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Dynamics of vortex-antivortex pairs and rarefaction pulses in liquid light
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We present a numerical study of the cubic-quintic nonlinear Schrödinger equation in two transverse dimensions,
relevant for the propagation of light in certain exotic media. A well-known feature of the model is the existence
of flat-top bright solitons of fixed intensity, whose dynamics resembles the physics of a liquid. They support
traveling wave solutions, consisting of rarefaction pulses and vortex-antivortex pairs. In this work, we demonstrate
how the vortex-antivortex pairs can be generated in bright soliton collisions displaying destructive interference
followed by a snake instability. We then discuss the collisional dynamics of the dark excitations for different
initial conditions. We describe a number of distinct phenomena including vortex exchange modes, quasielastic
flyby scattering, solitonlike crossing, fully inelastic collisions, and rarefaction pulse merging.
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I. INTRODUCTION

The synergy between competing nonlinearities in the
Schrödinger equation can give rise to very interesting dy-
namics [1,2], including, for instance, solitons [3,4] and phase
transitions [5,6]. In this paper, we provide insights on the
cubic-quintic (focusing-defocusing) model, which has been
thoroughly studied in the context of nonlinear optics [7–9],
where it was shown that large power solitons have neat
similarities with regular liquids, thereby motivating the term
“liquid light” [10]. The same equation has been applied in
other frameworks too, see, e.g,, Refs. [11–15].

The cubic-quintic equation is an appropriate model for
the propagation of light in certain optical materials, see for
instance Ref. [16] and references in Ref. [17]. It has also
been used as an approximation to the process of filamen-
tation [18–20]. Recent experimental advances reinforce the
significance of new theoretical studies. Despite damping,
(limited) soliton propagation has been observed in carbon
disulfide [21]. Furthermore, the dropletlike behavior of cubic-
quintic propagation has been demonstrated in atomic gases
at low optical powers [22,23], using quantum coherence and
interference as proposed in Refs. [24,25]. Other setups in
which the fifth-order nonlinearity can be enhanced through
quantum effects comprise Rydberg atoms [26] and quantum
dots [27,28]. Confinement and guiding of light in a cubic-
quintic (defocusing-focusing) has also been reported [29].

In the cubic-quintic model, there is a one-parameter family
of form-preserving traveling dark wave solutions within a
critical bright background, which was computed in Ref. [30]
following the numerical methods of Ref. [31]. For small
velocities, it consists of vortex-antivortex pairs of charges ±1
(we will make a usual abuse of language and refer to “velocity”
for what in the optical setup corresponds to the propagation
angle with respect to the axis). For larger subsonic velocities,
the solutions are rarefaction pulses, namely dark blobs without
vorticity. The fainter the pulse is, the faster it moves within the
bright background. This family of solutions is similar to the
one existing for third-order defocusing nonlinearity [32–35].
Rarefaction pulses should not be confused with the unstable
quiescent bubbles of [36,37].

A separate issue is how these dark solitonlike excitations
can be generated dynamically. In the context of Bose-Einstein
condensates (BECs), they have been generated by phase

imprinting [38]. In the framework of superfluids, it was shown
that they can appear when the fluid flows past an obstacle
[39], a process that in optics can be mimicked by the nonlinear
interaction with an incoherently coupled beam [40] and in
BECs with a laser beam (see Ref. [41] and references therein).

A remarkable result of Ref. [30] is that, for the liquid of
light, rarefaction pulses can be generated by interference in
the collision of two bright solitons of very different sizes
and powers. The analogy with bubbles in fluids motivates
the usage of the term “cavitation” for this kind of process.
The produced caviton excitation propagates within the large
soliton and can exit it becoming a bright soliton again. This
bright-dark-bright conversion is familiar in one dimension,
see, e.g., Refs. [42,43], but it is a distinctive feature of the
cubic-quintic equation in two dimensions. This peculiarity
facilitates the creation of dark traveling waves in a controlled
manner from initial conditions comprising only bright solitons.
With three initial bright solitons, two separate traveling waves
can be created within the same fluid.

