a forward symbolic
sequence made of letters L, M , and R, representing the regions
its images visit subsequently. A typical forward sequence is
written as P1P2P3 · · · , where Pi takes one letter of L, M ,
and R [19]. A phase point that corresponds to this sequence
belongs to region P1 and will be mapped into region P2 by
P1 operation, and so on. Note that usually there is an inclined
line segment, rather than a single point, that corresponds to a
given infinite-long forward symbolic sequence. This means
generally every point on a vertical line corresponds to a
different infinite-long sequence.

The dynamics of a billiard system is reversible. As a
consequence, the equivalent map representation of RTBS,
Eq. (3), is also reversible. The corresponding backward
iteration formulas are given in Appendix B.

III. ULTRASLOW DIFFUSION

In this section we investigate the diffusion behavior of the
map given by Eq. (3). To this end we first define a function
ñ. According to Eqs. (3a) and (3c), the ϑ parts of L and R
operations have the same form. Thus, we use a letter S to
represent an L or R. This representation allows us to define a
function ñ of a symbolic sequence P1P2P3 · · · Pt as follows.
First, we replace every L and R in the sequence by S (with
M remaining unchanged). Second, suppose that there are nM

letters of M in the given sequence, then denote the total number
of S between the ith M and the (i + 1)th M as neven (nodd),
where i is an even (odd) integer and runs from zero (one) to
nM − 2 or nM − 1. Third, ñ is defined as ñ ≡ neven − nodd. For
example, ñ(SSMSM) = 1, and ñ(MSSSM) = −3.

The function ñ is very important. Given an initial point
(ϑ0, x0) that corresponds to sequence P1P2P3 · · · Pt , then ϑt ,
the ϑ variable of the t th image, is totally determined by ϑ0

M M M

Θ+(ϑ0, n − 1)

Θ−(ϑ0, n − 1)

Θ+(ϑ0, n + 1)

Θ−(ϑ0, n + 1)

Θ+(ϑ0, n)

Θ−(ϑ0, n)

S S S S· · ·

· · ·

· · ·

· · ·S S S S

FIG. 2. The evolution diagram of the variable ϑ follows Eqs. (4)
and (5a).

and ñ of the sequence. In addition, ϑ0 and ñ also determine
γt ≡ lim|dx0|→0 dxt/dx0, the stretch rate in the x direction.
With some calculations (see Appendix C), it can be shown
that

ϑt = 
+(ϑ0, ñ),γt = �+(ϑ0, ñ),

if P1 · · · Pt contains an even number of M;

ϑt = 
−(ϑ0, ñ),γt = �−(ϑ0, ñ)

if P1 · · · Pt contains an odd number of M; (4)

where


±(ϑ0, ñ) = λ

2
±

√
4 − λ2

2
cot(2̃nα + ψ), (5a)

�±(ϑ0, ñ) = ± sin ψ

| sin(2̃nα + ψ)| , (5b)

ψ = arcsin

(
1

2

√
4 − λ2

ϑ2
0 − λϑ0 + 1

)
. (5c)

According to Eqs. (4) and (5a), the evolution of ϑ can be
seen as on a network shown in Fig. 2. The evolution rule
is the following: given ϑi = 
±(ϑ0, ñ), if Pi+1 is L or R

(represented by S), then ϑi+1 will be 
±(ϑ0, ñ ± 1); otherwise,
Pi+1 is M , and ϑi+1 will be 
∓(ϑ0, ñ). This network has
several properties that are independent of α. First, two S

letters that aligned vertically must be the same. This is because

+(ϑ0, ñ) = 1/
−(ϑ0, ñ + 1) for an arbitrary ñ, so the two
S between ñ and ñ + 1 are both L or both R. This implies
that sequences such as LMR or RML are forbidden. Second,
half of the vertical arrows, corresponding to M operations do
not actually exist. Due to the same equation mentioned above,
either |
+(ϑ0, ñ)| or |
−(ϑ0, ñ + 1)| is bigger than 1. Points
with |ϑ | > 1 must not belong to the M region (see Fig. 1), so
the corresponding vertical M arrows do not exist. Third, all
of the horizontal arrows, which correspond to S operations,
must exist except where ϑ = 0. This is because any vertical
line segment on the phase plane with ϑ 	= 0 does not totally
belong to the M region. These properties limit the construction
of the network and the allowed sequences.

