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Chimeras, namely coexisting desynchronous and synchronized dynamics, are formed in an ensemble of
identically coupled identical chaotic oscillators when the coupling induces multiple stable attractors, and further
when the basins of the different attractors are intertwined in a complex manner. When there is coupling-induced
multistability, an ensemble of identical chaotic oscillators—with global coupling, or also under the influence of
common noise or an external drive (chaotic, periodic, or quasiperiodic)—inevitably exhibits chimeric behavior.
Induced multistability in the system leads to the formation of distinct subpopulations, one or more of which support
synchronized dynamics, while in others the motion is asynchronous or incoherent. We study the mechanism for
the emergence of such chimeric states, and we discuss the generality of our results.
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I. INTRODUCTION

Chimeras [1,2] are among the more interesting collective
states in extended dynamical systems, consisting of coexisting
synchronized and desynchronized subpopulations within an
ensemble of coupled identical oscillators. Apart from their
application to a variety of physical [3,4] and biological [5,6]
situations, the robustness of such complexity has attracted
considerable recent interest. Earlier studies have suggested
that in order to observe chimera states, some degree of
nonuniformity is essential [7], and this nonuniformity can arise
due to heterogeneities in the coupling [1,8–10], in the topology
[11,12], parameters [13–15], or by allowing for amplitude
variation [16]. It has also been seen that time-delay coupling
can cause nonuniformity, although it is possible that chimera
states reported in several theoretical studies are long transients
[17,18].

For such a collective state to occur, it is clear that a necessary
(but not sufficient) condition is that the dynamics in the coupled
system show multistability [9,19]. The nature of the asymptotic
states is of importance—a chimera consists of both coherent
and incoherent dynamics, and thus it is important that some
of the multistable attractors should lie in the synchronization
manifold [20]. An additional requirement is that the symmetry-
breaking that leads to different asymptotic states be robust. The
dynamics should therefore show final-state sensitivity [21],
with the basins of the different attractors being intertwined
in a complex manner. A consequence of a complicated basin
structure is that in such situations, arbitrary initial conditions
will lead to a chimeric state.

In the present work, we build upon the above themes and
describe the occurrence of chimeric dynamics in an ensemble
of identical chaotic oscillators that are identically coupled
without time delay. Multistability is induced in the system
through the coupling, and furthermore, the basins of the
different coexisting chaotic attractors have a complex structure
that ensures the existence of robust chimeras for arbitrary
initial conditions. Moreover, if the evolution equations of the
system are equivariant, the system can exhibit richer dynamics,
e.g., symmetric attractors with in- or out-of-phase dynamics
may coexist.

Although the phase space of the system is of dimension
3N (where N is the number of oscillators in the ensemble),
it is useful to utilize a “single-oscillator” description since
the projections of the global attractor onto subspaces spanned
by each of the individual oscillators remain close to (or very
similar to) the attractors in an isolated oscillator. The chimera
states—in particular the coherent or incoherent dynamics—are
thus with reference to this single-oscillator picture.

The general principles enunciated above can be illustrated
in an ensemble of globally coupled Lorenz oscillators [22],
although, as will be evident, the results apply quite generally.
The mechanism is robust and leads to chimeras in any
system wherein stable fixed point(s) and chaotic attractor(s)
coexist; this is fairly common, particularly when the systems
have symmetries. The emergence of the chimeric state is a
consequence of multistability that is induced in the system
via the direct or indirect interaction of the components.
This interaction effectively changes the parameters of the
system, leading to multistable dynamics and, therefore, to the
creation of the chimeras. Furthermore, the global coupling is
unnecessary: it is possible to obtain chimeric states under the
influence of a common external modulation [23,24], or with
common external noise.

The emergence of chimeras in the system of globally
coupled chaotic oscillators is discussed in the next section.
The dynamics and existence of chimeric behavior when
an ensemble of uncoupled chaotic oscillators is subjected
to an external influence are described in Sec. II A. The
mechanism of induced multistability and the emergence of
chimeras are discussed in Sec. II B. The results obtained for
Lorenz oscillators can be generalized in a straightforward
manner, and this is illustrated for coupled triple-scroll Chua
oscillators in Sec. III. Finally, we summarize the results and
discuss the generality and applicability of the findings in
Sec. IV.

