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Quantum Jarzynski equality of measurement-based work extraction
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Many studies of quantum-size heat engines assume that the dynamics of an internal system is unitary and
that the extracted work is equal to the energy loss of the internal system. Both assumptions, however, should be
under scrutiny. In the present paper, we analyze quantum-scale heat engines, employing the measurement-based
formulation of the work extraction recently introduced by Hayashi and Tajima [M. Hayashi and H. Tajima,
arXiv:1504.06150]. We first demonstrate the inappropriateness of the unitary time evolution of the internal
system (namely, the first assumption above) using a simple two-level system; we show that the variance of the
energy transferred to an external system diverges when the dynamics of the internal system is approximated to a
unitary time evolution. Second, we derive the quantum Jarzynski equality based on the formulation of Hayashi
and Tajima as a relation for the work measured by an external macroscopic apparatus. The right-hand side of the
equality reduces to unity for “natural” cyclic processes but fluctuates wildly for noncyclic ones, exceeding unity
often. This fluctuation should be detectable in experiments and provide evidence for the present formulation.
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I. INTRODUCTION

Thermodynamics was first introduced as a practical study
to clarify the optimal performance of heat engines [1] and
has become one of the most important fields in physics
[2]. Recently, however, the development of experimental
technology is realizing heat engines which are out of the
scope of the standard thermodynamics, i.e., small-size heat
engines. Quantum-scale and mesoscopic thermomotors, which
used to be imaginary devices, are being realized in the
laboratory [3–7]. The functions of biomolecules, which are
micromachines in nature, are being clarified too [8].

We cannot apply the standard thermodynamics to these
nanometer-size heat engines as it is, because it is a phe-
nomenology for macroscopic systems. Statistical mechanics,
another fundamental field of physics, has been applied to
the small-size heat engines whose small-size working body
is connected to the infinitely large heat baths, and is achieving
a splendid success [9–33].

Many studies of such engines [17–33] adopt a model
of a microscopic internal quantum system connected to a
macroscopic external agent. They use the following setup and
assumption:

(i) Thermodynamic operation of the internal quantum
system by an external system is represented by a unitary
operator of the time-dependent Hamiltonian of the internal
quantum system which is controlled by external parameters.
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(ii) The work performed on the external system is equal to
the energy loss of the internal quantum system.

This approach has a practical advantage in that we can
formulate thermodynamic relations by analyzing only the
internal quantum system.

However, there are always two concerns about the validity
of this approach. One is about the assumption of the unitary
dynamics and the other is about the definition of the work. In
actual situations of heat engines, the internal system, whether
quantum or not, is always attached to an external macroscopic
system [34], and hence the dynamics of the internal quantum
system cannot be exactly unitary. It is not guaranteed either that
all energy loss of the internal system becomes the work done
to the external system. Is it accurate enough to approximate
the true dynamics with a unitary dynamics? Is it legitimate to
regard the energy loss as the extracted work? In spite of these
concerns, the approach has been accepted by many researchers,
because there have been results out of this approach which
seem to be consistent with thermodynamics. For example,
we can derive some thermodynamic relations [19,26–28]
and a kind of quantum extension of the Jarzynski equality
[17,18,24,25].

In the present paper, we face these two concerns. We
claim here that the work out of a heat engine should be
measured by means of a macroscopic system, for example, as
movement of a macroscopic piston or wheel. From this point
of view, the work extraction from the internal quantum system
by the macroscopic system can be described as a standard
quantum measurement process, in which the measurement
result is evaluated on the side of the macroscopic system.
In other words, the time evolution of the internal system is
described as a quantum measurement process and the extracted
work is regarded as a measurement outcome of this process.
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This formulation, recently introduced by Hayashi and Tajima
[35–37], raises a serious problem of the conventional approach
in the form of a general trade-off relation. The relation
shows that when the time evolution of the internal system
is approximated to a unitary, it becomes difficult to fix the
amount of extracted work.

In the present paper, we first demonstrate the inappropri-
ateness of the unitary time evolution of the internal system
[namely, assumption (i) above]. It was pointed out by Hayashi
and Tajima that the amount of the extracted work is not able
to be evaluated on the side of the external system when the
time evolution of the internal system is approximated to a
unitary one [35]. It was also illustrated with a plain example
by Tasaki, who is one of the advocates of the conventional
approach [38]. In order to demonstrate this fact, we show for
a simple model that the conventional approach has a problem
regarding the fluctuation of the work. More specifically, we
show that the variance of the energy transferred to the external
system diverges when the time evolution of the internal system
is approximated to a unitary, and it is completely different
from that of the energy loss of the internal system. This result
demands us to change the derivation of the quantum Jarzynski
equality from the previous ones [17,18,24,25] based on the
conventional approach, which employed the internal unitary
time evolution and regarded the measured value of the energy
loss of the internal system as the “work,” whereas the energy
gain of the external system is the actual work that we can use.
The Jarzynski equality derived from the previous approach
does not contain relevant information about the fluctuation of
the actual work.

In order to resolve this problem, we next derive the quantum
Jarzynski equality based on the measurement-based work
extraction of Hayashi and Tajima [35,36]. This quantum
Jarzynski equality is the relation of the work measured by
the external macroscopic apparatus, which is equal to the
measured value of the energy gain of the external system.
Therefore, our derivation correctly contains the information
about the fluctuation of the actual work, namely, the energy
gain of the external system.

Our derivation of the quantum Jarzynski equality is es-
sentially different from other derivations [17,18,24,25,39–42]
which used the conventional two-measurement formulation.
Note that the formulation of the measurement-based work
extraction describes the operation of the work extraction as
a measurement process itself. It is based on the fact that the
standard thermodynamic operations give the amount of the
extracted work and the change of the state of the internal
system at the same time. It pointed out that we do not need
to separate the dynamics of extracting the work from the
measurement for evaluating the work, as has been done in
the two-measurement formulation.