It is important to note that for the following three cases
the network shown in Fig. 2 can be “folded”: (i) if α/π is
rational, then both 
+ and 
− are periodic functions of ñ;
(ii) if 
±(ϑ0, ñ) = λ/2, then 
+(ϑ0, ñ) = 
−(ϑ0, ñ); (iii) if
|
±(ϑ0, ñ)| = 1, then 
±(ϑ0, ñ) = 
∓(ϑ0, ñ ± 1). In cases
(ii) and (iii), almost all of the trajectories are periodic [20].
Therefore, in all these cases, only a finite number of ϑ values
can be reached, and the diffusion behavior of ϑ is stationary,
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FIG. 3. The dependence of σ 2(̃n) on (ln t)2. The average ensemble
consists of 106 initial conditions with identical ϑ0 but uniformly
distributed random x0. To explore the role of waiting time, another
time scale, tS , by omitting the time of all M operations, is also
considered.

i.e., strict localization. But once

α/π is irrational,

ϑ 	=λ/2,±1,
(6)

the values of 
±(ϑ0, ñ) are different from each other. It is
straightforward to show that the number of different ϑ values
visited by a trajectory up to t iterations is always equal to
2K , where K = ñmax − ñmin + 1 is the different ñ values the
forward sequence can take. Obviously, ñ better reflects the
“spread distance” between ϑt and ϑ0 than ϑt − ϑt does. In
other words, σ 2(̃n) better reflects the diffusion behavior in the
ϑ space than σ 2(ϑ) does. We thus will focus on the former in
the following.

Before proceeding further, let us first perform a numerical
study of the diffusion. We fix α = (

√
5 − 1)π/4 for all nu-

merical experiments in the following, but note that practically
the results do not depend on this particular value [21]. We
computer the MSD of ñ obtained by evolving an ensemble
of trajectories with the same ϑ0 but random x0 ∈ [0, 1]. The
results are shown in Fig. 3. Despite fluctuations, it can be seen
that

σ 2
t (̃n) ∼ (ln t)2. (7)

Note that though at every step a trajectory changes its ϑ

value, the ñ value stays unchanged under an M operation. So k

consecutive M operations result in an effective waiting time of
k steps between two changes in ñ. One may thus wonder if the
observed ultraslow diffusion is caused by this waiting time,
like in some other cases of ultraslow diffusion [7–9,12,14,15].
To test this, we omit all M operations when counting the time
and denote the new time tS . However, it turns out that σ 2

tS
(̃n)

depends on (ln tS)2 as well, as shown in Fig. 3. In addition,
due to the fluctuations, sometimes the MSD at tS is smaller
than that at t = tS , even though the symbolic sequences tS
corresponds to are longer. Therefore, we can safely exclude
the possibility that the ultraslow diffusion is caused by this
time-delay effect.
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FIG. 4. The first 1010 images of the initial point (
√

3, 0.5) on

+(ϑ0, ñ), 0 � ñ � 20. The temporarily forbidden zones can be seen
clearly even for ñ = 3. The pink bar below is the corresponding
�+(ϑ0, ñ) plotted for reference.

IV. THE MECHANISM

Now we turn to the underlying mechanism of the ultraslow
diffusion. According to Eqs. (3) and (5b), if a point (ϑ0, x0)
is mapped to (ϑ0, x) following a symbolic sequence, then
x ≡ x − x0 can be written as

x =
(|̃n|max∑

i=0

aiλ
i

)
ϑ0 +

⎛⎝|̃n−1|max∑
j=0

bjλ
j

⎞⎠, (8)

where the coefficients ai and bj are integers decided by
the sequence. For example, MMx0 = x0 + (−2)ϑ0 + (λ),
MRMRx0 = x0 + (−λ − 2)ϑ0 + (λ2 + λ − 2). The sequence
must satisfy a series of requirements. For example, to make
sure ϑt = ϑ0, the sequence must contain an even number of M ,
make ñ = 0, cannot violate the properties discussed in the last
section, and so on. These requirements exclude a big fraction
of sequences, and can be transformed to the limitations on x.

