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The Gross-Pitaevski map is a discrete time, split-operator version of the Gross-Pitaevski dynamics in the circle,
for which exponential instability has been recently reported. Here it is studied as a classical dynamical system
in its own right. A systematic analysis of Lyapunov exponents exposes strongly chaotic behavior. Exponential
growth of energy is then shown to be a direct consequence of rotational invariance and for stationary solutions
the full spectrum of Lyapunov exponents is analytically computed. The present analysis includes the “resonant”
case, when the free rotation period is commensurate to 2π , and the map has countably many constants of the
motion. Except for lowest-order resonances, this case exhibits an integrable-chaotic transition.
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I. INTRODUCTION

A few nonlinear variants of the quantum kicked rotor
have been devised [1–4] in order to investigate the impact
of nonlinearity on the dynamical localization, which is the
prototypical feature of that model [5]. For some of them possi-
ble experimental realizations with Bose-Einstein condensates
have been surmised. The most recent [2,3] is described by
a family of nonlinear maps in the ∞-dimensional space of
functions ψ(θ ) on the 1− torus T:

Uα,τ,k(ψ) = Vα,k(R̂τψ), (1)

where R̂τ is the linear operator exp(i τ
2 d2/dθ2) and Vα,k is the

nonlinear operator:

Vα,τ (ψ)(θ ) = eiαψ(θ)∗ψ(θ)+ik cos(θ) ψ(θ ), (2)

where k, τ, and α are real parameters, with k � 0, τ � 0. The
linear quantum kicked rotor is described by U0,k,τ . Map (1) is
also obtained when a split-operator method [6] is used in its
simplest version to approximate the continuous-time Gross-
Pitaevski (GP) (or “cubic” nonlinear Schrödinger) dynamics
on the torus. For this reason it will be dubbed GP map in the
following. However, here it is studied as a dynamical system
in its own right and not as an accessory of the standard GP
equation. In particular, chaotic motion in the GP map is studied.
Motivation is provided by reports [2,3] of exponential growth
of energy (energy in state ψ is defined as E(ψ) = 1

2‖ψ ′‖2,
where ′ denotes θ derivative), and exponentially fast separation
of wave packets [3] when the period τ is incommensurate to
2π . In the present paper such issues are investigated in detail,
and the above results are completed and significantly extended.
The onset of chaos is studied by a systematic analysis of
Lyapunov exponents (LE), computed by numerically iterating
the tangent map to (1). As exponential instability is not
crucially related to the presence of a cosine potential, the suffix
k is henceforth removed and k = 0 is understood.

Exponential growth of energy is just a special case of this
Lyapunov analysis, because it is equivalent to exponentially
fast divergence of trajectories which initially differ by an
infinitesimal rotation. It is worth noting that early studies on
the “quantum suppression of classical chaos” have long ago
pointed out that quantum chaotic behavior—if any—should

display exponential energy growth [7]. In the present paper
the GP map is a classical dynamical system; a comment about
quantum chaos is deferred to Sec. VI.

The alleged exponential instability of ∞-dimensional dy-
namics poses a delicate task to numerical investigation, which
of necessity uses finite-dimensional approximations. Such
approximations define measure-preserving dynamical systems
on finite-dimensional phase spaces, for which—unlike the
∞-dimensional case—existence of Lyapunov exponents is an
exact result; it is these very LEs that are numerically computed,
finding evidence of chaotic transitions in the finite-dimensional
dynamics. Remarkably, they are observed to uniformly sta-
bilize when the basis size is large enough, supporting the
conjecture that they reflect properties of the ∞-dimensional
dynamics. A theoretical explanation is obtained, noting that,
for large dimensions, ergodicity and Levy’s lemma about the
concentration of measure [8] justify a mean-field approach to
the tangent dynamics. Doing so allows a transparent derivation
of a simple formula that describes the dependence of the
maximal Lyapunov exponent on the nonlinearity parameter
α. The finite dimension does not appear any more in this
formula, which coincides with one that was obtained in Ref. [3]
by means of a different argument and for the special case of
energy growth. For “stationary” orbits of the GP map the whole
Lyapunov spectrum is analytically computed in Sec. IV; it
turns out that, whenever the period τ is incommensurate to 2π ,
and for any nonvanishing nonlinearity, such orbits are linearly
unstable in infinitely many directions and linearly stable in
infinitely many ones. While individual LEs depend on the
specific value of τ , their distribution does not.

