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Transition radiation at the boundary of a chiral isotropic medium
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This study analyzes the radiation produced by a point charge intersecting the interface between a vacuum and
a chiral isotropic medium. We deduce analytical expressions for the Fourier components of an electromagnetic
field in both vacuum and medium for arbitrary charge velocity. The main focus is on investigating the far field
in a vacuum. The distinguishing feature of the interface with a chiral isotropic medium is that the field in the
vacuum area contains both copolarization (coinciding with the polarization of the self-field of a charge) and
cross-polarization (orthogonal to the polarization of the self-field). Using a saddle-point approach, we obtain
asymptotic representations for the field components in the far-field zone for typical frequency ranges of the Condon
model of the chiral medium. We note that a so-called lateral wave is generated in a vacuum for certain parameters.
The main contribution to the radiation at large distances is presented by two (co- and cross-) spherical waves
of transition radiation. These waves are coherent and result in a total spherical wave with elliptical polarization,
with the polarization coefficient being determined by the chirality of the medium. We present typical radiation
patterns and ellipses of polarization.
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I. INTRODUCTION

Research in the field of optical activity (or chirality, or
gyrotropy) has a long history since the discovery of so-
called optical rotatory power [1]. The studies have involved
investigations of various aspects of electrodynamics of chiral
media collected in a series of reviews and books [2–6]. It
should be noted that most biological tissues are chiral isotropic
media because they possess chirality due to the mirrorless
structure of molecules [7–9].

The science of radiation from charged particles uniformly
moving in material media, which is connected with the
experimental discovery [10] and corresponding theoretical
explanation [11] of Cherenkov radiation, is approximately
80 years old [12–14]. During this period, some aspects
of Cherenkov radiation in various chiral media have been
investigated in several papers [15–20]. In particular, a detailed
investigation of the structure of the electromagnetic field pro-
duced by a point charge uniformly moving in a chiral isotropic
medium obeying the Condon model of frequency dispersion
[4] was performed in our previous paper [21]. In paper [21],
the reader can also found references to numerous papers
on field potentials and Green’s functions in chiral media, a
“dictionary” on constitutive relations, and papers dealing with
chiral interfaces, guided waves, and electromagnetic properties
of distinct chiral objects (recent investigation of modern chiral
nanostructures can be found in Ref. [22]). A similar problem
with a chiral anisotropic medium was considered in Ref. [23].
Another related effect, transition radiation [24], for the case of
interface with a chiral medium was partially analyzed in the
limiting case of slow charge motion [25].
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However, in recent years, renewed interest in the afore-
mentioned effects has emerged due to the development of
a relatively new prospective method for the diagnostics
of biological objects—Cherenkov luminescence tomography
(CLT) [26–33]. This method is based on the registration of
Cherenkov light emitted by electrons or protons, which are in
turn produced during the radioactive decay of radionuclides
placed in the tissue under investigation. For example, cancer
diagnostics can be performed with CLT, if the radioactively
labeled glucose molecules are injected into the investigated
body. CLT can also be used for precise tracking of la-
beled antibodies in radioimmunotherapy. In contrast to other
techniques such as positron emission tomography, where
expensive γ -ray detectors are required, CLT utilizes visible
light that can be registered using conventional light sensors
[34]. The first experiments in human CLT have been reported
recently [35].

In this paper, we investigate the effect of the simplest
inhomogeneity (a planar interface) on radiation produced by
a moving charge in chiral medium. We consider the typical
formulation of the transition radiation problem in which a
uniformly moving point charge orthogonally intersects the
plane boundary between a vacuum and a chiral isotropic
medium. On the one hand, we continue the investigation of
our previous paper [21]; on the other hand, we perform a
generalization of an earlier paper [25], since we suppose that
the charge motion velocity is arbitrary.

The paper is organized as follows. After the introduction
(Sec. I), we briefly discuss properties of the electromagnetic
field in an unbounded chiral medium (Sec. II). Section III
contains a rigorous solution for the field of transition radiation
and several limiting cases. Section IV is devoted to the
asymptotic investigation of the radiation in the far-field zone of
the vacuum area. In Sec. V, the specific frequency dispersion
(Condon model) is utilized for the graphical representation
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of typical radiation patterns and ellipses of polarization. The
conclusion (Sec. VI) finishes the paper.