II. GLOBALLY COUPLED OSCILLATORS

Consider an ensemble of N globally coupled identical
Lorenz oscillators with linear diffusive coupling. The dynam-
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ical equations are

ẋi = σ (yi − xi),

ẏi = rxi − yi − xizi, (1)

żi = xiyi − βzi + K

(N − 1)

∑
j �=i

(zj − zi),

where i,j = 1, . . . ,N label the oscillators and K is the strength
of mutual coupling. The Lorenz system is equivariant: the flow
is invariant under the transformation (x,y,z) → (−x, − y,z),
and this symmetry is evident in the dynamics.

We take the parameters at the standard values, σ =
10,β = 8/3. As is well known [25,26], below the subcrit-
ical Hopf bifurcation, for r ∈ [24.06,24.74] there are three
coexisting attractors: two symmetric fixed points given by
( ± √

β(r − 1), ± √
β(r − 1),(r − 1)) along with a strange

chaotic attractor.
Consider a value of r that is above the Hopf bifurcation.

The fixed points are unstable, and thus in each isolated Lorenz
system (namely for K = 0) the dynamics is on a chaotic
attractor. On coupling, though, the network of globally coupled
oscillators has multiple attractors with different dynamics
coexisting in the system: the collective dynamics of Eq. (1)
is a chimera, as can be seen in Fig. 1(a) for K = 0.07 for
r = 24.8.

This chimera consists of three distinct subpopulations
corresponding to the three attractors of the Lorenz system
below the Hopf bifurcation. We term these B0, B−, and B+. In
the latter two groups the oscillators are synchronized, while the
oscillators in the first group are desynchronized. The chimera
in Fig. 1(a), for an ensemble of 100 oscillators, has about 40
oscillators in B− and B+ and the remaining oscillators are in
the desynchronized group, B0. The B+ and B− groups can have
either in-phase or antiphase synchrony between them. This is
shown in Fig. 1(b) where the time courses of the x-variable
of two randomly selected oscillators from each group, B−,
B+, and B0, are plotted. It should be noted that the type of
chimera observed here is different from the chimera states
observed in the case of spatially distributed nonlocally coupled
oscillators where the synchronized oscillators are localized
and are adjacent to each other [1,2,10]. In our case, the spatial
coordinates are not important, and depending upon the initial
condition an oscillator can go to any of the available attractors,
hence several chimera configurations are possible. For clarity
of presentation while plotting Fig. 1(a), the oscillator indices
are renumbered in such a way that oscillators going to the same
attractor are grouped together.

To describe the attractors in various groups, it is convenient
to examine the projection of the dynamics onto the (xi,yi)
planes. For B0, the motion of each oscillator is on a chaotic
attractor of the Lorenz type [22,26]. The attractors in B±
are also chaotic, but these are stable in the sense that the
conditional Lyapunov exponent is negative, and thus the
motions of all oscillators in these sets are coherent and
synchronized.

An examination of the morphology of the attractors in B±
suggests that they are formed via the chaotic modulation of the
fixed points C± [25]. The individual oscillators in the ensemble
can be considered to be under the influence of a chaotic mean
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FIG. 1. A chimera for an ensemble of globally coupled Lorenz
oscillators [Eq. (1)]: (a) the time evolution of the x-variable of N =
100 oscillators at parameters r = 24.8, σ = 10, β = 8/3, and K =
0.07 starting from random initial conditions x0,y0,z0 ∈ [−100,100],
and (b) time series of the x-variable, xi,j (t), of two arbitrarily chosen
oscillators i and j (solid line and symbol, respectively) from each
group B− (upper panel), B+ (middle panel), and B0 (lower panel) are
plotted.

field given by

f̄m(t) = 1

(N − 1)