There has been another approach to the two concerns, in
which they [43,44] used an internal quantum system connected
to an external quantum system. This approach assumes that
the time evolution of the total system is unitary and the work
extracted from the internal system is defined as the energy
gain of the external system. We claim that the setup in our
approach is more realistic than in this approach [43,44] in the
sense that our external system is a macroscopic measurement
apparatus.

II. INAPPROPRIATENESS OF THE UNITARY
TIME EVOLUTION

In general, the time evolution of an internal system inter-
acting with an external system is not unitary. However, many
studies of statistical physics assume that the time evolution
of the internal system can be approximated to a unitary one
generated by a time-dependent Hamiltonian of the internal
system.

In this section, using a toy model, we consider the problem
as to whether we can represent the time evolution of an internal
system in terms of a unitary one. More specifically, we show
that the variance of the energy transferred to an external system
E becomes large when we approximate the time evolution of
the two-level system I by means of a unitary one.

Let HI and HE denote the Hamiltonians of the internal
system I and the external system E, respectively:

HI := �

2
(|1〉I〈1| − |0〉I〈0|), (1)

HE :=
∞∑

n=−∞
n�|n〉E〈n|, (2)

where � is the level spacing, while |n〉E with any integer n are
the energy eigenstates of E with the eigenvalue n�. The fact
that n runs from negative infinity to positive infinity represents
that the external system is macroscopic.

We consider the case in which the time evolution operator
UIE of the total system is unitary and conserves the energy as
in [HI + HE,UIE] = 0. We can therefore decompose UIE into
the form

UIE :=
∑
n,n′

Kn,n′ ⊗ |n〉E〈n′| (3)

with

Kn,n′ := δn,n′ (an|0〉I〈0| + bn|1〉I〈1|)
+ δn+1,n′cn|1〉I〈0| + δn−1,n′dn|0〉I〈1| (4)

for all integers n and n′, where the coefficients an, bn, cn, and
dn are complex numbers and satisfy

|an|2 + |cn−1|2 = 1, (5)

|bn|2 + |dn+1|2 = 1, (6)

and
∗
n + b∗

n−1cn−1 = 0, (7)

for all integers n. The time evolution of the internal system I
is hence given by

K(ρI) := TrE[UIE(ρI ⊗ ρE)U †
IE] (8)

=
∑

n,n′,n′′
E〈n′ | ρE | n′′〉EKn,n′ρIK

†
n,n′′ , (9)

where ρI and ρE are the initial states of I and E, respectively,
and TrE denotes the trace operation with respect to the external
system E. The state ρI of I must be written in the form

ρI := p|0〉I〈0| + (1 − p)|1〉I〈1| + q∗|1〉I〈0| + q|0〉I〈1| (10)

with 0 � p � 1, q ∈ C. The positivity of ρI dictates the
coefficient q to satisfy |q|2 � p(1 − p) � 1/4.
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We now define the energy transferred to the external system
E during the time evolution as

wj := hj − Tr [ρEHE], (11)

where Tr denotes the trace operation with respect to the total
system. We here use the expectation value of the energy of the
external system because we have to use a mixed state for the
initial state ρE.

The probability of wj is given by

pj := Tr[|j 〉E〈j |UIE(ρI ⊗ ρE)U †
IE] (12)

=
∑
n′,n′′

E〈n′ | ρE | n′′〉E Tr[Kj,n′ρIK
†
j,n′′ ], (13)

where hj := j� is an eigenvalue of the Hamiltonian HE of the
external system E. The energy conservation [HI + HE,UIE] =
0 leads to

〈w〉E :=
∞∑

j=−∞
wjpj (14)

= Tr[HEUIE(ρI ⊗ ρE)U †
IE] − Tr[ρEHE] (15)

= Tr[(HI + HE)(ρI ⊗ ρE)] − Tr[HIUIE(ρI ⊗ ρE)U †
IE]

− Tr[ρEHE] (16)

= Tr[ρIHI] − Tr[K(ρI)HI]. (17)

The variance V (w) of the energy transfer is given by

VE(w) := 〈w2〉E − 〈w〉2
E = 〈h2〉E − 〈h〉2

E, (18)

where 〈h〉E and 〈h2〉E are the average and the mean square of
hj , respectively, with respect to pj .

So far, everything has been exact. Now, we try to approxi-
mate the time evolution of I to a specific unitary matrix:

UI :=
∑

k,l=0,1

uk,l|k〉I〈l|. (19)

Here, the approximation to the unitary matrix UI means
the following condition: for any ε > 0, the inequality
d(K(ρI),UIρIU

†
I ) < ε holds for all states ρI, where d is a

distance function.
Using the example given in Refs. [36,45], we now choose

the initial state of the external system E and the coefficients of
Eq. (4) in the form

ρE := |ψ〉E〈ψ |, |ψ〉E := 1√
M

M∑
m=1

|m〉E, (20)

Kn,n′ = δn,n′ (u0,0|0〉I〈0| + u1,1|1〉I〈1|)
+ δn+1,n′u1,0|1〉I〈0| + δn−1,n′u0,1|0〉I〈1|, (21)

with M := 8
ε−2� and all integrals n and n′. Then, we obtain
[36]

b(K(ρI),UIρIU
†
I ) < ε, (22)

where b is the Bures distance. Because the initial state is far
from an energy eigenstate, we can indeed approximate the time
evolution of I to UI.

