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Numerical simulations of Ising spin glasses with free boundary conditions:
The role of droplet excitations and domain walls
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The relative importance of the contributions of droplet excitations and domain walls on the ordering of
short-range Edwards-Anderson spin glasses in three and four dimensions is studied. We compare the spin overlap
distribution functions of periodic and free boundary conditions using population annealing Monte Carlo. For
system sizes up to about 1000 spins, spin glasses show nontrivial spin overlap distributions. Periodic boundary
conditions may trap diffusive domain walls which can contribute to small spin overlaps, and the other contribution
is the existence of low-energy droplet excitations within the system. We use free boundary conditions to minimize
domain-wall effects, and show that low-energy droplet excitations are the major contribution to small overlaps in
numerical simulations. Free boundary conditions has stronger finite-size effects, and is likely to have the same
thermodynamic limit with periodic boundary conditions.
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I. INTRODUCTION

The nature of the ordering of short-range Edwards-
Anderson (EA) spin glasses [1] is a subject of long-
standing controversy [2–26]. The infinite-range Sherrington-
Kirkpatrick (SK) model [27] is known to have an infinite
number of pure states, described by replica symmetry breaking
[28–30]. In the context of short-range spin glasses, there are
two similar and plausible ways to have many pairs of pure
states, but in terms of metastates [31–33]. For a finite large
volume of spins, there might be one pair of pure states present,
the chaotic pairs picture [33,34], or many pairs of pure states,
the nonstandard replica symmetry breaking (RSB) picture
[33,35], both with chaotic size dependence and space-filling
domain walls. The droplet picture on the other hand, developed
by McMillan [36], Bray and Moore [37], as well as Fisher and
Huse [38–40], is an example of the simple scenario that there
is only a single pair of pure states and the thermodynamic limit
is defined in the usual way. In the droplet picture, domain walls
are fractal surfaces, not space filling.

Many numerical simulations have been conducted to study
the ordering of the EA model [2–5,7–23,26] with a confusing
mixture of results, in particular whether domain walls are space
filling, and there is a finite weight near zero overlap in the spin
overlap distribution function P (q). According to the droplet
picture, the free energy cost to flip a droplet of size � scales as
�θ , where θ > 0 is the stiffness exponent, which is expected to
be the same for domain-wall and droplet excitations. On the
other hand, RSB predicts that θ = 0 for droplet excitations.
Consequently P (0) scales as �−θ . Therefore, a finite P (0)
means there exist large-scale excitations in the system with
O(1) cost in free energy. Otherwise, there is a unique ordering
of spins without system-size excitations. When a domain
wall is created, there are �ds spins on the surface of the
domain wall, where ds is the fractal dimension of the domain
wall. In the droplet picture, the surface is a fractal with
D − 1 � ds � D, while in RSB the surface is space filling and
ds = D, in D dimensions. To leading order without finite-size
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corrections, domain walls appear to be fractals and the weights
near zero overlap is finite [7,8,11,14] for the system sizes
currently accessible. New statistics or finite-size corrections
are therefore intensively developed, and pointing to different
scenarios [20,23,41–43].

In this work, we focus on the weights near zero overlap
P (0). We are interested in the question if the droplet picture
holds, could it be that P (0) is a finite constant trivially because
of trapped diffusive domain walls in the usually applied
periodic boundary conditions (PBCs), or low-energy droplet
excitations are the dominate contribution? Note that boundary
conditions are only relevant to the EA model, not the SK model.
The motivation of the idea of diffusive domain walls is from
the consideration that the overlap distribution function of the
ferromagnetic Ising model is flat if the antiperiodic boundary
condition in the x axis is applied, where the system traps
topologically protected domain walls. For disordered systems
like spin glasses, one can generalize this term by comparing
the interfaces [44] of the thermodynamic states of the system,
where an interface is a bond that is satisfied in one state but
unsatisfied in the other state, i.e., a negative link overlap.
If the interfaces are two percolating domain-wall surfaces
at different locations of the system, then we say the system
has trapped diffusive domain walls, which may be inserted
at different locations, but with similar free energy cost. It is
not hard to see that PBCs may trap a diffusive domain wall
that is topologically protected. On the other hand, such effects
should be reduced for free boundary conditions (FBCs). In this
work, we use P (0) as our primary observable, which is also
sufficient, to detect the domain-wall effects instead of studying
the complex interfaces at finite temperatures. We propose to
compare P (0) of PBCs and FBCs to answer the question. Our
strategy is as follows: (1) If domain-wall effects dominate,
FBCs should have stronger ordering than PBCs as domain-wall
effects are reduced, and (2) If droplet excitations dominate,
FBCs should make the ordering weaker or not change for finite
systems, as droplet excitations are easier at the surface of the
system. In this context, a stronger ordering means a smaller
P (0) and a weaker ordering means a larger P (0). To be more
quantitative, if domain-wall effects dominate, we expect P (0)
to drop by a constant amount with little or no system size
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dependence as domain walls impact all system sizes in the
same manner [26]. On the other hand, if droplet excitations
dominate, the difference of P (0) of PBCs and FBCs is expected
to be a decreasing function of system size and converges to
zero since the fraction of surface spins decreases to zero in the
thermodynamic limit.