N∑
j

zj (t), (2)

and thus one can consider the effectively driven system [cf.
Eq. (1)]

żi = xiyi − (β + K)zi + Kf̄m(t), (3)

where the time dependence of the mean field is explicitly
indicated. Note that this driving preserves the symmetry of the
individual Lorenz systems since it affects the z variables. In
the above equation, we observe that parameter β is effectively
modified to a value β + K . An additional change in the value
of β appears due to the similarity between the mean field
f̄m(t) and the signal of an isolated unit zi . To understand this
correction intuitively, we write the mean-field term as f̄m(t) =
c1zi(t) + c0(t). Here, c1 depends upon the similarity between
the mean field and zi (which grows with K), whereas c0(t) can
be considered as time-dependent fluctuations. Hence Eq. (3)
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can be written as

żi = xiyi − β̄zi + Kc0(t), (4)

where β̄ = β + K − c1K . For mutually coupled system, the
correlation between the oscillators grows with the coupling,
and synchronization is established in the system above a
critical value of K > Ksync, where all xi,yi,zi, i = 1, . . . ,N ,
are equal.

Consider the fully synchronized system (K > Ksync) for
example, where f̄m(t) = zi(t), i.e., c1 = 1,c0 = 0 ⇒ β̄ = β.
This indicates that synchronized motion takes place in a
space where the dynamics is similar to the chaotic Lorenz
attractor with unaffected parameter values. For K < Ksync,
the effective modification in the parameter in the mutually
coupled system is given by β̄ = β + K − c1K . However, for
the case of externally modulated systems, where there is no
similarity between the drive and response signals—ensemble
of oscillators under the influence of a common noise, for
example—the values c1 = 0, c0 = f (t). This implies that the
effective parameter is given by β̄ = β + ε; we discuss this
case in detail in the following section.

An important effect of the mean-field coupling is that
the basins of attraction of the coexisting attractors become
complex. Although this is not easily demonstrated for the
ensemble of coupled Lorenz oscillators due to the high
dimensionality, a study of two coupled Lorenz oscillators gives
some indication. For the case of r = 28, Camargo, Viana, and
Anteneodo [27] showed that there were two attractors (in-
and out-of-phase) with intermingled basins of attraction that
were riddled for sufficiently large coupling. A more detailed
analysis of two coupled Lorenz attractors with r near the Hopf
boundary [28] shows that there are several chaotic attractors
with complicated basins. It is plausible, therefore, that the
basins of the various attractors in the ensemble are strongly
mixed, and the basic mechanism for the emergence of chimeric
states traces its origin to this feature of the coupled system.

Viewing the coupled system as a set of uncoupled oscillators
subject to a common mean-field drive has some parallels with
the phenomenon of generalized synchronization [16,29,30].
It is more convenient, therefore, to discuss the emergence of
chimeras in an ensemble of forced oscillators, and we turn to
this case next.

A. External modulation

Consider an ensemble of N Lorenz oscillators driven
diffusively by an external signal f (t) that couples to the
variables zj as follows:

żi = xiyi − βzi + ε[f (t) − zi], i = 1, . . . N, (5)

where ε is the coupling strength (the equations for ẋi and ẏi

are unaffected).
For a chaotic Lorenz system, the mean field, being the

superposition of a large number of chaotic signals, is very
noisy. When the external signal f (t) is Gaussian white noise,
the asymptotic state of the above system is also chimeric, with
the ensemble splitting into three clusters, two of which are
synchronized and with one asynchronous cluster, very similar
to the case discussed earlier in Sec. II. Results are shown
in Fig. 2(a) for r = 28, with N = 100 oscillators; about 41
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FIG. 2. (a) The time evolution of x-variables of N = 100 os-
cillators driven by common Gaussian noise with coupling strength
ε = 0.75 and for r = 28 [Eq. (5)] starting from random initial
conditions x0,y0,z0 ∈ [−100,100]. The marked blocks B−, B+, and
B0 represent the synchronized groups of attractors A−, A+, and
desynchronized attractors A0 of Fig. 3, respectively. (b) Time series
of the x-variable, xi,j (t), of two arbitrarily chosen oscillators i and
j (solid line and symbol, respectively) from each group B− (upper
panel), B+ (middle panel), and B0 (lower panel) are plotted.