The sign of α, which plays a crucial role in the continuous-
time GP dynamics as it discriminates between attractive (α >

0) and repulsive (α < 0) interactions, is substantially irrelevant
for the aspects of the GP map which are discussed in the present
paper. One reason for this difference is that the map does
not conserve the total GP energy E(ψ) − 1

2α‖ψ2‖2. The main
general features of the observed exponential instability depend
on τ only through its commensurate or incommensurate (to
2π ) character. The hitherto unexplored commensurate case,
when τ = 4πP/Q, with P,Q mutually prime integers, is
studied in Sec. V. In that case, the GP map has infinitely many
independent constants of the motion and the ∞-dimensional
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phase space is fibered in Q-dimensional fibers. Over each such
fiber the GP map defines a (Lebesgue) measure-preserving dy-
namical system, with well-defined Lyapunov exponents. This
system appears to undergo an integrable-chaotic transition as
|α| is increased that is also mirrored in the global dynamics.

II. BASIC PROPERTIES

The following properties of the GP map are straightfor-
ward:

(i) Uα,τ is a continuous, invertible operator in the
Hilbert space L2(T). It also preserves the Hilbert norm:∫ 2π

0 |Uα,τ (ψ)(θ )|2dθ = ∫ 2π

0 |ψ(θ )|2dθ . Thanks to this prop-
erty, one may always resort to states normalized to unity by
rescaling α. Such normalization is assumed throughout the
following.Uα,τ is continuous, though not norm preserving, also
in the Hilbert space H1(T) of absolutely continuous functions
with a square-integrable derivative, with the “energy norm”:

‖ψ‖2
1 =

∫ 2π

0
dθ (|ψ(θ )|2 + |ψ ′(θ )|2);

(ii) Uα,τ preserves a symplectic form, see Eq. (5) below;
(iii) Uα,τ is rotation invariant: ∀η ∈ R, Uα,τ (T̂ηψ) =

T̂η Uα,τ (ψ), where T̂ηψ(θ ) = ψ(θ − η);
(iv) scaling symmetry : ∀γ ∈ C, Uα,τ (γψ) = γU|γ |2α,τ

(ψ);
(v) whenever τ is commensurate to 2π : τ = 4πP/Q, P,Q

integers, Uα,τ (eiQθψ) = eiQθUα,τ (ψ); and
(vi) analyticity is preserved: If f (z) is an analytic function

in 	R = {R−1 < |z| < R} and ψ(θ ) = f (eiθ ), then Uα,τ (ψ) is
analytically continued in 	R to

Uα,τ (f )(z) := eiαR̂τ f (z)(R̂τ f )∗(1/z∗)R̂τ f (z).

This in particular implies that the asymptotic rate of exponen-
tial decay of ψ̂ over the Fourier basis is unchanged under the
GP dynamics.

III. LYAPUNOV EXPONENTS

The tangent dynamics to the map (2) will be studied in the
real Hilbert spaces H, H1 of couples (ψ,ψ∗), with ψ ∈ L2(T)
or ψ ∈ H1, respectively. Formal differentiation with respect
to ψ , ψ∗ along a trajectory {ψt }t∈Z, ψt = U t

α,τ (ψ0), yields the
following “variation equation”:

δψt+1(θ ) = eiαψ̃t (θ)∗ψ̃t (θ)

× [δψ̃t (θ ) + 2iαψ̃t (θ )Re(ψ̃t (θ )∗δψ̃t (θ ))], (3)

where

ψ̃t (θ ) = R̂τψt (θ ), δψ̃t (θ ) = R̂τ δψt (θ ). (4)

Equation (3) defines linear operators Tψ in H, H1 such that
δψt+1 = Tψt

(δψt ) [where δψt now stands for (δψt ,δψ
∗
t ),

and similarly for ψt ]. They are not bounded in H except for
special choices of ψ . In H1 the operator Tψ is the Fréchet
differential of the map that is defined in H1 by (1). It preserves
the symplectic form:

σ (δψ,δφ) = Im〈δψ | δφ〉 = Im
∫ 2π

0
dθ δψ(θ )∗δφ(θ ), (5)
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FIG. 1. Growth with time t of the logarithm of energy (full lines),
of λt [Eq. (7)] (dotted lines, pluses), and of the normalized inverse
participation ratio [Eq. (10)] (dashed lines) for τ = 2π (