Thermal boundary conditions (TBCs) [23] were used to
reduce domain-wall effects, answered this question to some
extent, and indicated that the answer is perhaps negative. The
answer however is not completely clear, because TBCs limit
fluctuations only between periodic and antiperiodic boundary
conditions according to the Boltzmann weights in each spatial
direction, can still trap domain walls, and also overlaps
between different boundary conditions are introduced. In this
work, we minimize the domain-wall effects using FBCs. FBCs
are probably the best boundary conditions one can work with
to separate the two effects. Our results show that droplet
excitations dominate P (0), in line with that of TBCs.

It is also well known that FBCs introduce new finite-size
effects as a substantial fraction of the spins are on the surface,
which could be misleading when looking for a trend with
limited system sizes. Therefore, it is crucial to compare
FBCs with PBCs in interpreting the FBC data properly. FBCs
were used in the early work of Ref. [14] in revealing the
nature of ordering of short-range spin glasses, and results for
small system sizes were reported. In this work, we conduct
large-scale Monte Carlo simulations, focusing in particular on
P (0) as a function of the system size in both three and four
dimensions. The comparison of the PBC and FBC overlap
functions suggests that they are likely to have the same
thermodynamic limit. The existence of low-energy droplet
excitations and whether droplet excitations and domain walls
have the same stiffness exponent have also been intensively
studied. In Refs. [7,45], a small perturbation is added to the
Hamiltonian such that the ground state energy increases more
than the excited states to detect changes in the ground state,
and hence the existence of low-energy droplet excitations. In
Ref. [46], various forms of droplet excitations are generated
and the stiffness exponents are measured in two dimensions.

The paper is organized as follows. We first discuss the
model, simulation methods, and observables in Sec. II,
followed by numerical results in Sec. III. Concluding remarks
are stated in Sec. IV.

II. MODELS, METHODS, AND OBSERVABLES

We study the three-dimensional (3D) and four-dimensional
(4D) Edwards-Anderson Ising spin-glass model [1] defined by
the Hamiltonian

H =−
∑
〈ij〉

JijSiSj , (1)

where Si = ±1 are Ising spins and the sum is over nearest
neighbors on a hypercubic lattice of linear size L with number
of spins N = LD. The random couplings Jij are chosen from
a Gaussian distribution with mean 0 and variance 1. A set of
couplings {Jij } defines a disorder realization. We apply free
boundary conditions, as well as periodic boundary conditions
to each instance. The simulation is carried out using population
annealing Monte Carlo [47–50]. The simulation parameters are

TABLE I. Simulation parameters for the 3D and 4D EA model
using population annealing Monte Carlo. D is the dimension of the
system, BC is the boundary condition, L is the linear system size,
R0 is the population size, T0 is the lowest temperature simulated, NT

is the number of temperatures used in the annealing schedule, which
is linear in β, and M is the number of disorder realizations studied.
NS = 10 sweeps are applied to each replica at each temperature.

D BC L R0 T0 NT M

3 FBC 4 5 104 0.20 101 5000
3 FBC 6 2 105 0.20 101 5000
3 FBC 8 5 105 0.20 201 5000
3 FBC 10 106 0.20 301 5000
3 FBC 12 106 0.33 301 5000
4 FBC 3 2 104 0.36 101 5000
4 FBC 4 5 104 0.36 101 5000
4 FBC 5 105 0.36 101 5000
4 FBC 6 2 105 0.36 201 5000
4 FBC 7 5 105 0.36 201 4400
4 FBC 8 8 105 0.72 301 2000
4 PBC 3 2 104 0.36 101 3000
4 PBC 4 5 104 0.36 101 3000
4 PBC 5 105 0.36 101 3000
4 PBC 6 2 105 0.36 201 3000
4 PBC 7 5 105 0.36 201 3000
4 PBC 8 8 105 0.72 301 3000

summarized in Table I. Note that the transition temperatures
are TC ≈ 1 in three dimensions [51] and TC ≈ 1.8 in four
dimensions [52].