oscillators form a synchronized group (blocks B− and B+),
and the remaining oscillators are desynchronized (block B0).
Further, the dynamics of the oscillators in B− and B+ are
antiphase to each other, as can be seen in the time-series plots in
the upper and middle panels of Fig. 2(b). The oscillators from
synchronized blocks B− and B+ correspond to the attractors
A− and A+, respectively, shown in Fig. 3. The desynchronized
oscillators in block B0 are on attractors similar to that of the
uncoupled system, namely A0. The expanded views of A− and
A+ for a noisy drive are shown in the insets in the top left and
right panels, respectively.

As may be anticipated, other external drives coupled
diffusively will also give very similar asymptotic states, with
two coherent clusters and one incoherent one. The basic
difference that occurs when the drive is changed is that the
dynamics on the attractors (A− and A+) that form the coherent
clusters changes: A chaotic drive gives rise to chaotic attractors
(C), a quasiperiodic drive results in quasiperiodic attractors
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FIG. 3. The trajectories of out-of-phase synchronized attractors,
A− and A+, and desynchronized attractors, A0. The left and right
panels of the insets show the expanded view of A− and A+,
respectively. Symbols N , C, QP , and P represent the attractors
resulting from the noisy, chaotic, quasiperiodic, and periodic drives,
respectively. The chaotic and periodic signals, f (t), are taken
from chaotic Rössler oscillator (a = b = 0.2 and c = 5.7) [31] or
the periodic (a = b = 0.2 and c = 2) regimes, respectively. For
a quasiperiodic drive, we take f (t) = cos(a1t) + cos(a2t), where
a1 = 1 and a2 = 0.5(1 + √

5). The driving strength ε = 0.75 for all
cases.

(QP ), and a periodic drive gives rise to periodic attractors
(P ). These are shown in the left and right panels of the insets
in Fig. 3, while the structure of the desynchronized attractor
A0 does not change under any of the different drives. The
attractors observed in the case of a chaotic drive are similar
to the one observed in earlier works [24] when the drive is a
chaotic signal from a Rössler oscillator.

The structure of the chimeras observed when an ensemble of
identical chaotic oscillators is subjected to chaotic, quasiperi-
odic, and periodic external drives is shown in Fig. 4. Note that
unlike the case of globally coupled oscillators, the parameter
values of the individual Lorenz oscillators can be quite far from
the Hopf boundary, and the coupling can still drive the system
into a chimera state by effectively creating multistability in
the dynamics of each oscillator. The mechanism is explored
below.

B. Coupling-induced multistability

For simplicity, we first discuss the effect of external driving
on a single Lorenz oscillator [cf. Eq. (5)], for which the
dynamical equations can be rewritten as

ẋ = σ (y − x),

ẏ = rx − y − xz, (6)

ż = xy − β̄z + εf (t),

where β̄ = (β + ε). The system given in Eq. (6) can be
interpreted as a modified Lorenz oscillator (L′) with parameter
β̄ that is driven by an external signal εf (t). Recall that
the unforced Lorenz system (ε = 0) has two symmetric
fixed points that coexist with the strange attractor A0 for
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FIG. 4. Plots similar to Fig. 1 showing the existence of chimeras
for N = 100 oscillators driven by (a) a chaotic signal [31] of
strength ε = 0.65, (b) a quasiperiodic signal of strength ε = 0.66,
and (c) a periodic signal of strength ε = 0.66. The oscillators in
the two synchronized groups (B− and B+) settle onto attractors A−
and A+, respectively, whereas the dynamics of oscillators in the
desynchronized group (B0) lie on the strange attractor, A0 (see Fig. 3).

appropriate values of σ , r , and β. By varying ε, the system
(L′) is driven into a regime where the fixed points C∗