A problem arises as follows, however. Combining Eqs. (3)
and (20), we obtain Eq. (13) in the form

pj = 1

M
Tr[K̄†

j K̄jρI] (23)

with

K̄j :=
M∑

m=1

Kj,m. (24)

The expectation and the mean square of hj are respectively
given by

〈h〉E =
∑

j

hjpj = �

M

∑
j

j Tr[K̄†
j K̄jρI], (25)

〈h2〉E =
∑

j

(hj )2pj = �2

M

∑
j

j 2 Tr[K̄†
j K̄jρI]. (26)

After the algebra in Appendix A, we obtain

〈h〉E = �

2
(M + 1) + 〈w〉E, (27)

〈h2〉E = �2

6
(M + 1)(2M + 1) + �(M + 1)〈w〉E

+�2(|u0,1|2(1 − p) + |u1,0|2p), (28)

where 〈w〉E is the expectation of wj in the form

〈w〉E = �[|u0,1|2(1 − p) − |u1,0|2p
+ 2(1 − M−1)Re(u0,0u

∗
0,1q)]. (29)

Therefore, we obtain

VE(w) = �2

12
(M2 − 1) − 〈w〉2

E

+�2(|u0,1|2(1 − p) + |u1,0|2p). (30)

Because 〈w〉E = O(1), the variance of the energy transfer
diverges as M = 8
ε−2� → ∞ in the limit ε → 0. In other
words, we cannot fix the amount of the energy transfer when
we approximate the dynamics of I by a unitary one. This
demonstrates that it is not appropriate to use the unitary
dynamics for the internal system I and define the work as
the energy loss of I.

Let us compare this with the variance of the energy loss of
the internal system I. We measure the energy of the internal
system I before and after the time evolution (9) and regard
the difference of the two measurement outcomes as the energy
loss of the internal system, which the previous derivation of
the quantum Jarzynski equalities [17,18,24,25] defined as the
work. Because the time evolution of the internal system I is
given by Eq. (9), the probability of the energy loss of the
internal system

υα,β := eα − eβ (31)

is given by

qα,β := I〈α | ρI | α〉I Tr[|β〉I〈β|K(|α〉I〈α|)], (32)

where e0 := −�/2 and e1 := �/2 are the eigenvalues of the
Hamiltonian HI. The variance VI(υ) of the energy loss of the
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internal system is hence given by

VI(υ) := 〈υ2〉I − 〈υ〉2
I , (33)

where 〈υ〉I and 〈υ2〉I are the average and the mean square of
υα,β , respectively, with respect to qα,β . Since e0 := −�/2 and
e1 := �/2, the energy loss υα,β is −�, zero, or �. Therefore,
we obtain

〈υ2〉I :=
∑

α,β=0,1

qα,βυ2
α,β � �2, (34)

and hence

VI(υ) := 〈υ2〉I − 〈υ〉2
I � �2. (35)

We thus see that VI(υ) appears to be completely different from
VE(w) in Eq. (30) when we approximate the time evolution of
the internal system to a unitary one.

The above demonstration raises a problem of the quan-
tum Jarzynski equalities derived in the previous approach
[17,18,24,25], which employed a unitary for the time evolution
of the internal system and regarded the energy loss of the
internal system as the work. Because the energy gain of the
external system is the actual work that we can use, the work
defined in the previous approach as well as the Jarzynski
equalities derived thereby do not contain relevant information
about the fluctuation of the actual work. In order to resolve this
problem, we derive in Sec. III the quantum Jarzynski equality
using the measurement-based work extraction of Hayashi and
Tajima [35,36].

Incidentally, in the case of M = 1, we cannot approximate
the time evolution to a unitary one. To show it, we consider
the quantity

min
UI:unitary

dTr(K(ρI),UIρIU
†
I ), (36)

where dTr is the trace distance. For M = 1, the initial state (20)
of E is a pure energy eigenstate with a fixed energy level n0,
namely, ρE = |n0〉E〈n0|. Then, Eq. (9) reduces to

K(ρI) =
∑

n

Kn,n0ρIK
†
n,n0

= [|an0 |2p + |dn0+1|2(1 − p)]|0〉I〈0| + [|bn0 |2(1 − p)

+ |cn0−1|2p]|1〉I〈1| + a∗
n0

bn0q
∗|1〉I〈0|

+ an0b
∗
n0

q|0〉I〈1|. (37)

From Eq. (17), we have the average of the transferred energy
in the form

〈w〉E = �[|dn0+1|2(1 − p) − |cn0−1|2p]. (38)

Since the states K(ρI) and ρI are Hermitian operators, we
can diagonalize them using unitary operators. In other words,
there exist unitary operators V and V ′ such that

ρI = V 
V †, (39)

K(ρI) = V ′
′V ′†, (40)

where 
 and 
′ are diagonal matrices. Because of the unitary
invariance of the trace distance, Eq. (36) becomes

min
UI:unitary

dTr(K(ρI),UIρIU
†
I ) = min

ŨI:unitary
dTr(ŨI


′Ũ †
I ,
). (41)
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FIG. 1. Plots of Eq. (43). We take the parameters (a) (p,|q|) =
(1/2,0) and (b) (1/2,1/2).

The calculation in Appendix B then gives

min
ŨI:unitary

dTr(ŨI

′Ũ †

I ,
) = 1

2
min

ŨI:unitary
Tr |ŨI


′Ũ †
I − 
| (42)

= |R′ − R| (43)

with

R :=
√(

p − 1

2

)2

+ |q|2, (44)

R′ :=
√(

(1 − x − y)p + x − 1

2

)2

+ (1 − x)(1 − y)|q|2,
(45)

x := |dn0+1|2, y := |cn0−1|2. (46)

In the case of x = y = 0, the distance of Eq. (43) is equal
to zero. However, the energy transfer (38) is trivially equal
to zero in this case. For that reason, we consider cases other
than x = y = 0. When we choose the initial state of I as p =
1/2 and |q| = 0, the distance of Eq. (43) is not equal to zero
[Fig. 1(a)]. When we choose the initial state of I as p = 1/2 and
|q| = 1/2, the distance of Eq. (43) is also not equal to zero for
x = y = 0 [Fig. 1(b)]. Consequently, we cannot approximate
the time evolution to a unitary when M = 1.

From the results above, we suspect that the variance of the
energy transfer generally diverges when the time evolution of
the internal system is approximated to a unitary one. This is
because the divergence is caused by the superposition of the
energy eigenstates of the initial state of the external system
and because the time evolution of the internal system cannot
be approximated to a unitary one when the initial state of the
external system is an energy eigenstate.