√
5 − 1) and

with ψ0 and δψ0 as specified in the text; α = 2.5 (lines), α = −2.5
(circles). Fourier basis size: 217 + 1 (red, light gray), 218 + 1 (blue,
dark gray).

or, in the Fourier basis,

σ (δψ,δφ) =
∑
n∈Z

Im(δ̂ψ(n)∗δ̂φ(n)). (6)

Exponential instability of a trajectory {ψt }t∈Z is related to
positivity of some Lyapunov exponent (LE) of the trajectory.
Here LEs are defined by:

� = lim sup
t→∞

1

t
λt , λt = log(‖δψt‖/‖δψ0‖). (7)

with δψt = Tψt−1 ◦ Tψt−2 ◦ . . . ◦ Tψ0 (δψ0).
No argument is given here why such � should be finite.

In principle, they depend on the chosen trajectory and on the
choice of an initial δψ0. All trajectories exhibit at least one
zero LE. For instance, if δψ0 = icψ0 with c real arbitrary,
then Eqn. (3) entails δψt = icψt at all times.

The rate of exponential growth of energy along a trajectory,
divided by 2, is itself a LE. This follows from:

ψ ′
t+1 = lim

η→0

T̂η − 1

η
Uα,τ (ψt )

= lim
η→0

Uα,τ (T̂ηψt ) − Uα,τ (ψt )

η
= Tψt

(ψ ′
t ), (8)

where ′ denotes the θ derivative. Hence:

1

t
log[E(ψt )] = 2

t
log(‖δψt‖) + O(1/t), δψ0 = ψ ′

0.

(9)

The present study of LEs is based on numerical solution of the
variation equation (3). Figure 1 shows the behavior in time of
the logarithm of energy and of λt as defined in (7). The initial
ψ0 is a coherent state centered at momentum 0 and θ = 0,
with h = 0.1; δψ0 is a randomly generated vector: ˆδψ0(n) =
rand(n)ψ̂0(n), with rand(n) independent, normally distributed
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random variables. Though most numerical results shown in
this paper were obtained with α > 0, no substantial difference
is observed with α < 0; see the data for α = −2.5 in Fig. 1.
Of course, numerical simulations do not address the true ∞-
dimensional dynamics, but the finite-dimensional dynamics
that are obtained on restricting Uα,τ to a finite-N - dimensional
Fourier subspace and on discretizing the circle in a grid of
N points. Such finite-dimensional dynamics implement finite
Fourier transforms and are defined by norm-preserving maps
in a hypersphere in CN , where they preserve the symplectic
form (5). They are therefore (Lebesgue) measure preserving
and define classical dynamical systems, for which existence
(almost everywhere) of LEs is an exact result. Energy in state ψ

is computed as 1/2
∑M

−M n2|ψ̂(n)|2, where N = 2M + 1. It is
initially almost constant (fluctuations are suppressed in the log-
arithmic scale), and then fast exponential growth ∝ exp(2�t)
is observed, quickly leading to saturation of the basis; energy
remains thereafter stationary. Instead the “local divergence
of trajectories,” as measured by λt , after a short logarithmic
increase (the duration of which depends on α) enters a steady
linear growth, yielding a positive LE �. Sampling different
choices of ψ0 suggests that � should be independent of ψ0

(with at least one notable exception: the Fourier basis functions
studied in Sec. IV, see below). The finite-N dynamics only en-
joys a discrete rotational invariance, so the argument in Eqs. (8)
and (9) breaks down, and energy no longer defines a LE proper.
When α >∼ 1.5 it was observed that � ≈ � (half the transient
rate of exponential growth of energy), as in Eq. (9), and not so at
smaller α; however, e.g., α = 0.4, � ≈ 0.1, and � ≈ 0.007 are
read in the exponential range. It must be noted, however, that
exponential instability is observed later the smaller α is, and
its reliable detection eventually falls beyond the computational
capabilities of the present work. At smaller times, λt increases
logarithmically, as trajectories separate linearly in time.1

For large basis size N the numerically computed � appear
to stabilize, independently of which increasing sequence of N

values is used; e.g., using the denominators of the principal
convergents to τ/(2π ) no significant difference is observed.
That notwithstanding, identifying them with LE exponents
of the ∞-dimensional dynamics implies interchanging the
N → ∞ and the t → ∞ limits, so, on strictly logical grounds,
caution is needed. However, with the GP map, λt/t reaches its
limit value well before saturation is attained; moreover, it is the
whole λt vs. t curves, and not only their slopes, that appear to
stabilize at large N . This may be an empirical indication that,
at least for the very smooth ψ , δψ which were used, at large
N the numerical finite-N LEs do indeed mirror properties of
the ∞-dimensional dynamics.