The natural question that we address in the present paper is
how these traveling waves interact with each other. It would
be really interesting to implement this kind of processes in
experimental setups as those described in Refs. [21–23]. For
the case of defocusing cubic nonlinearity, the dynamics of
the dark excitations in a nontrivial background was analyzed
in Refs. [44–46] and their interaction with a single vortex in
Ref. [47].

In Sec. II, we fix notation and review some features of
the cubic-quintic model. In Sec. III, we show that vortex-
antivortex pairs can be produced by a soliton-soliton collision.
Sections IV–VI describe the result of our simulations concern-
ing dark wave interactions. We discuss in turn the collision of
two vortex-antivortex pairs, that of a rarefaction pulse with a
vortex-antivortex and that of two rarefaction pulses. In Sec. VII
we outline our conclusions and make some final remarks. The
Supplemental Material [48] contains animations for all of the
examples of dynamical evolution that are presented along the
paper and a few extra illustrative cases.

II. SOLITONS AND TRAVELING WAVES

In this section we briefly review well-known results
concerning the cubic-quintic model in order to provide the
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basic ingredients for the following. Consider the paraxial
propagation of a laser beam of angular frequency ω = k0c

in a medium with refractive index n = n0 + �n:

−2ik0n0
∂A

∂ẑ
= (

∂2
x̂ + ∂2

ŷ

)
A + 2�nk2

0n0A, (1)

where n0 is a constant and terms of order O(�n2) have been
neglected. We use x̂, ŷ, ẑ for dimensionful coordinates. The

intensity is given by I = n0
2

√
ε0
μ0

|A|2. We assume the following

nonlinear correction to the refractive index �n = n2I + n4I
2

with n2 > 0, n4 < 0. It is convenient to rescale Eq. (1) to
dimensionless quantities:

A =
(

− 2n2

n0n4

√
μ0

ε0
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ψ, ẑ = − n4
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z,
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2n0
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The power of the beam is given by P̂ = ∫
Idx̂dŷ =

(2k2
0n0n2)−1P where the dimensionless power is P =∫ |ψ |2dxdy.
With the transformation (2), we find the canonical equation

governing the wave amplitude ψ(x,y,z):

i∂zψ = −(
∂2
x + ∂2

y

)
ψ − (|ψ |2 − |ψ |4)ψ. (3)

The translation from dimensionless to physical quantities
depends on the particular system. Below, we will just deal
with Eq. (3), but it is interesting to provide the transformation
for a benchmark example. Consider the case of Ref. [21] where
n0 = 1.6, n2 = 3.1×10−19m2/W, n4 = −5.2×10−35m4/W,
λ = 2π/k0 = 920×10−9m. Then, the unit of z corresponds
to 79 μm, the unit of x or y to 1.9 μm and the unit of power
to 21.6 kW. Notice that in the setup [21] there is a nonlinear
absorption term that has not been included here.

There are stable solitary wave solutions of Eq. (3) of the
form ψ = eiβzf (r) with limr→∞ f (r) = 0, which we laxly
call bright solitons, as it is customary in the literature. The
numerical study of Refs. [9,10] shows that there are solutions
for 0 < β < βcr = 3

16 . The power P = 2π
∫

rf (r)2dr grows
monotonically with β in the range P0 < P < ∞ where P0

is the minimal value that leads to self-trapping. For small
β, the function f (r) is bell shaped. Near the βcr eigenvalue
cutoff [49], f (r) tends to a flat-top profile. This means that
f ≈ 
cr =

√
3

2 for r < rsol and around the soliton radius rsol

there is a quick drop to f ≈ 0 for r > rsol. This limit is the
liquidlike phase, in which the soliton resembles a fluid with
constant density and fixed surface tension subject to the Young-
Laplace equation [50].

We will use these bright solitons to define the initial condi-
tions of simulations in the following sections, by considering

ψ |z=0 = f1(|x|) + f2(|x − x2|) exp

(
i
v2 · x

2
+ iφ2

)

+ f3(|x − x3|) exp

(
i
v3 · x

2
+ iφ3

)
, (4)

where the xi are the initial positions of the solitons, vi their
initial velocities and φi their initial phases. Boldface symbols
are two-dimensional vectors. The fi(.) are the soliton profiles,
where f1 is a flat-top soliton, corresponding to the liquid where

FIG. 1. Radial profiles of the three solitons used to de-
fine the initial conditions in the examples below. Their powers
P = 2π

∫ ∞
0 rf (r)2dr are P |β=0.15 = 86.0, P |β=0.1802 = 2055.5,

P |β=0.1856 = 30620.

the dynamics takes place and f2, f3 are smaller solitons that
dynamically generate the dark excitations. In Fig. 1, we plot
the profiles of the particular solitons that will be used in all the
examples below.