III. JARZYNSKI EQUALITY

As the main result of the present paper, we here derive the
Jarzynski equality for the measurement-based work extraction.
In the previous section, we showed that the approach using the
unitary time evolution of the internal system is inappropriate
for describing the quantum heat engine. Previous quantum
versions of the Jarzynski equality [17,18,24,25] also have
this problem. To resolve this problem, we introduce a new
derivation of the quantum Jarzynski equality based on the
formulation of Hayashi and Tajima [35,36].

Note that this formulation, called measurement-based work
extraction, points out that operations of the work extraction
are measurement processes. It is essentially different from the
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conventional two-measurement formulation [17,18,24,25,39–
41] which separates the dynamics of the extracting work from
the measurement of one.

Also note that the fluctuations in the previous and present
sections are generated from different causes. While the fluctu-
ation in the previous section is generated from the uncertainty
of the initial energy of the external system, one in the present
section is generated from a mixture of the state of the internal
system.

A. Cyclic process

We first consider a cyclic process, in which the final
Hamiltonian is equal to the initial one. The external system
E receives energy from the internal system I from time t = 0
to T . The time evolution of the total system between time
t = 0 and T is unitary.

Let HI and HE denote the time-independent Hamiltonians
of I and E, respectively, and Hint(t) denote the time-dependent
Hamiltonian interacting between I and E; the total system is
given by

Htot(t) := HI + HE + Hint(t). (47)

The case in which the Hamiltonian of the internal system
depends on time is treated by the discussion in Sec. III B.

The eigenvalue decompositions of HI and HE are denoted
by

HI :=
∑

x

hx |hx〉I〈hx |, (48)

HE :=
∑

i

ei |ei〉E〈ei |, (49)

where hx and ei are the eigenvalues of HI and HE, respectively.
We assume that the interaction Hamiltonian satisfies the
condition

[HI + HE,UIE] = 0, (50)

where UIE is the time evolution of total system given by [35]

UIE := T exp

(
− i

h̄

∫ T

0
Htot(τ ) dτ

)
, (51)

where T is a time-ordered product. The condition of Eq. (50)
means that the total energy from HI + HE is the same before
and after UIE, and hence the net energy from the interaction
Hamiltonian is equal to zero. We further assume that the initial
states of I and E are the canonical distribution at an inverse
temperature β and a pure eigenstate of energy e0, respectively:

ρI,can :=
∑

x

e−βhx

ZI
|hx〉I〈hx |, (52)

ρE := |e0〉E〈e0|, (53)

with ZI := Tr[e−βHI ].
We then consider the following process:
(i) We set the initial states given by Eqs. (52) and (53).
(ii) We then let the total system evolve under the unitary

operator UIE. The key here is to consider the unitary time
evolution of the total system, not of the internal system I.

(iii) We finally measure the energy of the external system
E using the projection operator |ej 〉E〈ej | and define

�ej := ej − e0 (54)

as the energy gain. It is essential that at this point the “work”
�ej is not a fixed value but given probabilistically.

We stress that this process is an indirect measurement with
respect to the internal system I and modeling the measurement-
based work extraction.

In the above process, the time evolution of I and the
measurement process of the specific energy gain �ej are
defined as

E(ρI) := TrE[UIE(ρI ⊗ |e0〉E〈e0|)U †
IE] (55)

with E = ∑
j Ej for all density operators ρI of I, where

Ej (ρI) := TrE[|ej 〉E〈ej |UIE(ρI ⊗ |e0〉E〈e0|)U †
IE] (56)

and TrE denotes the trace operation with respect to E.
We now introduce the probability distribution of the

extracted work W as

P (W ) :=
∑

j

δ(W − �ej ) Tr[Ej (ρI,can)], (57)

where δ(x) is the delta function and Tr denotes the trace
operation with respect to the total system. Because Ej is a
linear operator, we have

P (W ) =
∑
j,x,y

δ(W − �ej )

× e−βhx

ZI
Tr[|hy〉I〈hy |Ej (|hx〉I〈hx |)], (58)

where we inserted a resolution of unity
∑

y |hy〉I〈hy |. Since
the total energy HI + HE does not change after UIE and the
external system gains the energy �ej after the process Ej , the
energy of the internal system must be hy = hx − �ej outside
the operator Ej . We therefore find

P (W ) = e−βW
∑
j,x,y

δ(W − �ej )
e−βhy

ZI

× Tr[|hy〉I〈hy |Ej (|hx〉I〈hx |)] (59)

= e−βW
∑

j

δ(W − �ej ) Tr[ρI,canEj (1I)]. (60)

Let us denote the average with respect to P (W ) by

〈f (W )〉 :=
∫

dWf (W )P (W ), (61)

where f (W ) is an arbitrary function of the extracted work W .
From Eq. (60), we can therefore obtain the Jarzynski equality
under the cyclic process in the form

〈eβW 〉 = γ (62)

with

γ := Tr[E†(ρI,can)], (63)

where E† is the adjoint map of E , given by Tr[E†(A†)B] =
Tr[A†E(B)]. Note that we did not use the details of the external
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system E but the energy conservation of the time evolution,
Eq. (50).

Applying Jensen’s inequality 〈ef 〉 � e〈f 〉 to Eq. (62), we
obtain

〈W 〉 � β−1 ln γ. (64)

This inequality is the second law of thermodynamics under
the measurement-based work extraction.

In the high-temperature limit β = 0, the initial state (52)
reduces to ρI,can = 1I/N , where N is the dimensionality of
the Hilbert space of the internal system I. Thus, owing to the
linearity and the trace preserving of E , the quantity γ reduces
to unity.