± ≡
(±

√
β̄(r − 1), ±

√
β̄(r − 1),(r − 1)) are stable, and they co-
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FIG. 5. (a) Bifurcation-type diagram and (b) the largest Lyapunov
exponent with parameter β̄ of a modified Lorenz system L′. (c) The
order parameter γ is plotted with the coupling strength ε for Eq. (5)
for 10 initial conditions. For different initial conditions, the three
branches in (c) correspond to the oscillator going to three different
attractors A0, A−, and A+ of Fig. 3. The correspondence between the
stabilization of the fixed points C∗

± of a modified Lorenz system L′

[(a) and (b)] and the appearance of the attractors A± in system (5)
[(c)] can be observed. Multistability exists in the parameter region
marked with the arrows.

exist alongside the chaotic attractor A0. Of course since
the system is driven, the fixed points are transformed into
attractors so that one observes two synchronous attractors A±:
the common external drive εf (t) does not affect the intrinsic
stability of the fixed points.

As can be seen in Fig. 5, there is a direct correspondence
between the appearance of the fixed points C∗

± in L′ [Eq. (6)
with f (t) = 0] as a function of β̄ and that of the attractors A±
in the ensemble Eq. (6) as a function of driving strength ε. In
Fig. 5(a) the bifurcation diagram is plotted, and in Fig. 5(b)
we plot the largest Lyapunov exponent of the modified system
(L′) as a function of β̄. These diagrams clearly show that two
stable fixed points C∗

± coexist along with the chaotic attractor
A0 for sufficiently large β̄.

The quantity γ = (xmax + xmin/2) for each of the attractors,
and it is plotted in Fig. 5(c) (estimated for 100 initial conditions
at each ε value) as a function of coupling strength ε for
f (t) taken to be Gaussian noise. The different values of
γ indicate the attractors A−, A+ [γ ≈

√
β̄(r − 1)], or A0

(γ ≈ 0) onto which the dynamics asymptotically settles for
a given initial condition. As can be seen in Fig. 5, there
is a parameter range (shown by the arrows) for which γ

can take all three types of values, and this is the range of
ε for which chimeras can be observed. For an ensemble of
oscillators, we note that whenever the oscillators settle into

the smaller attractors A±, their motions are synchronized due
to the common influence, while trajectories asymptoting to the
attractor A0 are incoherent.

Similar behavior is observed for other r and for other
forms of f (t), and this is the basic mechanism through
which a common external influence brings each system into a
multistable regime, and it induces chimeras in the ensemble. In
the region where the attractors A± and A0 coexist, the system
may settle into any of the attractors according to their basin
of attraction. In this way, a common external signal coupled
diffusely can induce multistable behavior in an ensemble of
identical oscillators. Then it is inevitable that the oscillators
in such an ensemble starting from different initial conditions
settle into different attractors, resulting in the identical groups
splitting into desynchronized and synchronized clusters and
exhibiting chimeric behavior [32]. However, from numerical
analysis we note that, at r = 28, this multistability is not
observed when a Lorenz system is driven by the signal of
another Lorenz oscillator. This suggests that this behavior also
depends upon the nature of the external signal, specifically its
similarity with that of the response system. Intuitively, this can
be understood from Eq. (4) because the amount of modification
in β in this case (c1 ≈ 1 ⇒ β̄ = β + ε − c1ε) is not as much as
in the case when two signals (drive and response) are entirely
different (c1 = 0 ⇒ β̄ = β + ε).

The mechanism for induced multistability in the case
of global coupling can be understood in a similar manner.
However, in addition to synchronized attractors appearing due
to the fixed points A∓, the systems can also exhibit other
attractors, A1,2, similar to the ones discussed by Camargo
et al. [27] on which the dynamics is synchronized. A figure
similar to Fig. 5 is plotted for the case of global coupling
(see Fig. 6), where a modified order parameter γm is used to
detect different dynamics observed in the mutually coupled
oscillators: γm = γ + γ ′, where γ ′ = +1, − 1,0 for in-phase,
antiphase, and desynchronized states, respectively.