A measure for the filling of the basis is provided by the
normalized inverse participation ratio (IPR):

I(ψ) =
(

N

N∑
n=1

|ψ̂(n)|4
)−1

. (10)

1The small-α region is the relevant region for the split-operator
approximation of the continuous time GP dynamics. This suggests
that the validity of that approximation may not be crucially affected
by the chaotic behavior of the GP map.

The maximum value of I(ψ) is 1 and is attained when
|ψ̂(n)| = 1/

√
N , ∀n; and the average ofI(ψ) over the uniform,

normalized measure on the unit sphere inCN is asymptotically
equal to 0.5 in the limit N → +∞ [9]. Its dependence on t

is also shown in Fig. 1. Like energy, this quantity saturates
and remains thereafter quite close (within 0.06%) to the
“microcanonical” average 0.5. The microcanonical average
of energy is M(M + 1)/6, which, for M = 217, is consistent
with the value 0.5 log(E) ≈ 10.8 that is observed at saturation
in Fig. 1.

The approximate constancy in time (after saturation) of IPR
suggests ergodicity, because it would then be explained by
the concentration of measure (Levy’s lemma) [8], according
to which IPR is close to its mean value2 in a subset of the
sphere, whose measure is exponentially close to 1 for large
N . Ergodicity (approximate, at least) is also supported by
the observed independence of � on the choice of an initial
state (not so with �, which is sensitive to the filling of the
basis by the chosen state). If ergodicity of the N dynamics
is assumed, the following (nonexact) argument yields a good
estimate for � at large N . The state vector is now an N vector
with components ψN,t (n) = ψt (2πn/N ), (1 � n � N ), and
lies on a hypersphere of radius RN in CN , where

R2
N = ‖ψN,t‖2

=
N∑

n=1

|ψN,t (n)|2 ∼ N

2π

∫ 2π

0
dθ |ψt (θ )|2

= N

2π
for N → ∞. (11)

The tangent dynamics is still described by Eqn. (3), where
δψN,t is now an N vector. A simple calculation yields:

|δψN,t+1(n)|2 = (1 + 2α2|ψN,t (n)|4) |δψN,t (n)|2
+ 2Im[(1 + iαψN,t (n)2 δψN,t (n)2]. (12)

For large N , ergodicity and Levy’s lemma suggest replacing
the ψt -dependent quantities in (12) by their uniform averages
〈.〉RN

over the hypersphere. This yields

|δψN,t+1(n)|2 = |δψN,t (n)|2{1 + 2α2〈|ψN,t (n)|4〉RN

+ 4α〈|ψN,t (n)|2〉RN
sin[2φt (n)]}, (13)

where φt (n) is the phase of δψN,t (n). In long-time iterates
of (13), with rapid growth of δψN,t the dominant contribution
can be assumed to come from the phase-independent term.
Using that 〈|ψN,t (n)|4〉RN

= 2R4
N/N (N + 1) ∼ 2R4

N/N2, and
summing over n:

‖δψN,t+1‖2 ∼ ‖δψN,t‖2
(
1 + 4α2R4

N/N2
)
.

Finally, for large N (11) yields

� ≈ 1
2 log(1 + α2/π2). (14)

Remarkably, N has dropped out of this asymptotic formula.
The same formula was obtained in Ref. [3] for the rate of

2Levy’s lemma is applicable because the (non-normalized) IPR is
a Lipschitz function on the hypersphere, with a Lipschitz constant
independent of N .
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FIG. 2. Circles: numerically computed finite-time Lyapunov ex-
ponent λt/t for t = 200 vs. α, basis size 217 + 1, τ = 2π (

√
5 − 1).

Full line: Eq. (14).

exponential growth of the square root of energy, by means
of a diffusion-based argument, and is in overall excellent
agreement with numerical data shown in Fig. 2. Some
agreement with numerical data for � (but not with data for
�) persists for small values of α, when computations require
much longer times than t = 300. In the case when α = 0.4,
� ≈ 0.07 was observed, whereas (14) yields � = 0.08.