II. MATERIAL RELATIONS AND FIELD POTENTIALS
FOR CHIRAL ISOTROPIC MEDIUM

In this paper, we will describe the isotropic chiral media by
the following symmetrized material relations [21,36]:

�Dω = ε(ω) �Eω − i�(ω) �Hω,

�Bω = μ(ω) �Hω + i�(ω) �Eω. (1)

Here, � is a chiral parameter, ε and μ are the dielectric
permittivity and magnetic permeability, respectively, and
values with the subscript ω are the time Fourier transforms
of electromagnetic field components:

{ �Eω, �Dω, �Hω, �Bω} = 1

2π

∫
R
{ �E, �D, �H, �B}eiωtdt. (2)

As usual, because the field components are real values,

{ �Eω(−ω̄), �Dω(−ω̄), �Hω(−ω̄), �Bω(−ω̄)}
= { �Eω(ω), �Dω(ω), �Hω(ω), �Bω(ω)}, (3)

where the overline indicates a complex conjugate. The inverse
Fourier transform

{ �E, �D, �H, �B} =
∫
R
{ �Eω, �Dω, �Hω, �Bω}e−iωtdω (4)

can be rewritten in accordance with Eq. (3) in the following
form:

{ �E, �D, �H, �B} = 2 Re
∫ ∞

0
{ �Eω, �Dω, �Hω, �Bω}e−iωtdω. (5)

Using Eq. (1), we can write the Maxwell equations for time
Fourier transforms in the form

rot �Eω = iω

c
[μ �Hω + i� �Eω],

rot �Hω = −iω

c
[ε �Eω − i� �Hω] + 4π

c
�jω, (6)

div �Eω = 4πμ

εμ − �2
ρω, div �Hω = − 4πi�

εμ − �2
ρω, (7)

where ρω and �jω are the time Fourier transforms of the charge
and current densities of the sources, respectively. After a series
of transformations, by introducing the new unknown vectors
�E+

ω and �E−
ω (to play the role of potentials) [3,19,21],

�Eω = �E+
ω + �E−

ω ,

�Hω = �H+
ω + �H−

ω = i

√
εμ

μ
( �E+

ω − �E−
ω ), (8)

we obtain the following uncoupled equations [21]:

� �E±
ω + ω2

c2
n2

± �E±
ω

= 2πμ√
εμ

(
−i

ω

c2
n± �jω + 1

n±
∇ρω ± i

c
rot �jω

)
, (9)

where

n± = n ± �, n = √
εμ. (10)

It is convenient to determine the radical in (10) by the rule
Re

√
εμ > 0 for real positive or complex values of the product

εμ and by the rule
√

εμ = i|√εμ| for real negative values of
εμ [21]. With these definitions, we have

n±(−ω̄) = n∓(ω). (11)

Note that the particular solution of (9) for the case of a
moving point charge in a homogeneous unbounded medium
was obtained in Ref. [21]. For analysis that will be performed
in Sec. III, some additional convenient expressions can be
obtained from (9) (see Appendix A).

As follows from (9), two plane monochromatic waves can
exist in the medium under consideration:

�E+
ω = �E+

ω0 exp(i�k+ �R), �E−
ω = �E−

ω0 exp(i�k− �R). (12)

They have complex magnitudes

�E±
ω0 = �E′±

ω0 + i �E′′±
ω0 , �H±

ω0 = �H ′±
ω0 + i �H ′′±

ω0 , (13)

and wave vectors

�k± = k±�ek, k± = k0n±, k0 = ω/c, (14)

where �ek is a unit vector determining the direction of wave
propagation. Combining (7) with ρω = 0, one can obtain that
the following scalar multiplications equal zero,

(�ek, �E′±
ω0) = (�ek, �E′′±

ω0 ) = (�ek, �H ′±
ω0) = (�ek, �H ′′±

ω0 ) = 0, (15)

and therefore the waves (12) are transversal. Combining (6)
with �jω = 0, one can obtain

[�ek, �E′±
ω0] = ∓ �E′′±

ω0 , [�ek, �E′′±
ω0 ] = ± �E′±

ω0, (16)

[�ek, �H ′±
ω0] = ∓ �H ′′±

ω0 , [�ek, �H ′′±
ω0 ] = ± �H ′±

ω0, (17)

where square brackets refer to vector multiplication. The
combination of (6), (16), and (17) gives

�H ′±
ω0 = ∓Z−1 �E′′±

ω0 , �H ′′±
ω0 = ±Z−1 �E′±

ω0, (18)

where Z = μ/
√

εμ. If we suppose that the Fourier spectrum
contains a single frequency ω (harmonic regime) then �E± =
Re[ �E±