For general values of β, let us assume that the time
evolution of I is a “natural” thermodynamic process; that is, the
measurement process is not a feedback process and satisfies the
first and second laws of thermodynamics for an arbitrary initial
state. Hayashi and Tajima introduced and called it the standard
completely positive work extraction [35,36]. The first law is
satisfied by the measurement process Ej which changes the
energy eigenstate |hx〉I of I to the state of the energy hx − �ej

when the external system gains the energy �ej . The second law
corresponds to the time evolution E = ∑

j Ej which satisfies

S(ρI) � S(E(ρI)) (65)

for all initial states ρI of I, where S(ρI) := − Tr[ρI ln ρI] is the
von Neumann entropy. As a necessary and sufficient condition
of Eq. (65) for all initial states, the time evolution E must be a
unital map [46]:

E(1I) = 1I. (66)

Then, the quantity γ is unity, and Eqs. (62) and (64) reduce to

〈eβW 〉 = 1, (67)

〈W 〉 � 0, (68)

respectively. Hence, we obtain the same form as the previous
derivations [17,18,24,25] of the Jarzynski equality under the
cyclic process.

The difference of the Jarzynski equality from unity is
known for feedback processes [29,47,48] and/or absolutely
irreversible processes [33,49]. Because the time evolution E
includes the feedback process, Eq. (62) also applies to the feed-
back process, for which the quantity γ denotes the efficiency
[47]. On the other hand, because we assume that the initial
state (52) of the internal system is the canonical distribution,
Eq. (62) does not apply to the absolutely irreversible process.

We stress, however, that the present result is essentially
different from the previous ones [17,18,24,25]. The previous
derivation of the Jarzynski equality did not contain information
about the fluctuation of the energy gain of the external system
appropriately, defining the measured value of the energy
loss of the unitarily evolving internal system as the random
variable W . As we have shown in Sec. II, however, under the
approximation of the unitary dynamics of the internal system,
the variance of W in the previous derivation is completely
different from that of the energy gain of the external system,
which is the actual work that we can use. The Jarzynski
equality derived from the previous formulation therefore does

not give relevant information about the fluctuation of the actual
work.

Our derivation of the Jarzynski equality is different in
this point. We also define the measured value of the energy
loss of the internal system as a random variable W , but it is
equal to the measured value of the energy gain of the external
system, because now we employ the unitary time evolution of
the total system satisfying Eq. (50). Therefore, our derivation
correctly contains the information about the fluctuation of the
actual work, namely, the energy gain of the external system.
For a possible extension of the present formulation to the
measurement process with error, see Sec. V.

B. Noncyclic process

Next, we consider the Jarzynski equality under a noncyclic
process, extending the case of the cyclic process in Sec. III A.
For a noncyclic process, the energy spectrum of the internal
system is different between the initial and final Hamiltonians.
To apply the formalism for the cyclic process to the noncyclic
one, we divide the internal system I into two subsystems,
namely, a (further) internal system S and a control system C
[36,43]. The internal system S is a working substance, such
as a gas, while the control system C controls the Hamiltonian
of the internal system S as a piston. We consider the work
extracted from the internal system S.

We assume the initial Hamiltonian (48) of the internal
system I in the form

HI :=
∑

λ

HS(λ) ⊗ |λ〉C〈λ|

=
∑

λ

∑
x(λ)

hx(λ)|hx(λ),λ〉SC〈hx(λ),λ|, (69)

where HS(λ) is the Hamiltonian of S, whose eigenstate and
the corresponding eigenvalue are denoted as |hx(λ)〉S and hx(λ),
respectively; { |λ〉C } is an orthonormal basis of the control
system C; and |hx(λ),λ〉SC denotes |hx(λ)〉S ⊗ |λ〉C. We vary the
control parameter λ, making the process noncyclic. Note that
we made the λ dependence of the index x(λ) explicit, because
the set of the eigenvalues of HS(λ) depends on λ. The energy
of S changes from hx(λ) to hx(λ) − �ej after the measurement
process Ej of the specific energy gain �ej .

We set the initial state of I to be the canonical distribution
of S with a pure state |λi〉C of C:

ρI(λi) :=
∑
x(λi)

e−βhx(λi )

ZS(λi)
|hx(λi),λi〉SC〈hx(λi),λi|

= ρS,can(λi) ⊗ |λi〉C〈λi| (70)

with ZS(λ) := Tr[e−βHS(λ)] and ρS,can(λ) := e−βHS(λ)/ZS(λ).
This means that the internal system S starts from the equilib-
rium with the fixed parameter λi. The free energy of S for a
specific value of λ is given by

FS(λ) := −β−1 ln ZS(λ). (71)

We define the probability distribution of the extracted work
W during the process in which the state of C changes from λi
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to λf as

Pλi→λf (W ) :=
∑

j

δ(W − �ej )

pλi→λf

Tr[|λf〉C〈λf|Ej (ρS,can(λi)

⊗ |λi〉C〈λi|)], (72)

where

pλi→λf := Tr[|λf〉C〈λf|E(ρS,can(λi) ⊗ |λi〉C〈λi|)] (73)

is the transition probability that the state of C changes from λi

to λf. In the same way as in Eq. (60) of Sec. III A, we obtain

Pλi→λf (W ) = e−βWe−β�FS(λi,λf)

×
∑

j

δ(W − �ej )

pλi→λf

Tr[ρS,can(λf)

⊗ |λf〉C〈λf|Ej (1S(λi) ⊗ |λi〉C〈λi|)] (74)

with �FS(λi,λf) := FS(λf) − FS(λi), while 1S(λi) :=∑
x(λi) |hx(λi)〉S〈hx(λi)| is the identity operator of S with fixed

parameter λi.
We modify the average (61) to

〈f (W )〉λi→λf :=
∫

dWf (W )Pλi→λf (W ). (75)

We therefore arrive at the Jarzynski equality under a noncyclic
process in the form

〈eβW 〉λi→λf = γλi→λfe
−β�FS(λi,λf) (76)

with

γλi→λf := qλf→λi

pλi→λf

, (77)

qλf→λi := Tr[ρS,can(λf) ⊗ |λf〉C〈λf|E(1S(λi) ⊗ |λi〉C〈λi|)].
(78)

We note that the state of C is measured only in the initial
and final states. During the dynamics between these states, we
cannot tell the path of the change of physical quantities of C,
such as the position of a piston, nor can we tell the motion of S.
It is in contrast with the fact that, in the previous derivation of
the Jarzynski equality [17,18,24,25], the motion of the system
is fully determined by a given path of a parameter.