C. Basins of attraction

Given that the chimeras emerge due to the coexistence of
multiple attractors, it is natural to investigate the nature of
the basins of these different attractors. To study the effect of
coupling on the basins of different attractors, we consider the
case of two mutually coupled Lorenz oscillators below the
Hopf bifurcation point. Figure 7(a) is plotted for r = 24.4 and
K = 0 when the system has three stable solutions, namely a
strange attractor (cyan) and two symmetric fixed (blue and red)
points, with the boundaries of the basins of attraction being
smooth. However, for finite coupling, K = 0.05, the basins of
attraction are intertwined, as shown in Fig. 7(b).

In the coupled system, the basin structure of the different
attractors is complex [33]: there is a finite probability that two
randomly selected nearby initial conditions will asymptote to
different attractors (A∓ and A0). The measured uncertainty
exponent lies close to zero, suggesting that the basins are
effectively riddled (figure not shown here), but measures such
as the transverse Lyapunov exponent and scaling laws [27]
have not been straightforward to calculate. Thus while it
appears that the basins of the three attractors are intertwined
on all scales, the occurrence of riddling has been difficult to
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FIG. 6. (a) Bifurcation-type diagram and (b) the largest Lyapunov
exponent with parameter β of an isolated Lorenz system at r = 24.8.
(c) The order parameter γm is plotted with the coupling strength, K ,
for Eq. (1) for 10 initial conditions. For different initial conditions,
the five branches in (c) correspond to the oscillator going to different
attractors A0 (desynchronized attractor), A∓ (attractors appearing due
to the fixed points), and A1,2 (in-phase and antiphase synchronized
motion in Lorenz attractor).

establish conclusively. The basin structure becomes even more
complex for larger N [28].

It should be noted that even when the basins of different
coexisting attractors are well-separated and with distinct
boundaries [such as, for example, in Fig. 7(a)], one can
get chimeras for random initial conditions. For a careful
choice—tightly selected initial conditions that all lie in the
basin of a single attractor, for instance—one can get a
completely coherent ensemble. However, when the basins
become intertwined [as in Fig. 7(b)], it is essentially impossible
to avoid the chimera state. We also note that intermixing
of basins of attraction of different attractors is important
because it can give rise to chimeras for randomly chosen initial
conditions even for small system sizes. This can facilitate the
observation of chimeras in experimental setups where systems
with a large number of oscillators are difficult to realize.

III. APPLICATION TO THE THREE-SCROLL
CHUA SYSTEM

The general scheme described in the previous sections
can be extended to a wide variety of nonlinear dynamical

FIG. 7. The basin of attraction of system (1) for parameter values
r = 24.4, σ = 10, and β = 8/3 at mutual coupling strength K = 0
(a) and K = 0.05 (b). The blue (dark gray) and red (medium gray)
regions correspond to the basins of smaller attractors A±, while cyan
(light gray) corresponds to that of larger attractor A0.

systems since the basic features that are required are in
fact quite common. For instance, in the two- or multiscroll
Chua oscillator, chimera states can essentially be designed as
follows.

The dynamical equations for an ensemble of globally
coupled Chua oscillators with three scrolls [34] can be written
as

ẋi = α[yi − ha(xi,zi)],

ẏi = xi − ρyi + zi + K

(N − 1)

∑
j �=i

(yj − yi), (7)

żi =−δyi, i = 1, . . . N,

where ha(x,z) is a piecewise linear function,

ha(x,z) =
{

g(x), |z| � c,

−g(x), |z| � c,
(8)

with c > 0 and

g(x) = m1x + 1
2 (m0 − m1)(|x + 1| − |x − 1|). (9)
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FIG. 8. Chimeric behavior in an ensemble of three-scroll Chua
oscillators coupled globally [(a) and (c)] and when driven by a
common external noise [(b) and (d)]. Here one synchronized attractor
(S0) coexists with two desynchronized attractors (D− and D+). The
time evolution of 100 oscillators for the two cases is shown in the
upper panel with one synchronized group denoted by B1 and two
desynchronized groups B2 and B3. The attractors corresponding to
the synchronized (S0) and desynchronized (D− and D+) groups are
shown in the lower panel. For the case of global coupling, K = 0.03
and ρ = 1.47, while for the driven case, noise strength ε = 0.5 and
ρ = 1. Other parameters are α = 10, δ = 14, c = 1, m0 = −0.43,
and m1 = 0.41. The initial conditions x0,y0,z0 for Chua oscillators
are taken randomly in the interval [−1,1].