In stead of explicitly listing all these limitations, we show
their overall result in Fig. 4. For a fixed range of visited ñ,
there are gaps between the allowed x values. Consequently,
some continuous zones in the x direction on the vertical lines
are unreachable until the range of visited ñ is expanded. This
effect is enhanced by big �+(ϑ0, ñ) value, and can be clearly
seen.

These “temporarily forbidden zones” in turn forbid corre-
sponding sequences, some of which may lead to new ñ values.
Namely, the x values and the sequences limit each other
and slow down the diffusion in the ñ space. On the other
hand, a new reached ñ value brings additional x, implying
some new allowed sequences. These new sequences may lead
to more new ñ values and cause further increases. Thus, K ,
the number of all reached ñ, always exhibits rapid jumps and
long plateaus, as shown in Fig. 5. Statistically, K increases as
K ∼ ln t , which implies an ultraslow diffusion process.

The analysis above indicates that the ultraslow diffusion
stems from the existence of temporarily forbidden zones,
which partially result from the discreteness of the ϑ space.
To test this conclusion, we consider here a counterexample.
We break the limitations on x by perturbing the evolution of
the system: if ϑi+1 > 1 (so that it belongs to the R region) and
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FIG. 5. The time dependence of K , the number of different ñ

values visited by a trajectory. The squares are for the averaged results
over an ensemble of 106 initial conditions uniformly distributed along
the line ϑ0 = 0.58. The solid curve is for the result of a single
trajectory with initial point (ϑ0, x0) = (0.58, 0.2), as an example.
The dashed line is plotted for reference.

xi+1 < 2ε, then xi+1 is replaced by

x ′
i+1 =

{
xi+1 − ε, 0 � xi+1 < ε;

xi+1 + ε, ε � xi+1 < 2ε.
(9)

Here 0 � ε � 1/2 is an introduced parameter that controls the
perturbation: the smaller is ε, the smaller is the perturbation.
With the added perturbation, most properties of the system
remain unchanged. In particular, the map is still deterministic
and reversible, the phase point stays in the R region, and
the ϑ space remains discretized. But since Eq. (8) is invalid,
the temporarily forbidden zones disappear. Meanwhile, the
diffusive behavior changes from the ultraslow diffusion to
subdiffusion σ 2(̃n) ∼ tη, where the exponent η depends on ε

asymptotically as η ∼ ε0.13 for ϑ0 = √
3 and 10−6 � ε � 1/2,

as shown in Fig. 6. The increase of η with ε mainly results
from the increase of the perturbation frequency rather than
the switch distance. This result is consistent with our finding

10−6 10−4 10−2 10010−1

100
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η

estimated η of perturbed map
1.1ε0.13

100 103 106 109100
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104
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σ
2 (
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ε = 0.01

FIG. 6. The dependence of η on ε. The asterisks are for the
averaged results over an ensemble of 106 initial conditions uniformly
distributed along the line ϑ0 = √

3. The dashed line is plotted for
reference. In the inset we show the time dependence of σ 2(̃n) for
ε = 0.01 as an example. The solid line gives the slope η = 0.6.

that the ultraslow diffusion stems from the mutual limitations
between x values and the forward sequences.

V. WEAK ERGODICITY BREAKING

The RTBS is equivalent to the system of two hard
particles colliding with each other and the walls in a one-
dimensional box [22]. Some authors have investigated the
ergodic properties of the billiard flow in an irrational RTBS
or in the equivalent two-colliding-particle model. In Ref. [23],
it is stated that the irrational RTBS is ergodic and weakly
mixing. In Ref. [24], it is suggested that the two-colliding-
particle model with an irrational parameter is ergodic and
mixing. It is worth mentioning that Vorobets has proved
that with some kind of weak irrational α/π , the RTBS
flow is ergodic, in the sense that the phase spaces cannot
be subdivided into mutually inaccessible regions [25]. On
the other hand, recently there is some numerical evidence
suggesting localization in the two-colliding-particle model,
implying that with a strongly irrational system parameter the
model may be nonergodic [26,27].