In the high-temperature limit β = 0, Eq. (70) reduces to
ρI(λ) = 1S(λ)/N (λ) ⊗ |λ〉C〈λ|, where N (λ) is the dimen-
sionality of the Hilbert space of S with fixed parameter λ.
Thus, Eq. (77) reduces to γλi→λf = N (λf)/N (λi). In particular,
when the dimensionality of the Hilbert space of S with fixed
parameter λf is equal to one with fixed parameter λi, Eq. (77)
reduces to unity whether E is unital or not.

We now argue for general values of β that the quantity
γλi→λf is not necessarily unity for a unital map as γ was for the
cyclic process. When the time evolution E is unital, namely,
the “natural” thermodynamic process defined in the previous
section, the quantity γλi→λf gives the ratio of the forward and
the backward transition probabilities. When the time evolution
E is unital, completely positive, and trace preserving, so is
its adjoint E†. Therefore, we can regard the adjoint map E†

as another time evolution. Equation (78) indeed gives the
backward transition probability that the state of C changes

from λf to λi:

qλf→λi = Tr[|λi〉C〈λi|E†(ρS,can(λf) ⊗ |λf〉C〈λf|)]. (79)

As can be seen from the calculation of a simple model
in Sec. IV, the backward transition probability (79) is not
necessarily equal to the forward one (73). Therefore, the
quantity γλi→λf is not necessarily unity for a unital map.

When the time evolution E is not unital, incidentally, we
cannot regard Eq. (78) as a transition probability; because the
adjoint E† of a nonunital map E is not trace preserving, the
sum of Eq. (78) over λi is not unity:∑

λi

qλf→λi = Tr[ρS,can(λf) ⊗ |λf〉C〈λf|E(1I)] (80)

= Tr[E†(ρS,can(λf) ⊗ |λf〉C〈λf|)] = 1, (81)

where 1I := ∑
λ 1S(λ) ⊗ |λ〉C〈λ| is the identity operator of I.

Finally, we show that Eq. (76) reduces to the case of
the cyclic process (62) when the control system C has only
one eigenstate. In this case, the state of C cannot change
from the initial state, and we thereby obtain pλi→λi = 1 and
�FI(λi,λi) = 1. Therefore, Eq. (74) reduces to

Pλi→λi (W ) = e−βW
∑

j

δ(W − �ej ) Tr[ρS,can(λi)

⊗ |λi〉C〈λi|Ej (1S(λi) ⊗ |λi〉C〈λi|)]. (82)

Since 1I = 1S(λi) ⊗ |λi〉C〈λi| and ρI,can = ρS,can(λi) ⊗
|λi〉C〈λi|, this equation is equivalent to Eq. (60) in Sec. III A.

IV. COEFFICIENT γλi→λf FOR A SIMPLE MODEL

In this section, we evaluate the quantity γλi→λf of Sec. III B
using a simple system. We suppose that the Hamiltonian of the
simple system is given by

HI(ω) =
∑
λ=0,1

HS(λ; ω) ⊗ |λ〉C〈λ|, (83)

HS(λ; ω) := (λ + 1)ω

2
σ S

z , (84)

where ω is level spacing and σ S
z := |1〉S〈1| − |0〉S〈0|. The

canonical distribution ρS(λ) of S at the inverse temperature
β is given by

ρS(β̃,λ) = 1

1 + e(λ+1)β̃
|1〉S〈1| + 1

1 + e−(λ+1)β̃
|0〉S〈0|, (85)

where β̃ := βω is the dimensionless inverse temperature.
We consider the following measurement process Ej :

Ej (ρI) := MjρIM
†
j , (86)

Mj :=
∑
λ,λ′

∑
x(λ),y(λ′)

δ�ej ,hx(λ)−hy(λ′ )�hy(λ′)Ueff�hx(λ) , (87)

where �hx(λ) is a projection on the eigenvalue of HI. The
effective time-evolution operator Ueff is given by tracing out
the external system from the time evolution of the total system.
It defines the effective Hamiltonian Heff as in Ueff = e−iHeffT ,
where T is the time duration of the measurement process
Ej . The corresponding time evolution E := Ej is unital and,
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E = 0

E = −ω/2
|0, 0〉SC

E = ω/2
|1, 0〉SC

E = −ω
E = (−1 + ξ) ω

|0, 1〉SC

ξω

E = ω

E = (1 + ξ) ω
|1, 1〉SC

ξω
ηω

η∗ω

ηω

η∗ω

FIG. 2. Illustration of the effective Hamiltonian of Eq. (88). The
parameter ξ is a real number representing the shift of the potential
energy and the parameter η is a complex number representing the
hopping amplitude.

therefore, is not a feedback process. For simplicity, let us
suppose that the effective Hamiltonian Heff is

Heff(ω,ξ,η) := HI(ω) + Veff(ξ,ω) + Hhop(η,ω), (88)

Veff(ξ,ω) := ξω1S ⊗ |1〉C〈1|, (89)

Hhop(η,ω) := σ S
x ⊗ ω(η|1〉C〈0| + η∗|0〉C〈1|), (90)

where Veff(ξ,ω) and Hhop(η,ω) are potential and hopping
terms, the parameters ξ and η are real and complex numbers,
respectively (Fig. 2), and σ S

x := |1〉S〈0| + |0〉S〈1|. In other
words, the unitary operator Ueff is given by

Ueff(ξ,η,T̃ ) := exp(−iT̃ Heff(1,ξ,η)), (91)

where T̃ := ωT/h̄ is the dimensionless time duration.
Then, Eqs. (73) and (78) are given by

pλi→λf (ξ,η,β̃,T̃ ) = p
(1)
λi→λf

(ξ,η,T̃ )