Let us now turn to the dark traveling waves [30]. They are
form-preserving solutions of Eq. (3) moving at constant speed
U in, say, the x direction, embedded in an infinite liquid.
Inserting the ansatz ψ(x,y,z) = ei βcr z
(η,y) [32], where
η = x − Uz, we can write:

iU∂η
 = (
∂2
η + ∂2

y

)

 + (|
|2 − |
|4 − 3

16

)

 (5)

subject to the boundary condition limη2+y2→∞ 
 = 
cr =
√

3
2 .

There is a family of solutions parameterized by 0 < U <
√

3
2 .

For small U they are vortex-antivortex pairs, with |ψ |2 = 0
at the phase singularities. When U grows, the vortex and
antivortex merge into a rarefaction pulse, whose |ψ |2 is
nowhere vanishing. It is important to remark that the transition
is completely smooth and, roughly, one can think of the
rarefaction pulse as a bound state of vortex and antivortex.
In fact, under nontrivial dynamical evolution both kinds of
eigenstates can transform into each other [45,47].

An interesting quantity is the current density, which, in the
hydrodynamical picture, represents the flow of the fluid.

j = 1

i
(ψ∗∇ψ − ψ∇ψ∗). (6)

The j is essential to understand how the dark excitation
modifies the medium around it and therefore to understand
the interaction between traveling waves. In Fig. 2, we depict
this quantity for three examples of traveling waves.

Momentum and energy are conserved quantities defined by

p = 1

2i

∫
[(
∗ − 
cr )∂x
 − (
 − 
cr )∂x


∗]dxdy

E =
∫

|∇
|2dxdy + 1

3

∫
|
|2(|
|2 − 
2

cr

)2
dxdy. (7)
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FIG. 2. Three numerically computed traveling waves with
U = 0.11 [vortex-antivortex pair, (a)], U = 0.35 [rarefaction pulse,
(b)], and U = 0.71 [faint rarefaction pulse, (c)]. The dark excitations
are moving rightwards. The color scale displays the density |ψ |2 and
the arrows represent the current density j.

Within the family of solutions, one can check that U = ∂E/∂p

and three virial identities are satisfied [30,32,33].
The analysis in the coming sections results from the

numerical integration of Eq. (3) with initial conditions (4).
The computations are done using a standard split-step beam
propagation method [51]. The evolution associated to the
nonderivative terms is computed with a fourth-order Runge-
Kutta method. The plotted figures are built using grids
of 800×600 points. We have checked convergence of the
method by comparing results with different grids in (x,y) and
steps in z.

III. COHERENT GENERATION OF
VORTEX-ANTIVORTEX PAIRS

In Ref. [30], it was shown that a rarefaction pulse can appear
when two coherent bright solitons meet with appropriate
relative velocity and phase. Roughly speaking, destructive
interference generates a void at the collision point, which
can acquire the necessary velocity thanks to the incoming
momentum. Although, definitely, an exact solution of (5) is
not realized in the dynamical process, the resulting robust
dark excitation can indeed be identified with a traveling wave
solution. This fact was checked in Ref. [30] by comparing the
dispersion relations. Even if the size of the medium (the large
soliton) is not infinite, it can support the traveling wave if it is
much larger than the dark structure.

In this section, we show that a similar process can result in
the formation of a vortex-antivortex pair. In fact, the difference
with Ref. [30] is simply that the incoming soliton has to
be larger. What happens is that during a collision in phase
opposition, an elongated dark region is created. It cannot
be stable because there are no rarefaction pulse solutions
of similar size. Consequently, it evolves and decays through
a snake instability giving rise to the separate vortex and
antivortex, which move forward together with a given velocity
U . Since the resulting configuration is not exactly equal to the
stationary solution, the dark regions can change, reconnect,
and split again. However the vortex-antivortex profile becomes
apparent after long enough propagation in z. An example is
depicted in Fig. 3. Obviously, the third soliton of (4) is not
included in the initial condition.