In Sec. IV, we have shown that limited ñ range gives rise
to the vertical forbidden zones, which will gradually become
reachable when new ñ values appear. Otherwise, it is easy
to show that if these forbidden zones exist permanently they
will lead to broken ergodicity of the system. Our numerical
experiments suggest that the localization effect reported
in [26,27] should be due to the ultraslow diffusion, which
is not necessarily related to the subdivision of the phase space.
Therefore, whether a generic irrational RTBS is ergodic still
needs an analytic study.

In stead of strict ergodicity, here we address the weak
ergodicity breaking in the model, i.e., the disparity between
averages over time and over the phase space at any meaningful
time scale [28–30]. This disparity includes two parts. First,
the average time needed to increase a fixed amount of
σ 2(̃n) diverges rapidly. Compared with a power-law diffusion
process, the fraction of the visited ϑ values up to time t is
negligibly small, of order (ln t)/tη/2, as t → ∞. Second, the
ultraslow diffusion in the ϑ space implies that on some ϑ

values there remain continuous unreachable segments of x,
thanks to the limitations on x values. This weak ergodicity
breaking is compatible with previous results that the system is
ergodic with certain parameter values [25].

VI. CONCLUSION

We have shown the ultraslow diffusion in the ñ space
of a right triangular billiard system, where ñ has a clear
physical meaning related to the discreteness of the variable
ϑ . This ultraslow diffusion, shown to stem from the temporary
existences of forbidden zones, cannot be ascribed to the
waiting time between two consecutive changes in ñ. In
addition, destroying the forbidden zones by perturbations gives
rise to subdiffusion. These facts also shed a light on the study
of the ergodic properties.

As the model is extremely simple in construction, it
may provide basic understanding to other complex models,
e.g., polygonal billiards and hard-core gases. In addition, its
dynamical behavior is very similar to the so-called generalized
triangle map with special parameters. In such a map, similar
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discreteness of the phase space and ultraslow diffusion are
also observed [31]. Furthermore, the RTBS has been studied
for decades mainly by using the geodesic methods [32–34].
Since the equivalent map defined by Eq. (3) is much easier to
manipulate than the geodesic methods in some aspects, this
advantage may be useful for extending our method to study
other nonlinear systems.
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APPENDIX A: DERIVATION OF EQ. (3)

To describe the state of the particle at an arbitrary moment,
i.e., to pin down a point in the whole phase space, we need
three variables: two represent its position and one represents
its momentum direction. The speed is a constant because all
collisions are elastic. However, if we focus on the instants
the particle collides with the hypotenuse, the two position
variables collapse to one variable x, i.e., the location where
the particle collides with the hypotenuse. We fix the length of
the hypotenuse to be unity and set the α vertex point to be the
origin, then we have x ∈ [0, 1]. The variable represents that
the momentum direction is the rebound angle, denoted as θ ∈
(0, π ), as shown in Fig. 7. In summary, we use two variables
θ and x to represent a Poincaré section of the phase space.

What we need now is the evolution rules on the Poincaré
section. Between two consecutive collisions with the hy-
potenuse, there are three possible events. If we fix the xi value
and vary θi from zero to 2π , these events will appear in the
following order: (1) one collision with only the opposite side
of α, (2) two collisions with both legs, and (3) one collision
with only the adjacent side of α. Motivated by this fact, we
separate the motion of the particle at every instant right after
it collides with the hypotenuse, and denote the combination
of the hypotenuse collision and the followed event by L, M ,
and R, respectively. In other words, every letter represents
one collision with the hypotenuse plus one or two collisions
with the legs. For example, as illustrated in Fig. 7, a letter R

represents that the motion starts from the instant right after the
particle collides with the hypotenuse, through a collision with
the adjacent side of α, to the next collision with the hypotenuse.

α θi θi+1

0 xi xi+1 1
x

FIG. 7. A particle moves in a right triangular billiard the hy-
potenuse of which has unit length. The collisions between the particle
and the sides are all elastic. The motion in the figure from leaving xi

to colliding with the hypotenuse at xi+1 is denoted by a letter R, the
mapping formula of which for θ and x can be derived using the law
of sines.