The possible survival of stable regions at small α is beyond
the scope of this paper. As shown in the next section, for finite
N certain stationary orbits are linearly stable for α smaller than
a threshold value, which, however, decreases to 0 in the limit
N → ∞ and is already quite small for the cases considered
here.

IV. STATIONARY ORBITS

The Fourier basis functions un(θ ) = (2π )−1/2 exp(inθ )
(n ∈ Z) satisfy

Uα,τ (un) = ei(ᾱ−Wn) un,

where ᾱ = α/(2π ) and Wn = n2τ/2. They are therefore sta-
tionary states. If ᾱ = Wn + 2kπ for some n,k ∈ Z, then they
are also fixed points of the map on the unit sphere of L2(T).
Such values of ᾱ are dense inRwhenever τ is incommensurate
to π . For ψ0 = ur the variation equation (3) takes a very simple
form. Substituting δψt = exp(i(ᾱ − Wr )t)ξt ,

ξt+1 = (1 + iᾱ) eiWr R̂τ ξt + 2πiᾱe−iWr u2
r (R̂τ ξt )

∗. (15)

Expanding ξt over the Fourier basis ξt = ∑
n∈Z ct (n)un, and

using that 2πun u2
r = u2r+n,

ct+1(n) = ei(Wr−Wn)t (1 + iᾱ) ct (n)

+ iᾱ e−i(Wr−W2r−n)ct (2r − n)∗. (16)

Hence the subspace �nr spanned by un,u2r−n is invariant under
the tangent dynamics. Denoting dt (n) := ct (2r − n)∗, for n �=
r the dynamics in �nr are described by∣∣∣∣ct+1(n)

dt+1(n)

∣∣∣∣ =
∣∣∣∣(1 + iᾱ) ei(Wr−Wn) iᾱ e−i(Wr−W2r−n)

−iᾱ ei(Wr−Wn) (1 − iᾱ) e−i(Wr−W2r−n)

∣∣∣∣
×

∣∣∣∣ct (n)
dt (n)

∣∣∣∣, (17)

while for �rr :

ct+1(r) = ct (r) + 2iᾱ Re[ct (r)]. (18)

The matrix in Eq. (17) is t independent. Denoting
L1,2 its eigenvalues one finds that x1,2 := exp[i(−W2r−n +
Wn)/2]L1,2 solve the equation:

x2 − 2[cos(Wr−n) + ᾱ sin(Wr−n)]x + 1 = 0. (19)

For m ∈ Z \ {0}, denote α±
m as the least and the largest of

the numbers tan(Wm/2) and − cot(Wm/2) if both numbers
are finite; otherwise, define α±

m = ±∞. Then whenever α /∈
Brn := [α−

m,α+
m], Eqn. (19) has real roots, one of which is

larger than 1 in absolute value, so it yields a positive Lyapunov
exponent �rn, associated to a direction in the subspace �nr :

�rn = log
(
gr−n +

√
g2

r−n − 1
)
,

gl = | cos(Wl) + ᾱ sin(Wl)|. (20)

Instead, Eqn. (18), rewritten as a map in R2, has the single
eigenvalue 1 with algebraic multiplicity 2. It is thus marginally
stable, with |ct (r)| ∼ 2ᾱt generically.

If τ is incommensurate to π , then the points exp(i(Wl)),
(l ∈ Z) are dense and uniformly distributed in the unit circle,
so inf{α+

m,m �= 0} = 0 = sup{α−
m,m �= 0}; hence, ∀α �= 0, and

∀r ∈ Z, condition α /∈ Brn is satisfied for infinitely many
values of n. For fixed r and α �= 0, the relative frequency
of such n is 2π−1 arctan(ᾱ), independently of the sign of
α.3 Therefore, in the incommensurate case, and ∀α �= 0, each
stationary state ur is hyperbolic in infinitely many subspaces
�rn and elliptic in infinitely many of them. It is easy to compute
that

sup
n>0

{�rn} = log(|ᾱ| +
√

1 + ᾱ2). (21)

Figure 3 shows a histogram of the positive LE for r = 0 and
α = 4. They cluster near the supremum (21), in this case equal
to 0.6. The supremum (21) is always larger than the “ergodic”
� estimated by Eq. (14), to which it is aymptotically equivalent
in the limit α → +∞.