FIG. 3. The encounter of two bright solitons giving rise to a trav-
eling vortex-antivortex pair. Initial conditions have x2 = (−180,0),
v2 = (0.2,0), φ2 = 5. The large soliton is the one with β1 = 0.1856
and the smaller one has β2 = 0.1802. The color code for |ψ |2 is as in
Fig. 2 and the range of the axes is x ∈ [−270,270], y ∈ [−190,190].
An animation is provided in the Supplemental Material [48].

In Fig. 4, we expose the phase structure of the wave function
of the example at a particular propagation distance z. The plots
prove that the two dark spots of Fig. 3 correspond indeed to a
vortex-antivortex pair.

Concerning the reconversion into a bright soliton [30], we
notice that it can take place when the excitation reaches the
boundary of the liquid of light as a single dark pulse. On the

FIG. 4. Phase structure of the wave function. The plot corre-
sponds to z = 2000, Fig. 3(f). The region of the vortex-antivortex has
been enlarged. (a) depicts |ψ |2 with the same color scale of Fig. 2
and the arrows are a quiver diagram for j showing flows similar to
Fig. 2. (b) corresponds to the interference pattern with a plane wave:
|ψ(x,y,z = 2000) + 7 exp (−100iy)|2. The forklike structures prove
the existence of a vortex-antivortex pair with charges ±1.
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other hand, when it does so as a vortex-antivortex pair, two
waves propagating in opposite directions along the edge of the
large soliton get excited [48].

It must be emphasized that the generation of vortex and
antivortex is only one of the possible qualitative outcomes
that emerge depending on the relative velocity and phase.
As in Ref. [30], the droplets can simply coalesce into one.
The collision can also result in rarefaction pulses of different
energies and speeds. For low velocities, part of the energy
can bounce back evolving into a smaller bright soliton. In all
cases, surface and bulk sound waves are excited during the
process. If the collision is very violent, the large soliton can
be severely distorted, ceasing to be a liquidlike approximately
homogeneous medium.

We close this section by noting that there are vortex
solutions of the cubic-quintic equation (3) of the form ψ =
eiβzeilθf (r) with limr→∞ f (r) = 0, where l is the topological
charge and θ is the polar angle. Their profiles and stability have
been studied in Refs. [52–56] and their collisional dynamics
in Ref. [57]. We remark that the vortices that we are studying
in this paper as solutions of Eq. (5) are different objects: they
live within the vorticityless liquid of light and they only exist
in pairs and moving with a finite velocity.

IV. COLLISIONS OF VORTEX-ANTIVORTEX PAIRS

Let us start illustrating the interactions by computing the
head-on encounter of two vortex pairs created as described in
Sec. III. A typical example is displayed in Fig. 5. The result
is an exchange in which the vortex of each pair recombines
with the antivortex of the other one (the exchange of a
single vortex with a vortex-antivortex pair was described
in Ref. [47] with cubic nonlinear potential.) The solitary
waves come out perpendicular to the incoming direction. This
can be understood in terms of the flow lines of Eq. (6),
considering that, during the approach, each pair generates a
smooth inhomogeneity in the background in which the other
one propagates [46]. For instance, the antivortex on the top
right [see Figs. 5(c) and 5(d)] is affected by the flow lines
generated by the phase structure of the vortex on the top left
(see Fig. 4) and is pushed upwards. Conversely, the vortex in
the bottom right turns downwards because of the antivortex
in the bottom left. Since these bends tend to associate again
vortex and antivortex, the propagation can continue after the
exchange. In Fig. 5, we have considered slightly different
phases for the initial solitons in order to show that a perfect
symmetry is not needed for this process.

Similar exchanges can happen for collisions at angles.
Figure 6 depicts an example where the incoming excitations
are perpendicular to each other. In this case, the vortex moving
downwards and the antivortex moving leftwards attract each
other and coalesce into a dark blob, which can be considered
an excited version of a rarefaction pulse. It comes out heading
towards the top right of the plot and is finally reconverted into
a (highly excited) bright soliton when it reaches the edge of
the medium. The remaining vortex and antivortex eventually
couple to each other and continue to propagate towards the
bottom left. Notice that the velocity of this pair is much lower
than that of the aforementioned rarefaction pulse, as expected
from the stationary solutions characterized in Sec. II.