1 + e(λi+1)β̃
+ p

(0)
λi→λf

(ξ,η,T̃ )

1 + e−(λi+1)β̃
, (92)

qλf→λi (ξ,η,β̃,T̃ ) = q
(1)
λf→λi

(ξ,η,T̃ )

1 + e(λf+1)β̃
+ q

(0)
λf→λi

(ξ,η,T̃ )

1 + e−(λf+1)β̃
, (93)

with

p
(n)
λi→λf

(ξ,η,T̃ ) := Tr[|λf〉C〈λf|Ueff(ξ,η,T̃ )(|n〉S〈n|
⊗ |λi〉C〈λi|)U †

eff(ξ,η,T̃ )], (94)

q
(n)
λf→λi

(ξ,η,T̃ ) := Tr[|λi〉C〈λi|U †
eff(ξ,η,T̃ )(|n〉S〈n|

⊗ |λf〉C〈λf|)Ueff(ξ,η,T̃ )], (95)

for n = 0,1.
We first show γ0→0 = γ1→1 = 1 and γ1→0 = 1/γ0→1. The

projective operators |n〉S〈n| (n = 0,1) and |λ〉C〈λ| (λ = 0,1)
are invariant with respect to a unitary operator S1 := 1S ⊗
(|1〉C〈1| + e−iχ |0〉C〈0|) for any real number χ and the time
reversal operator �, which is an antiunitary operator, and the
unitary operator (91) satisfies

S
†
1Ueff(ξ,η,T̃ )S1 = Ueff(ξ,eiχη,T̃ ), (96)

�†Ueff(ξ,η,T̃ )� = U
†
eff(ξ,η∗,T̃ ). (97)

Applying S1 and � in Eqs. (94) and (95), we obtain

p
(n)
λi→λf

(ξ,η,T̃ ) = p
(n)
λi→λf

(ξ,eiχη,T̃ ), (98)

p
(n)
λi→λf

(ξ,η,T̃ ) = q
(n)
λi→λf

(ξ,η∗,T̃ ). (99)

For a unitary operator S2 := σ S
x ⊗ 1C, we also have

S
†
2Ueff(ξ,η,T̃ )S2 = U

†
eff(−ξ, − η,T̃ ), (100)

S
†
2(|n〉S〈n| ⊗ |λ〉C〈λ|)S2 = |1 − n〉S〈1 − n| ⊗ |λ〉C〈λ|,

(101)

for n,λ = 0,1, and hence

p
(n)
λi→λf

(ξ,η,T̃ ) = q
(1−n)
λi→λf

(−ξ, − η,T̃ ). (102)

Combining Eqs. (98), (99), and (102), we thus obtain

p
(n)
λi→λf

(ξ,|η|,T̃ ) = p
(n)
λi→λf

(ξ,η,T̃ ) (103)

= q
(n)
λi→λf

(ξ,η,T̃ ) (104)

= p
(1−n)
λi→λf

(−ξ,η,T̃ ). (105)

Therefore, we obtain

pλi→λf (ξ,η,β̃,T̃ ) = qλi→λf (ξ,η,β̃,T̃ )

= p
(0)
λi→λf

(−ξ,|η|,T̃ )

1 + e(λi+1)β̃

+ p
(0)
λi→λf

(ξ,|η|,T̃ )

1 + e−(λi+1)β̃
, (106)

and hence

γλi→λf (ξ,η,β̃,T̃ ) = qλf→λi (ξ,η,β̃,T̃ )

pλi→λf (ξ,η,β̃,T̃ )
(107)

= pλf→λi (ξ,η,β̃,T̃ )

pλi→λf (ξ,η,β̃,T̃ )
. (108)

As can be seen from Eq. (108), the quantity γλi→λf is always
equal to unity if λi = λf; that is, γ0→0 = γ1→1 = 1, and
γ1→0 = 1/γ0→1.

Let us now find γ1→0. Calculating p
(0)
1→0(ξ,|η|,T̃ ) and

p
(0)
0→1(ξ,|η|,T̃ ), we obtain

p
(0)
1→0(ξ,|η|,T̃ ) = p

(0)
0→1(−ξ,|η|,T̃ ) (109)

= |η|2T̃ 2 sinc2(f (ξ,|η|)T̃ ), (110)

with

sinc(x) := sin(x)

x
, (111)

f (ξ,|η|) :=
√

|η|2 +
(

3 − 2ξ

4

)2

, (112)
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FIG. 3. (a) Dependence of β̃−1 ln γ1→0 on the parameters ξ and |η| for T̃ = 5 and β̃ = 0.4. Its cross sections for (b) |η| = 4π/5 and (c)
ξ = 6π/5. The unity of γ1→0 (namely, the zero of ln γ1→0) does not depend on the inverse temperature β̃.

and hence

p1→0(ξ,|η|,β̃,T̃ ) = |η|2T̃ 2 sinc2(f (−ξ,|η|)T̃ )

1 + e2β̃

+ |η|2T̃ 2 sinc2(f (ξ,|η|)T̃ )

1 + e−2β̃
, (113)

p0→1(ξ,|η|,β̃,T̃ ) = |η|2T̃ 2 sinc2(f (ξ,|η|)T̃ )

1 + eβ̃

+ |η|2T̃ 2 sinc2(f (−ξ,|η|)T̃ )

1 + e−β̃
. (114)

We thereby plotted γ1→0 in Fig. 3. The quantity γ1→0

fluctuates around unity wildly, even exceeding unity often.
This fluctuation of γλi→λf should be detectable in experiments
and provide evidence for the present approach.

For ξ = 0, we find p1→0(0,η,β̃,T̃ ) = p0→1(0,η,β̃,T̃ ) and
γ1→0(0,η,β̃,T̃ ) = 1. The other conditions for γ1→0 = 1 are
β̃ = 0 or

sinc2(f (ξ,|η|)T̃ ) = sinc2(f (−ξ,|η|)T̃ ), (115)

which does not depend on the inverse temperature β̃ [Figs. 3(b)
and 3(c)].