We study the spin overlap q defined as

q = 1

N

∑
i

S
(1)
i S

(2)
i , (2)

where spin configurations (1) and (2) are chosen independently
from the Boltzmann distribution, and its statistic I (q0),

I (q0) =
∫ q0

−q0

P (q)dq. (3)

We study I (0.2) unless otherwise specified.

III. RESULTS

In this section, we present our numerical results. We discuss
the 3D results in Sec. III A and the 4D results in Sec. III B.

A. Three dimensions

The disorder-averaged spin overlap distributions P (q) for
periodic and free boundary conditions are shown in Fig. 1. The
data for PBCs are taken from a previous study of Ref. [23].
Both display peaks at finite-size values of ±qEA, with the
Edwards-Anderson order parameter qEA decreasing with L.
For PBCs at small q the distribution is nearly independent of
L, consistent with many past studies [7,11,14,20].

The statistic I as a function of system sizes is shown in
Fig. 2. We find that the FBC ordering gets weaker rather
than stronger compared with PBCs, with noticeable size
corrections. This suggests that trapped domain walls in PBCs
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FIG. 1. Disorder-averaged spin overlap distributions P (q) in
three dimensions for sizes L = 4,6,8,10, and 12 at T = 0.42 with
(a) periodic and (b) free boundary conditions. The finite-size values
of ±qEA decrease with system size. Note that FBCs are less ordered
than PBCs for the system sizes studied. (a) PBC; (b) FBC.

cannot be used to argue why P (0) is finite, and droplet
excitations are at work. For very small system sizes, I appears
to decrease with system size, similar to what was found in
Ref. [14]. However, as system size gets larger, this trend
does not appear to hold, especially at the lower temperature
T = 0.2, PBCs appear to provide a lower bound for FBCs.
The same appears to hold in four dimensions, as shown in the
next section.

It is easy to understand why I is larger for small system
sizes in FBCs than PBCs if droplet excitations dominate. If
droplet picture holds, larger droplets can be excited by taking
advantage of the free bonds on the surface. But I would
eventually become trivially the same and become zero when
system size gets larger, as the free energy cost inside the system
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FIG. 2. I as a function of system size L in three dimensions for
periodic and free boundary conditions. I is approximately a constant
for PBCs, and is a fast decreasing function at small L for FBCs, but
appears to level off and is bounded by the values of the PBCs when
L increases.
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FIG. 3. Disorder-averaged spin overlap distributions P (q) in four
dimensions for sizes L = 3, 4, 5, 6, 7, and 8 at T = 0.72 with (a)
periodic and (b) free boundary conditions. The finite-size values of
±qEA decrease with system size. Note that FBCs are less ordered than
PBCs for the system sizes studied. (a) PBC; (b) FBC.

would dominate and diverge, the free bonds on the surface will
not help. If on the other hand RSB is correct, we again expect
the excitations can take advantage of the free bonds on the
surface, and expect this effect to be increasingly less important
for larger system sizes. This would naturally suggest the
same thermodynamic limit for FBCs and PBCs. Furthermore,
the insensitivity of metastates to boundary conditions in the
nonstandard RSB [33,35] with chaotic size dependence also
supports the scenario that FBCs and PBCs have the same
thermodynamic limit. Therefore, we believe that the PBC I is
not only a lower bound for FBCs, but the two would eventually
become the same in the thermodynamic limit. Our numerical
results appear to support this conjecture, especially in four
dimensions and lower temperatures, where finite-size effects
are smaller.

B. Four dimensions

The overlap distribution P (q) and the statistic I for PBCs
and FBCs are shown in Figs. 3 and 4, respectively. Similar
behaviors as in three dimensions are found except that the
trend becomes more profound. By looking at I of FBCs alone,
one may like to argue that I is a decreasing function of
L. However, we believe this is due to the strong finite-size
effects of FBCs. Note that in three dimensions, I is also
a decreasing function of L up to around L ≈ 8, and only
appears to decrease more slowly or level off thereafter. We
expect I of FBCs is still bounded and will converge to that
of PBCs in four dimensions. It is easy to understand why the
convergence is faster at lower temperatures, where thermal
fluctuation is smaller. It is interesting that the convergence is
faster in four dimensions than in three when the temperatures
are similar (both are around 0.4TC and 0.2TC). This could
be intuitively understood from the number of neighbors. For
example for a spin on the interior of a surface, it will lose one
neighbor out of a total of eight neighbors in four dimensions but
only six neighbors in three dimensions. Therefore, the effects
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FIG. 4. I as a function of system size L in four dimensions for
periodic and free boundary conditions. I is approximately a constant
for PBCs, and is a fast decreasing function of L for FBCs, but
appears to level off and is bounded by the values of the PBCs when
L increases. The fluctuation at L = 5 and 6 is likely due to even-odd
effects for small system sizes.

of FBCs will be a decreasing function of dimensionality,
except for very small system sizes where the fraction of
surface spins would dominate. This simple explanation is in
agreement with the more quantitative or generic explanation
that the correlation function decays faster in four dimensions
or the sample stiffness exponent is much larger in four
dimensions, as discussed in greater detail in the following
text. This consideration gives more weight to our conjecture
that the overlap distribution of FBCs and PBCs has the same
thermodynamic limit, as finite-size effects are smaller in four
dimensions than in three.