FIG. 5. Head-on encounter of two vortex-antivortex pairs result-
ing in an exchange mode. Initial conditions are defined by Eq. (4)
with −x2 = x3 = (180,0), v2 = −v3 = (0.2,0), φ2 = 5.3, φ3 = 5.
The large soliton is the one with β1 = 0.1856 and the smaller ones
have β2 = β3 = 0.1802. Color code and axes are defined as in Fig. 3.
An animation is provided in the Supplemental Material [48].

The simulation of Fig. 6 is also interesting because it shows
other generic features of the dynamics, which can be better
appreciated in the animation presented in the Supplemental
Material [48]. In particular, we must emphasize that the
evolution of the dark excitations is not elastic, in the sense
that some energy is radiated away in the form of sound
waves. Moreover, faint rarefaction pulses of small energy,
regarding Eq. (7), can be generated. These radiation processes
take place during collisions and also during the relaxation of
the coherently generated dark bubbles towards their stationary
vortex pair form.

We also remark that, for encounters like that of Fig. 6, small
changes in the initial conditions can determine how the dark
regions combine and greatly affect the out-coming pulses. For
instance, if we just change v3 from (−0.2,0) to (−0.21,0),
therefore breaking the symmetry between both incoming
vortex pairs, the one moving horizontally arrives first. Instead
of performing an exchange with the other vortex, it merges with
the antivortex, creating an elongated void of net vorticity −1.
This snakelike structure starts rotating and eventually decays
emitting a rarefaction pulse. We present this evolution in the
Supplemental Material [48]. Thus, the encounter gives rise to a
vortex-antivortex pair and a rarefaction pulse, just as in Fig. 6,
but their resulting propagation directions are rather different.
This simulation also shows that, when there is an eventual
dark-bright reconversion, the outgoing dark soliton does not
necessarily come out with the same propagation direction as
the dark blob that generates it.
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FIG. 6. Encounter at a right angle of two vortex-antivortex
pairs resulting in an exchange mode. Initial conditions are defined
by Eq. (4) with x2 = (0,180), x3 = (180,0), v2 = (0, −0.2), v3 =
(−0.2,0), φ2 = φ3 = 5. The large soliton is the one with β1 = 0.1856
and the smaller ones have β2 = β3 = 0.1802. The color code is
defined as in Fig. 2. The range of the axes is x,y ∈ [−270,270].
An animation is provided in the Supplemental Material [48].

We close this section by considering a head-on encounter
in which the vortices of each pair meet each other (instead of
heading an antivortex as in Fig. 5). This can be accomplished
by slightly shifting the y position of the bright solitons
defined in the initial conditions. An example is depicted in
Fig. 7.

This evolution can be qualitatively understood noting that
the vortices repel each other and therefore are slowed down
while the antivortices continue advancing. This induces a
rotation of the whole dark structure, which eventually breaks
down resulting in two separate pulses, which come out at
an angle, different from the incoming one. This is a kind
of pseudoelastic collision. Notice, however, that the scattered
pulses cannot be neatly considered vortex-antivortex as the
incoming ones. Vortex pairs and rarefaction pulses can be
cleanly defined for stationary situations but in dynamical
evolutions like the present one, the separation between both
is not obvious and they can even transform into each other,
as noticed in Ref. [47] in a different but somewhat related
scenario.

FIG. 7. Encounter of two vortex-antivortex pairs, shifted with
respect to each other along the direction transverse to propagation,
resulting in pseudoelastic scattering. Initial conditions are defined by
Eq. (4) with x2 = (−180,−10), x3 = (180,10), v2 = (0.2,0), v3 =
(−0.2,0), φ2 = φ3 = 5. The large soliton is the one with β1 = 0.1856
and the smaller ones have β2 = β3 = 0.1802. Color code and axes
range are defined as in Fig. 3. An animation is provided in the
Supplemental Material [48].