V. CONCLUSION

In the present paper, we have shown that the variance of the
energy transferred to the external system diverges when the
dynamics of the internal quantum system is approximated to a
unitary. Because of this, the work extraction under the assump-
tion of a unitary dynamics of the internal system is unsuitable
for the thermodynamics of a microscopic quantum system.
We claim that the work extraction from the internal quantum
system should be described as a quantum measurement process
introduced by Hayashi and Tajima [35,36] and have applied
this formulation to the quantum Jarzynski equality.

In the present paper, we have assumed that the measurement
process can measure the energy loss of the internal system
without errors; in other words, it can convert all of the
energy loss into the work. However, since the actual external
system is a thermodynamic system, the energy transfer may
be separated into the work and the heat. The measurement
process corresponding to this should be an incomplete process
in which the extracted work is not equal to the energy loss;
the heat generated into the external system should be regarded
as the difference of the energy loss and the extracted work. It
will be an important future work to consider the incomplete
measurement process in order to understand the work and the
heat in quantum thermodynamics.
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APPENDIX A: CALCULATION OF EQS. (27) AND (28)

We here show details of the calculation of Eqs. (25) and (26). To calculate them, we introduce the matrix representation of
Eqs. (10) and (21):

ρI :=
(

p q

q∗ 1 − p

)
, (A1)

Kn,n′ =
(

δn,n′u0,0 δn−1,n′u0,1

δn+1,n′u1,0 δn,n′u1,1

)
. (A2)

We find

K̄j :=
M∑

m=1

Kj,m =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
0 0

u1,0 0

)
for j = 0

(
u0,0 0
u1,0 u1,1

)
for j = 1

(
u0,0 u0,1

u1,0 u1,1

)
for 2 � j � M − 1

(
u0,0 u0,1

0 u1,1

)
for j = M

(
0 u0,1

0 0

)
for j = M + 1

0 otherwise,

(A3)

and thereby obtain

K̄
†
j K̄j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(|u1,0|2 0
0 0

)
for j = 0

(|u0,0|2 + |u1,0|2 u∗
1,0u1,1

u1,0u
∗
1,1 |u1,1|2

)
for j = 1

( |u0,0|2 + |u1,0|2 u∗
0,0u0,1 + u∗

1,0u1,1

u0,0u
∗
0,1 + u1,0u

∗
1,1 |u0,1|2 + |u1,1|2

)
for 2 � j � M − 1

( |u0,0|2 u∗
0,0u0,1

u0,0u
∗
0,1 |u0,1|2 + |u1,1|2

)
for j = M

(
0 0
0 |u0,1|2

)
for j = M + 1

0 otherwise.

(A4)

Using Eqs. (5), (6), and (7), we obtain

∑
j

jK̄
†
j K̄j = 1

2
M(M + 1) +

( −|u1,0|2M u∗
0,0u0,1(M − 1)

u0,0u
∗
0,1(M − 1) |u0,1|2M

)
, (A5)

∑
j

j 2K̄
†
j K̄j = 1

6
M(M + 1)(2M + 1) +

( −|u1,0|2M2 u∗
0,0u0,1

(
M2 − 1

)
u0,0u

∗
0,1

(
M2 − 1

) |u0,1|2
(
M2 + 2M

)). (A6)

Inserting Eqs. (A1), (A5), and (A6) into Eqs. (25) and (26), we obtain

〈h〉 = �

[
1

2
(M + 1) + |u0,1|2(1 − p) − |u1,0|2p + 2

(
1 − M−1

)
Re(u0,0u

∗
0,1q)

]
, (A7)

〈h2〉 = �2

[
1

6
(M + 1)(2M + 1) + |u0,1|2(M + 2)(1 − p) − |u1,0|2Mp + 2

(
M − M−1)Re(u0,0u

∗
0,1q)

]
. (A8)

Now, we arrange Eqs. (A7) and (A8) using the average of the energy transfer 〈w〉. The expectation of energy with respect to
the initial state (20) is given by

Tr [HEρE] = �

2
(M + 1). (A9)
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Combining Eqs. (11), (A7), and (A9), we obtain the expecta-
tion of w in the form

〈w〉 = 〈h〉 − Tr [HEρE] (A10)

= �[|u0,1|2(1 − p) − |u1,0|2p + 2
(
1 − M−1

)
× Re

(
u0,0u

∗
0,1q

)
]. (A11)

Therefore, Eqs. (A7) and (A8) reduce to Eqs. (27) and (28).

APPENDIX B: CALCULATION OF EQ. (43)

Let us find Eq. (43). The eigenvalues of K(ρI) and ρI are
given by

λ± := 1
2 ± R, λ′

± := 1
2 ± R′, (B1)

where R and R′ are defined in Eqs. (44) and (45), respectively.
The diagonal matrices 
 and 
′ are given by


 :=
(

λ+ 0
0 λ−

)
, 
′ :=

(
λ′

+ 0
0 λ′

−

)
. (B2)

We parametrize the arbitrary unitary matrix ŨI as

ŨI := eiφ

(
eiψ1 cos θ eiψ2 sin θ

−e−iψ2 sin θ e−iψ1 cos θ

)
, (B3)

where φ, θ , ψ1, and ψ2 are real parameters. Combining
Eqs. (B2) and (B3), we obtain

ŨI

′Ũ †

I −
=
(

R′ cos 2θ − R −ei(ψ1+ψ2)R′ sin 2θ

−e−i(ψ1+ψ2)R′ sin 2θ −(R′ cos 2θ−R)

)
,

(B4)

where eigenvalues are given by ±
√

R′2 + R2 − 2RR′ cos 2θ .
We thereby obtain

1
2 Tr |ŨI


′Ũ †
I − 
| =

√
R′2 + R2 − 2RR′ cos 2θ. (B5)

Therefore, we obtain Eq. (43).
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