In the commensurate case, when τ = 4πP/Q with P,Q

mutually prime integers, the eigenvalues eiEn take a finite
number Q of values. The same is then true of α±

m ; moreover,
if Q is a prime number, then α±

m do not vanish for m �= 0,
so they are bounded away from 0 and infinity. Therefore, for
τ = 4πP/Q, Q prime, and P prime to Q, there are finite
values ᾱ± with ᾱ− < 0 < ᾱ+ such that, in all subspaces
�nr with n �= r , all stationary orbits are linearly stable if
ᾱ− < ᾱ < ᾱ+ and linearly unstable otherwise.

3This marks a sharp difference with the continuous-time GP
equation in a ring [10]. The un are stationary states in that case,
too; however, none of them is unstable as long as the GP coupling
constant g is positive. This also follows from the present analysis,
because the GP equation is retrieved from products of GP maps
in the Lie-Trotter limit: α → 0, τ → 0, α = −gτ . In the (α,Wr−n)
plane this limit corresponds to approaching the origin along the line
α = −gWr−n/(π (r − n)2), which, for g > 0 and small τ is entirely
inside the stable region defined by condition α ∈ Brn. For g < 0 it lies
in the unstable region, provided that |g| > π (r − n)2/2, consistently
with results in Ref. [10].
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FIG. 3. Hystogram of positive Lyapunov exponents � for the
stationary state u0 and 1 � n � 214; α = 4, τ = 2π (

√
5 − 1).

V. “RESONANT” CASE

Although Golden Ratio incommensuration of τ to 2π was
used in all hitherto shown numerical results, their general
features and the values of the maximal LEs appear to be
essentially unchanged with less extreme incommensuration
[e.g., with trascendental τ/(2π ) = π ]. However, the case
when the period τ is commensurate to 2π : τ = 4πP/Q,
with P,Q mutually prime integers, has significant differences.
It corresponds to the resonances of the quantum kicked
rotor [5,11], and the special cases τ = 4π and τ = 2π are
explicitly solvable for the QKR and for the GP map as well.
In the latter cases the solutions are as follows:

ψ
(4π)
t (θ ) = eiαt |ψ0(θ)|2ψ0(θ ),

ψ
(2π)
2t (θ ) = eiα(t |ψ0(θ+π)|2+t |ψ(θ)|2)ψ0(θ ). (22)

The tangent dynamics for the fundamental resonance τ = 4π

is solved by

δψt (θ ) = eiαt |ψ0(θ)|2 [δψ0(θ ) + 2iα t ψ0 Re(ψ0(θ )∗δψ0(θ )]

(23)

so ‖δψt‖ increases at most linearly with t , and all LE vanish.
The solution for τ = 2π has a slightly more complicated
form, but the conclusion is the same. If Q is an arbitrary
integer, then every ψ ∈ L2([0,2π/Q]) can be rewritten as
the vector-valued function �ψθ that, for θ ∈ [0,2π/Q], has
components �ψθ (j ) = ψ(θ + 2π (j − 1)/Q), (j = 1, . . . ,Q);
this vector will be termed the fiber of ψ at the point θ . Then

‖ψ‖2 =
∫

(0,2π/Q)
dθ ‖ �ψθ‖2, (24)

where the norm under the integral sign is theCQ one. Therefore
L2(T) can be identified with the Hilbert space L2([0,2π/Q]) ⊗
CQ. If τ = 4πP/Q, then Uα,τ “acts fiberwise,” that is:

Uα,τ = I ⊗ Uα, (25)

where I is identity and Uα is a nonlinear map in CQ such that,
for � ∈ CQ,

Uα(�)(j ) = eiαĜ�(j )∗Ĝ�(j ) Ĝ�(j ), 1 � j,k � Q. (26)
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FIG. 4. Same as Fig. 1, for τ = 3π/2, α = 2.5, and basis sizes
48 (blue, dark gray), 49 (red, light gray).

where the linear unitary operator Ĝ is described by the matrix:

G(j,k) = 1

Q

Q−1∑
s=0

e2πis(j−k)/Q as+1,

ar = e−iWr = e−2iπP (r−1)2/Q, 1 � r � Q. (27)

Therefore, in the commensurate case the GP map has infinitely
many conserved quantities, namely ‖ �ψθ‖, 0 � θ � 2π/Q

or, equivalently, the countably many quantities In(ψ) =
(ψ, exp(inQθ )ψ), (n ∈ Z). The fiber map (26) does not
depend on θ0. However, it preserves the CQ norm and so it
is conveniently studied by restricting to the unit sphere in CQ.
In the following, Uα denotes the restriction of (26) to the unit
CQ sphere, so Eq. (25) is rewritten as follows:

−−−−→Uα,τ (ψ)θ = ‖ �ψθ‖ Ūα(θ)( �ψθ/‖ �ψθ‖), (28)

where

α(θ ) = α ‖ �ψθ‖2. (29)

The map Ūα will be termed “fiber map” in the following. It is
symplectic and defines a classical dynamical system in the unit
sphere in CQ. Existence of LEs is then granted. The variation
equation around a reference orbit {Ū t

α(�0)} is obtained from

Eq. (3) on replacing ψ(θ ),δψ(θ ) by �ψ(j ),
−→
δψ(j ), and R̂ by the

matrix G. Turning to numerics: Figure 4 was constructed like
Fig. 1, except that now τ = 3π/2, and it looks qualitatively
similar. The main difference is that the onset of exponential
growth, both for λt and for energy, occurs significantly later
and is preceded by a relatively long linear growth, and
the increase of IPR is much slower. Figure 5 shows the
dependence of the finite-time LE λt/t at t = 300 vs. α.
While in the incommensurate case (Fig. 2) this dependence
follows the theoretical law (14), it strongly deviates for
low-Q resonances. Such differences are due to the presence
of the above-mentioned constants of motion In(ψ). These in
particular imply that the finite-dimensional reduced dynamics
is not ergodic; this invalidates the underlying argument of
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FIG. 5. Finite-time Lyapunov exponent λt/t vs. α for t = 300.
Full line, Eq. (14); magenta circles, τ = 8π/3, basis size 39; blue
circles, τ = 14π/11, basis size 115.

formula (14) and suggests that the observed LEs should not be
independent of the choice of a trajectory. From Eqs. (24), (28),
and (29) it is seen that stability of the global L2(T) dynamics is
fully governed by the stability of the fiber maps; in particular,
for smooth initial ψ0, the maximal LE is expected to coincide
with that of the fiber map Uα0 , where α0 = max{α(θ ),0 � θ �
2π/Q}.

Numerical data suggest an integrable-to-chaotic transition
of the fiber map on increasing α. The statistical dispersion
over the unit sphere of the time-average T −1 ∑T

1 I(Uα
t
�0) at

large fixed T (as a function of �0) is seen to sharply decrease
on increasing α, indicating that ensemble averages and time
averages of the function I(�) tend to coincide. Along with
the small dispersion of LEs of randomly chosen trajectories
(for α = 4, t = 300, τ = 8π/3 the standard deviation of
λt over an ensemble of 500 randomly generated orbits is
less that 2%), this provides empirical support for at least
approximate ergodicity. If so, then stronger ergodic properties
may be conjectured, on account of the positivity of LEs.
Note that ergodicity of fiber dynamics does not contradict
the constants In(ψ), because these are constant on fibers. LEs
of the finite-dimensional fiber map can be expected to follow
formula (14), provided Q is sufficiently large, and α, too, is
sufficiently large. Indeed, Fig. 6 suggests that LE may vanish at
small α. The fiber dynamics has Q stationary states, for which
the analysis in Sec. IV still applies, provided all integer indices
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FIG. 6. The small-α region of Fig. 5, τ = 8π/3, t = 800.

n,r are taken mod(Q). At small Q, the threshold value αcr ,
below which such stationary trajectories are linearly stable, is
not any more negligible (see remarks in the end of Sec. IV)
as it was in the incommensurate case, and this fact may be
responsible for stable islands for small α, both in the fiber and
in the global dynamics.

VI. CONCLUDING REMARKS

In this paper the GP map was studied as a classical
dynamical system. However, the GP equation, of which it is a
by-product, is a quantum construct that was devised to model
the effect of interactions in dilute Bose-Einstein condensates.
The question may then be asked whether chaoticity of the GP
map may be taken as an instance of genuine chaotic behavior
in quantum mechanics. However, nonlinear deterministic
Schrödinger equations are not expected to preserve, on a
fundamental level, the basic distinctive features of quantum
mechanics [12], and dynamical chaos is indeed a fundamental
issue. Nevertheless the GP equation is an efficient mean-field
approximation for a many-body quantum dynamics, and it
would be very interesting to know whether and in which form
the exponential instability of the GP map may be mirrored in
an exact many-body dynamics.
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