V. COLLISION OF A RAREFACTION PULSE
WITH A VORTEX-ANTIVORTEX PAIR

We now consider the encounter of a rarefaction pulse with a
vortex-antivortex pair. An illustrative case is sketched in Fig. 8.
In the example, the dark regions moving in opposite directions
pass near each other but do not experience a direct contact.
They keep their distinct identities during the whole evolution
and therefore this process is very similar to a elastic scattering.
The pulses continue their propagation away from each other
and therefore we call this a flyby mode, following Ref. [47].
In the figure, it can be appreciated that the propagation of
the rarefaction pulse is rotated by a small angle when both
waves meet (the horizontal dashed line has been included in
the plots to guide the eye). Again, this is due to the flow lines
defined in Eq. (6) and represented in Fig. 2, whose structure
explains why the caviton turns upwards. The vortex-antivortex
pair is also affected by the encounter, by since its energy
and momentum (7) is quite larger that that of the rarefaction
pulse, it is much harder to appreciate the diversion. Notice
that this flyby mode is only relevant for a narrow window of
the scattering impact parameter. If the caviton pulse moves
far from the dipolar structure, the phase gradients are tiny and
their effect is negligible. On the other hand, if both waves
are too near, the dark regions recombine giving rise to more
complicated evolutions, as we show in the next example.
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FIG. 8. Flyby encounter of a rarefaction pulse with a vortex-
antivortex pair. The pulse trajectory is modified because of the flows
generated by the vortex-antivortex phase structure. The horizontal
dashed line marks y = 0, the path that the rarefaction pulse would
follow in the absence of other excitations. Initial conditions are
defined by Eq. (4) with x2 = (−180,27), x3 = (240,0), v2 = (0.2,0),
v3 = (−0.5,0), φ2 = 4.9, φ3 = 4. The large soliton is the one with
β1 = 0.1856 and the smaller ones have β2 = 0.1802 and β3 = 0.15.
Color code and axes range are defined as in Fig. 3. An animation is
provided in the Supplemental Material [48].

The initial conditions in Fig. 9 resemble those of Fig. 8,
but the initial y displacement of the bright solitons is slightly
smaller, yielding a smaller impact parameter for the collision
of the dark waves. In this case, the dark regions associated
to the antivortex and the rarefaction pulse come into contact
and merge, initially giving rise to a large blob of vorticity −1.
Since the vortex-antivortex pair has the larger momentum and
energy, the subsequent evolution can be roughly described
as an absorption of the rarefaction pulse by the pair, which
becomes highly excited, but continues its propagation right-
wards. This structure slowly relaxes towards the stationary
vortex-antivortex solution by the emission of sound waves
and faint rarefaction pulses [48]. In the Supplemental Material
[48], we also present a simulation in which the vortex pair and
the caviton approach each other with zero impact parameter.
Roughly, the dynamics can be understood in terms of the
previous discussion: when the dark regions touch each other,
the rarefaction pulse is swallowed by the vortex-antivortex,
which, albeit excited, continues its propagation. We have
checked that this kind of qualitative behavior is quite generic,
regardless of the incoming angles and velocities.

VI. COLLISIONS OF RAREFACTION PULSES

Let us now discuss the case of two interacting rarefaction
pulses. First of all, we notice the existence of flyby modes,

FIG. 9. Inelastic collision of a rarefaction pulse and a vortex-
antivortex pair. The rarefaction pulse touches the antivortex, blends
with it and, eventually, also gets connected to the dark region
around the vortex. The resulting structure can be considered as a
highly excited vortex-antivortex pair which continues to propagate
within the liquid of light. Initial conditions are defined by Eq. (4)
with x2 = (−180,18), x3 = (240,0), v2 = (0.2,0), v3 = (−0.5,0),
φ2 = 4.9, φ3 = 5. The large soliton is the one with β1 = 0.1856 and
the smaller ones have β2 = 0.1802 and β3 = 0.15. Color code and
axes range are defined as in Fig. 3. An animation is provided in the
Supplemental Material [48].

similar to those described in the previous section, when the
impact parameter is not too large but enough to avoid direct
contact.