Based on the angular relation of elastic collisions and the
law of sines, the conditions and formulas of forward iteration
can be written in terms of θ and x as

L :

⎧⎪⎨⎪⎩
θi+1 = θi − 2α + π,

xi+1 = (1 − xi)
sin θi

sin(θi − 2α)
+ 1,

(A1a)

for 0 < θi < 2α, xi > 1 + sin(θi−2α)
sin θi

;

M :

⎧⎨⎩
θi+1 = π − θi,

xi+1 = 1 + sin(θi − 2α)

sin θi

− xi,
(A1b)

for α � θi � π/2 + α, sin(θi−2α)
sin θi

� xi � 1 + sin(θi−2α)
sin θi

; and

R :

⎧⎪⎨⎪⎩
θi+1 = θi − 2α,

xi+1 = xi

sin θi

sin(θi − 2α)
,

(A1c)

for 2α � θi < π, xi < sin(θi−2α)
sin θi

.
To simplify the expressions, we replace θ with

ϑ = sin(θ − 2α)

sin θ
∈ (−∞,∞), (A2)

and α with λ = 2 cos 2α. What we obtain is Eq. (3).

APPENDIX B: THE BACKWARD ITERATION
FORMULAS OF THE MAP

The corresponding backward iteration can be directly
derived from Eq. (3):

L−1 :

⎧⎪⎪⎨⎪⎪⎩
ϑi = 1

λ − ϑi+1
,

xi = − xi+1

λ − ϑi+1
+ 1

λ − ϑi+1
+ 1,

(B1a)

for ϑi+1 > λ, xi+1 > 1 + λ − ϑi+1;

M−1 :

{
ϑi = λ − ϑi+1,

xi = 1 + λ − ϑi+1 − xi+1,
(B1b)

for λ − 1 � ϑi+1 � λ + 1, λ − ϑi+1 � xi+1 � 1 + λ − xi+1;
and

R−1 :

⎧⎪⎪⎨⎪⎪⎩
ϑi = 1

λ − ϑi+1
,

xi = xi+1

λ − ϑi+1
,

(B1c)

for ϑi+1 < λ, xi+1 < λ − ϑi+1.
Likewise, we can partition the phase plane into three

backward regions which correspond to L−1, M−1, and R−1,
respectively. It is easy to see that the forward and backward
regions, as well as the forward and backward iterations, are
symmetric with respect to the line ϑ = λ/2.

APPENDIX C: DERIVATIONS OF EQS. (4) AND (5)

For the sake of convenience, if a sequence contains an even
number of M , we call it an even sequence; otherwise we call
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it an odd sequence. We represent calculation for only even
sequences here. The results for odd sequences are given at
the end of the section. First, let us focus on ϑt , and omit
the evolution of the x variable. Since we can calculate ϑt

according to ϑ0 and the sequence P1 · · ·Pt , it is convenient to
use ϑt = P1 · · · Ptϑ0 to record this relation, where ϑt is the ϑ

value of the t th image of (ϑ0, x0). We have

SMSϑ = Mϑ = λ − ϑ, MMϑ = ϑ. (C1)

Equation (C1) provides two rules, based on which we can
calculate whether two sequences lead to the same ϑ value.
Surprisingly, we find that the final ϑ value after an even
sequence depends only on ϑ0 and ñ of the sequence, i.e., equals
to Sñϑ0. Take the sequences mentioned in Sec. III for exam-
ple. SSMSMϑ0 = Sϑ0, and MSSSMϑ0 = S−3S3MS3Mϑ0 =
S−3ϑ0. Therefore, the ϑt value, obtained after the initial point
follows an even sequence P1 · · ·Pt , is a function of ϑ0 and ñ,
which can be denoted by


+(ϑ0, ñ) = Snϑ0, (C2)

To find out its expression, we introduce an intermediate
array {W (ϑ0, ñ) | ñ ∈ Z} defined by

W (ϑ0, ñ + 1) = 
+(ϑ0, ñ)W (ϑ0, ñ),

W (ϑ0, 0) = 1. (C3)

According to Eq. (C2), we have


+(ϑ0, ñ) = S
+(ϑ0, ñ − 1)

= λ − 1/
+(ϑ0, ñ − 1). (C4)

Using it in Eq. (C3), we get

W (ϑ0, ñ + 1) =
[
λ − 1


+(ϑ0, ñ − 1)