Finally we analyze quantitatively our data with curve fitting
using ansatz scalings of both the RSB and the droplet pictures.
The goal is to test if the asymptotic values of I of PBCs and
FBCs are the same, and also which picture our data fit best.
We use the following scaling functions:

IRSB = a1/L
θ ′ + c, (4)

IDS = a2/L
b, (5)

for RSB fits and droplet fits, respectively.

The exponent θ ′ within the RSB theory, controls the
algebraic decay of the correlation function within the q = 0
sector. We use the known exponents θ ′ = 0.38(2) in three
dimensions [19,53] and θ ′ = 1.0(1) in four dimensions [54]
to reduce the degree of freedom. For the droplet picture, one
may like to use the stiffness exponent θ which is θ ≈ 0.2 in
three dimensions [23] and θ ≈ 0.7 in four dimensions [55,56].
However, these fits are going to be poor as one can easily see
especially for PBCs that such strong decays do not present for
the system sizes accessible. Therefore, we relax this exponent
as a fitting parameter b. In this way, one can compare b with θ

to see if the 1/�θ decay is observed. Note that this also makes
both fits have two fitting parameters. The results are listed in
Table II.

One interesting result is in the c column. We see that
the asymptotic I of PBCs and FBCs with the RSB fits are
compatible within statistical errors, in agreement with our
conjecture. On the other hand, I would become 0 for the
droplet picture by construction. The goodness of fits Q for
RSB and droplet are similar. However, some of the exponents
b have very large statistical errors, suggesting the absence of
the 1/�θ decay. Furthermore, the exponents b are far from θ .
Therefore, it is reasonable to conclude the data fit the RSB
picture better than the droplet picture.

IV. CONCLUSIONS AND FUTURE CHALLENGES

In this work, we studied whether the finite P (0) observed
in numerical simulations of the EA model in three and four
dimensions is dominated by domain walls or droplet excita-
tions. To this effort, we compared the spin overlap distribution
functions of periodic and free boundary conditions, as the
two effects make dramatically different predictions for P (0)
when we change the boundary conditions from PBCs to FBCs.
Our results suggest that droplet excitations, not domain walls,
are the main contribution to small overlaps. Our data at
different temperatures and dimensions also suggest that the
overlap distributions of PBCs and FBCs are likely to have the
same thermodynamic limit. A rigorous proof of this would be
interesting, yet challenging as FBCs are not gauge related to
PBCs.

If we believe in this conjecture, our results show that the
initial decrease of P (0) of FBCs is a result of finite-size effects,
not the onset of the droplet picture. Therefore, our data for the
statistic I in FBCs are still a support of the RSB picture, as
in PBCs. Furthermore, our results indicate that it is important

TABLE II. Fitting parameters of the RSB and droplet fits of the statistic I using Eqs. 4 and 5. D is the dimensionality, T is the temperature,
BC is the boundary condition, a1,a2,b,c are fitting parameters, and Q1,Q2 are the goodness of fits.

D T BC a1 c Q1 a2 b Q2

3 0.42 FBC 0.0235(33) 0.0508(16) 0.9837 0.0709(16) 0.0684(111) 0.9759
3 0.42 PBC −0.0023(98) 0.0430(46) 0.6468 0.0405(55) −0.0267(660) 0.2688
3 0.20 FBC 0.0185(259) 0.0158(129) 0.0794 0.0323(123) 0.1364(2008) 0.0614
3 0.20 PBC 0.0098(71) 0.0244(35) 0.8520 0.0162(35) −0.1092(1107) 0.6591
4 0.72 FBC 0.1540(240) 0.0509(49) 0.0311 0.1542(133) 0.3856(522) 0.0386
4 0.72 PBC 0.0123(141) 0.0560(29) 0.6381 0.0635(52) 0.0489(478) 0.6777
4 0.36 FBC 0.0475(115) 0.0246(26) 0.5065 0.0558(58) 0.2975(671) 0.5548
4 0.36 PBC −0.0029(176) 0.0279(39) 0.3927 0.0261(69) −0.0150(1632) 0.3087
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to compare FBCs with PBCs for future studies with FBCs
to avoid misleading conclusions due to the strong finite-size
effects of FBCs.
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