It is also worth commenting on the dynamics of head-on
collisions. The most common result is illustrated in Fig. 10.
When the pulses meet, a larger dark blob is created with,
possibly, a bright spot inside [see Fig. 10(d)]. Then, two
rarefaction pulses appear again and continue their propagation.
During the encounter, part of the energy is radiated away and,
therefore, the pulses after the collision are slightly fainter and
faster. Thus, in this respect, the rarefaction pulses behave as
dark quasisolitons. We remark that this happens for symmetric
encounters as the one of the figure or asymmetric ones with
pulses of different energies. As expected, when the cavitons
reach the edge of the large soliton, they can be reconverted in
bright solitons again. In fact, the simulation of Fig. 10 can be
interpreted as a bright-dark-bright-dark-bright transformation
of the propagating excitation [48].

Curiously, the picture changes completely if the initial
conditions are properly fine tuned. Figure 11 depicts an
example in which the rarefaction pulses annihilate each other
and their energy is radiated in the form of a circular sound
wave. Visibly, the behavior of the rarefaction pulses in this
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FIG. 10. Symmetric head-on encounter of two rarefaction pulses,
which cross each other, losing a fraction of their energy in the process.
Initial conditions are defined by Eq. (4) with −x2 = x3 = (180,0),
v2 = −v3 = (0.5,0), φ2 = φ3 = 6. The large soliton is the one with
β1 = 0.1856 and the smaller ones have β2 = β3 = 0.15. Color code
and axes range are defined as in Fig. 3. An animation is provided in
the Supplemental Material [48].

case totally differs from that of form preserving solitons. As a
matter of fact, the seemingly antagonistic character of Figs. 10
and 11 can be continuously connected by noticing that in all
head-on encounters the outgoing energy is shared by a bulk
wave and two rarefaction pulses. In Fig. 10, most of the energy
goes to the latter whereas in Fig. 11 it is mostly acquired by
the former, while other initial conditions lead to intermediate
possibilities.

Finally, we comment on the encounter of rarefaction pulses
at angles. Figure 12 illustrates this case by considering a
perpendicular concurrence. As in the previous cases, the dark
regions combine producing a dark blob, which is larger than
the incoming ones. However, in this case this blob can survive
and, in a loose sense, propagate in the direction required by
momentum conservation. Thus, the simulation of Fig. 12 can
be neatly portrayed as the merging of two rarefaction pulses
into a more energetic one. Similarly to all of the presented ex-
amples, part of the energy is radiated away during the process.

We close the section by noticing that there is a second typ-
ical qualitative behavior, which we show in the Supplemental
Material [48]. What happens there is that the dark blob splits
giving rise again to two rarefaction pulses (we emphasize that,
even if it may seem that the dark pulses coming out of the
collision propagate almost in parallel, they are not vortex and
antivortex). Roughly, this last possibility can be thought of as
another example of quasielastic scattering or as a bounce of
the pulses against each other.

FIG. 11. Symmetric head-on encounter of two rarefaction pulses
resulting in a fully inelastic collision. The pulses annihilate each other
and yield all their energy to a circular sound wave. Initial conditions
are defined by Eq. (4) with −x2 = x3 = (180,0), v2 = −v3 = (0.5,0),
φ2 = φ3 = 4.8. The large soliton is the one with β1 = 0.1856 and the
smaller ones have β2 = β3 = 0.15. Color code and axes range are
defined as in Fig. 3. An animation is provided in the Supplemental
Material [48].