The coupling affects the parameter ρ, and for appropriate
K the system is driven to a regime where a synchronized
attractor coexists with two desynchronized attractors. This
system evolves to a chimera, where a synchronized group
(marked as B1) coexists with two desynchronized groups
(marked as B2 and B3), as shown in Fig. 8(a). The dynamics of
the oscillators in the synchronized group is on the attractor S0,
and the desynchronized oscillators can settle either on attractor
D− or D+ shown in Fig. 8(c). Similar chimeric behavior is
observed when the ensemble is driven by a common external
signal, f (t). For numerical illustration, we consider f (t) to
be Gaussian white noise with mean 0 and standard deviation
0.01. The resulting chimeras with synchronized group (B1) and
desynchronized groups (B2 and B3) with the corresponding
attractors are shown in Figs. 8(b) and 8(d). It should be
noted that unlike the case of Lorenz oscillators where both
coupling and forcing can induce chimeras irrespective of the
variable in which the coupling is introduced [32], for Chua
oscillators chimeras can only be observed when the oscillators
are coupled in y. This is because the Lorenz oscillator can
show multistability (coexisting fixed points and attractor) if
any of the system parameters σ , r , or β is varied, whereas an
isolated Chua system is multistable with respect to changes in
ρ only.

IV. SUMMARY

In this work, we have examined the emergence of dynamical
chimeras in ensembles of coupled chaotic oscillators, and in

the absence of explicit nonuniformity in the coupling. The
symmetry-breaking that leads to robust chimeric dynamics
occurs due to two features: Multistability is induced in the
system through the coupling, and the basins of the different
attractors are intertwined in a complicated structures. It
should be mentioned here that chimera-like states can be
observed even when the basins of coexisting attractors are
not intermingled, but when multistability and intertwined
basins are present together, the system inevitably shows robust
chimeras that can be realized even for small system sizes.
Therefore, although each of these features was discussed
separately earlier, drawing on them together ensures that one
can design chimeras with desired features. Furthermore, an
ensemble of identical chaotic oscillators (that may or may not
be coupled to each other) when driven by a common external
signal can also have chimeras; this observation may be of
considerable significance.

The attractors on which the synchronized motion occurs
are very different from the original strange attractor, and they
appear due to the stabilization of the fixed points when the
parameters are modified because of the diffusive nature of
the coupling. Moreover, these chimeras can be observed with
global coupling alone (namely without driving) for appropriate
parameter values. It should be emphasized that although the
results presented here are for Lorenz oscillators driven by
common Gaussian noise, similar states can be observed in
other double or multiscroll response systems [34,35] and
for other forms of driving (chaotic, quasiperiodic, periodic,
etc.).

Our results show that even common background noise is
sufficient to observe chimeric behavior. There are biological
and physical examples in which chaotic dynamics is unde-
sirable and one needs the entire or part of the system to
switch to regular dynamics [7,36]. Since in many such systems,
especially biological systems, it is not possible to change
the system parameters, one can employ a forcing technique
to bring the effective parameters to the desired values [37].
For example, in diseases such as epilepsy and Parkinson’s
disease, control strategies such as forcing can be used to
switch the brain dynamics to the desired state. Studies have
found that background white noise can improve cognitive
functioning in individuals in hypo-dopaminergic states or with
ADHD [38]. Such forcing techniques can also be used for
the successful operation of power grid networks and to avoid
grid failures. We believe that the present results can therefore
have wide applicability in different areas of science and
technology.
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