]
W (ϑ0, ñ)

= λW (ϑ0, ñ) − W (ϑ0, ñ − 1)

= 2 cos(2α)W (ϑ0, ñ) − W (ϑ0, ñ − 1). (C5)

This equation can be rewritten as

W (ϑ0, ñ + 1) − e±i2αW (ϑ0, ñ)

= e∓i2α[W (ϑ0, ñ) − e±i2αW (ϑ0, ñ − 1)]. (C6)

Since W (ϑ0, 0) = 1 and W (ϑ0, 1) = ϑ0, it follows that

W (ϑ0, ñ) = ϑ0(ei2̃nα − e−i2̃nα) − (ei2(̃n−1)α − e−i2(̃n−1)α)

ei2α − e−i2α

= ϑ0 sin(2̃nα) − sin[2(̃n − 1)α]

sin 2α

= 1

sin ψ
sin(2̃nα + ψ), (C7)

where

ψ = arcsin

(
sin 2α√

(ϑ0 − cos 2α)2 + sin2 2α

)

= arcsin

(
1

2

√
4 − λ2

ϑ2
0 − λϑ0 + 1

)
(C8)

is a constant for fixed λ and ϑ0. Combining this expression
with Eq. (C3), it follows that


+(ϑ0, ñ) = W (ϑ0, ñ + 1)

W (ϑ0, ñ)

= sin[2(̃n + 1)α + ψ]

sin(2̃nα + ψ)

= cos(2α) + cot(2̃nα + ψ) sin(2α)

= λ

2
+

√
4 − λ2

2
cot(2̃nα + ψ). (C9)

Second, let us turn to the stretch rate in the x direction.
Let xt = P1 · · · Ptx0 be the x value of the t th image after an
even sequence P1 · · ·Pt . Though practically ϑi is needed to
calculate xi+1, here we just omit the ϑ part of the coordinate
for convenience, considering that ϑi can be derived from ϑ0

and the sequence. Using such notations, given an infinitesimal
perturbation d(x0), we have

d(Sx0) = d(x0)

|ϑ0| ,

d(SMSx0) = d(Mx0) = −d(x0). (C10)

Here we assume that an infinitesimal perturbation does not
change the forward sequence. The second equation is valid
thanks to the fact that LMR and RML are forbidden, as
we explained in Sec. III. Likewise, the final value of a
perturbation d(x0) after an even sequence depends only on
ϑ0 and ñ of the sequence, i.e., equals to d(Snx0). For example,
d(SSMSMx0) = d(Sx0), and d(MSSSMx0) = d(S−3x0). This
result implies a stretch rate in the x direction as a function of
ϑ0 and ñ, which can be denoted by

�+(ϑ0, ñ) = d(Snx0)

d(x0)
. (C11)

Using Eq. (C10) here, we have

�+(ϑ0, ñ) = �+(ϑ0, ñ − 1)

|
+(ϑ0, ñ − 1)|

=
∣∣∣∣W (ϑ0, ñ − 1)

W (ϑ0, ñ)

∣∣∣∣�+(ϑ0, ñ − 1)

=
∣∣∣∣W (ϑ0, ñ − 1)

W (ϑ0, ñ)
· · · W (ϑ0, 0)

W (ϑ0, 1)

∣∣∣∣�+(ϑ0, 0)

= 1

|W (ϑ0, ñ)| = sin ψ

| sin(2̃nα + ψ)| . (C12)

�+ is always bigger than zero, which means an even sequence
keeps the order in the x direction if the points follow the same
sequence. In addition, when a line segment [x0, x0 + dx] on
ϑ = ϑ0 is mapped to 
+(ϑ0, ñ), even if the points follow
different sequences, the total length of the images (every point
counts once) is always �+(ϑ0, ñ)dx.

The cases of odd sequences can be calculated similarly.
In such cases, the ϑ value of the t th image is 
−(ϑ0, ñ) =
λ − 
+(ϑ0, ñ), and the stretch rate in the x direction is
�−(ϑ0, ñ) = −�+(ϑ0, ñ). Combining the results for both
kinds of sequences, we obtain Eqs. (4) and (5).
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