VII. SUMMARY AND OUTLOOK

In this work, we have numerically analyzed Eq. (3),
reporting on a number of qualitative phenomena for the
cubic-quintic model in 1+2 dimensions. The interplay of
diffraction with focusing and defocusing nonlinear effects
endows the cubic-quintic nonlinear Schrödinger equation with
an extremely rich phenomenology. In particular, there are dark
traveling waves and bright solitons, which for large powers
become liquidlike. Noticeably, the dark and bright stationary
and stable solitary waves can transform into each other during
evolution. In particular, a bright soliton can excite a rarefaction
pulse when it meets a bright soliton of larger power [30]. We
have shown that a vortex-antivortex pair can be generated in
a similar way. The process, however, is not as clean as in the
previous case. The incoming soliton has to be larger and gives
rise to a more pronounced distortion of the flat-top soliton.
Moreover, the vortex and antivortex are not generated directly,
but only as the end result of a snake instability of an initial
dark blob. Thus, the radiation of part of the excess energy
is essential in approaching the stationary vortex-antivortex
solution. When a strong enough rarefaction pulse reaches the
border of the liquid of light, it typically generates an outgoing
bright soliton. On the other hand, the vortex-antivortex pair
excites a couple of surface waves propagating in opposite
directions.
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FIG. 12. Two rarefaction pulses collide perpendicularly and
merge. Initial conditions are defined by Eq. (4) with x2 = (0,180),
x3 = (180,0), v2 = (0, −0.5), v3 = (−0.5,0), φ2 = φ3 = 5. The
large soliton is the one with β1 = 0.1856 and the smaller ones have
β2 = β3 = 0.15. The color code is defined as in Fig. 2. The range
of the axes is x,y ∈ [−270,270]. An animation is provided in the
Supplemental Material [48].

The possibility of creating the dark states by interference
and nonlinear evolution has allowed us to propose numerical
experiments concerning their scattering with initial conditions,
which only include bright solitons, see Eq. (4). We have
made a qualitative analysis of the encounters between vortex-
antivortex pairs and rarefaction pulses. In brief, our results can
be summarized as follows.

(i) If the vortex of a pair meets an antivortex of another
pair and vice versa, they tend to get exchanged resulting in
two new pairs with different propagation directions.

(ii) If the impact parameter of a collision is large enough
and the dark regions do not touch each other, there are elastic
flyby modes and the propagation direction of each wave is
altered because of the flow lines associated to the opposite
structure.

(iii) When a vortex or a rarefaction pulse touches a
vortex-antivortex pair, an excited dark blob is created. It
propagates for a while and eventually decays approaching the

stationary states. The end result is strongly dependent on initial
conditions.

(iv) Rarefaction pulses that collide head-on typically cross
each other, losing some energy by radiating sound waves. In
particular situations, the radiation can take most of the energy.
If the pulses collide at an angle, they can merge into a larger
rarefaction pulse or scatter quasielastically.

This list does not exhaust the possibilities but it certainly
provides a qualitative description for most of the collisions
between dark traveling waves. It is tempting to interpret the
traveling waves as quasiparticles and to try to understand
collisions in terms of their energy-momentum conservation,
Eq. (7). Implicitly, this has been our point of view when
using the words “elastic” and “inelastic”. Notice that p and
E as a whole are conserved in a collision. Nevertheless,
if we only take into account the dark traveling waves, the
conservation breaks down, as it obvious from Fig. 10. The main
reason is that sound waves take a sizable fraction of energy
and momentum in many processes. Moreover, as we have
already emphasized, the dark waves typically appear in excited
form and therefore the velocity-momentum and dispersion
relations that can be deduced from the stationary solutions only
apply approximately. Excited dark states have complicated
dynamics and cannot always be easily identified with their
stationary counterparts. Thus, the quasiparticle interpretation
is illustrative but it should be clear that it is just a qualitative
rough description.

Our results open some interesting possibilities. First of
all, it would be nice to realize the described phenomena
in optical setups along the lines of Refs. [21–23]. It would
also be desirable to study similar effects in two dimensions
for the cubic defocusing nonlinearity, since it is relevant
for Bose-Einstein experiments such as Ref. [38], see also
Ref. [58] and references therein. Moreover, it would be
worth considering the three-dimensional cubic-quintic case,
which supports flat-top stable spatiotemporal solitons [59,60]
and vortices [59,61]. Their collisional dynamics has been
analyzed in Refs. [62,63] but the dynamics of dark traveling
waves has not been described yet. Using the cubic defocusing
Schrödinger equation, interesting dynamical analysis of the
interplay of rarefaction pulses, vortex rings and vortex lines
in 1+3 dimensions have been presented in the context of
Bose-Einstein condensates [64–66] and superfluids [67]. It
would be desirable to make contact with these analyses in
the cubic-quintic case. Finally, we remark that our setup has
partial similarities with other physical systems as, e.g., the
scattering by impurities in superfluids as recently modeled
in Ref. [68]. It could be worth exploring analogies between
different frameworks.

ACKNOWLEDGMENTS
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