ω exp(−iωt)], and we obtain

�E± = �E′±
ω0 cos[k±(�ek, �R) − ωt] − �E′′±

ω0 sin[k±(�ek, �R) − ωt],

(19)�H± = ∓Z−1{ �E′±
ω0 sin[k±(�ek, �R) − ωt]

+ �E′′±
ω0 cos[k±(�ek, �R) − ωt]}. (20)

Figure 1 illustrates formulas (19) and (20) for Z < 1 and
|�| < |n|. For definiteness, we use a Cartesian frame x ′, y ′,
z′ and suppose that �ek = �ez′ , and therefore (�ek, �R) = z′, and
waves propagate along the z′ axis. If an observer is situated
in plane z′ = 0, and waves propagate to the observer, then
vectors �E+ and �H+ rotate clockwise while vectors �E− and
�H− rotate counterclockwise in the (x ′, y ′) plane. In other

words, these waves possess circular polarization. We will
further refer to the + and − waves as waves with right- and
left-hand polarizations, respectively. Moreover, if we introduce
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FIG. 1. Polarization of right-hand �E+, �H+ (a) and left-hand �E−,
�H− (b) waves in chiral isotropic medium. Both waves propagate to

the observer (along positive z′-axis direction).

the phase velocity of these waves in a common way, i.e.,

Vph± = ω

k±
= c

n±
, (21)

then Vph+ < Vph− if n± > 0.
Naturally, all the above formulas are also valid for an

isotropic nonchiral medium (for example, vacuum), where
� = 0 and n+ = n− = n = √

εμ. In the case of an interface
between a vacuum and a chiral medium (Sec. III), it is
convenient to describe the field in the vacuum area using
potentials (8) in both media.

III. GENERAL SOLUTION OF THE PROBLEM

The geometry of the problem is shown in Fig. 2. We will
investigate the radiation of a point charge q flying from a
standard nonchiral medium (z < 0) into a chiral isotropic
medium (z > 0) described with the use of relations (1). In
short, we will identify the area z < 0 as a vacuum area;
however, we assume only that �v = 0 while maintaining
permittivity εv �= 1 and permeability μv �= 1 (consequently,
nv± = nv = √

εvμv). All values in the vacuum area will have
index v, while values in the chiral medium will have the index
m. We also introduce the corresponding cylindrical frame r ,
ϕ, z. The charge moves with constant velocity �V along the z

axis, such that its position at the moment t is x = y = r = 0,
z = V t , and therefore

ρ = qδ(x)δ(y)δ(z − V t), �j = �ezVρ, (22)

ρω = q

(2π )2V
exp

(
iωz

V

)∫ ∞

0
J0(rkr )krdkr ,

jω = Vρω. (23)

FIG. 2. Geometry of the problem and main notations.

We present a total field in the form

�Eω = �Eq
ω + �Eb

ω, �Hω = �Hq
ω + �Hb

ω, (24)

where �Eq
ω, �Hq

ω is a self-field of the charge in correspond-
ing infinite medium [particular solution of inhomogeneous
equations (9)], while �Eb

ω, �Hb
ω is an additional field describing

the influence of the boundary [solution of homogeneous
equations (9)] [24,37–40]. It is convenient to introduce
potentials (8) in each half-space:

�Eq,bv
ω = �Eq,bv+

ω + �Eq,bv−
ω ,

�Hq,bv
ω = i

nv

μv

( �Eq,bv+
ω − �Eq,bv−

ω

)
, (25)

�Eq,bm
ω = �Eq,bm+

ω + �Eq,bm−
ω ,

�Hq,bm
ω = i

nm

μm

( �Eq,bm+
ω − �Eq,bm−

ω

)
, (26)

and present them as inverse Fourier-Bessel integrals over the
radial wave vector kr . As follows from the results of the
paper [21], the longitudinal potentials of the self-field in chiral
medium are

Eqm±
ωz = iq

2πω

μms2
m±

nm±nm

exp

(
i
ω

V
z

)∫ +∞

0
dkr

krJ0(krr)

k2
r − s2

m±
, (27)

where s2
m±=ω2V −2(n2

m±β2 − 1), nm± = nm ± �m, nm =√
εmμm, β = V/c. The longitudinal potentials of the self-field

in vacuum can be written in the form

Eqv±
ωz = iq

2πω

μvs
2
v

n2
v

exp

(
i
ω

V
z

)∫ +∞

0
dkr

krJ0(krr)

k2
r − s2

v

, (28)

where s2
v = ω2V −2(n2

vβ
2 − 1). An additional field is presented

in the following form:

Ebv±
ωz = iq

2πω

∫ +∞

0
dkrB

v
±(kr )krJ0(krr) exp

(
ikv

z |z|
)
, (29)

Ebm±
ωz = iq

2πω

∫ +∞

0
dkrB

m
± (kr )krJ0(krr) exp

(
ikm±

z |z|), (30)

where B
v,m
± (kr ) are the functions to be found, and the

longitudinal wave vectors are

kv
z =

√
ω2c−2n2

v − k2
r , Im kv

z > 0, (31)

km±
z =

√
ω2c−2n2

m± − k2
r , Im km±

z > 0. (32)

Usually, radicals are fixed by the conditions Im kv,m±
z > 0

because corresponding waves should decay away from the
interface if we consider nonzero dissipation (the case of
nondissipative medium can be considered as a result of the
corresponding limiting process). One can show that the fol-
lowing properties hold (overline denotes complex conjugate):

kv
z (−ω̄) = −kv

z (ω), km±
z (−ω̄) = −km∓

z (ω). (33)

Using boundary conditions in the plane z = 0, one can
derive coefficients B

v,m
± (kr ), which determine the longitudinal

field, (29) and (30), and calculate transversal components with
the use of formulas presented in Appendix A (see Appendix B).
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After that, the additional field in vacuum area can be divided into two groups:⎧⎪⎨
⎪⎩

Ebv
ωρ

Ebv
ωz

Hbv
ωϕ

⎫⎪⎬
⎪⎭ = iq

2πω

∫ +∞

0
dkr

⎧⎪⎨
⎪⎩

ikv
z J1(krr)

krJ0(krr)

−iωc−1εvJ1(krr)

⎫⎪⎬
⎪⎭Bv

co exp
(
ikv

z |z|
)
, (34)

⎧⎪⎨
⎪⎩
Hbv

ωρ

Hbv
ωz

Ebv
ωϕ

⎫⎪⎬
⎪⎭ = iq

2πω

∫ +∞

0
dkr

⎧⎪⎨
⎪⎩
−nvμ

−1
v kv

z J1(krr)

invμ
−1
v krJ0(krr)

−ωc−1nvJ1(krr)

⎫⎪⎬
⎪⎭Bv

cr exp
(
ikv

z |z|
)
, (35)

where Bv
co and Bv

cr are determined by (B11) and (B12). Formula
(34) describes the field with polarization coinciding with the
polarization of the self-field of a moving charge (28) and (B14),
and therefore we will refer to this field as copolarization. In
contrast, the field described by formula (35) will be referred
to as cross-polarization.

In the case of weak chirality,

|�̃| 	 1, �̃ = �mn−1
m , (36)

one can perform the following decompositions (up to first-
order terms with respect to �̃):

nm± = nm(1 ± �̃), (37)

km±
z ≈ km

z

[
1 ± k2

m�̃(
km
z

)2
]
, k2

m = ω2

c2
n2

m,

km
z =

√
ω2

c2
n2

m − k2
r , Im km

z > 0, (38)

s2
m± ≈ s2

m

(
1 ± 2n2

mω2�̃

s2
mc2

)
, s2

m = ω2

V 2

(
n2

2β
2 − 1

)
, (39)

�c ≈ �0 = nm

(
εvk

v
z + εmkm

z

)( kv
z

μv

+ km
z

μm

)
. (40)

We obtain

Bv
co ≈

|�̃|	1

2k2
r(

εvkv
z + εmkm

z

)

×
[
ωV −1εmε−1

v − km
z

k2
r − s2

v

− 1

ωV −1 + km
z

]
, (41)

Bv
cr ≈

|�̃|	1

2k2
r �̃

nv�0

(
n2

mkm
z

[
1 − k2

m

(
km
z

)−2]
μm

(
ωV −1 − kv

z

)
+ 1

ωV −1 + km
z

{
εvk

2
m

km
z

(
1 + km

z

ωV −1 + km
z

)

+kv
z n

2
m

μm

[
1 + k2

m

(
km
z

)−2

ωV −1 + km
z

]}⎞⎠. (42)

The copolarization coefficient (41) does not depend on
chirality in the first-order approximation and coincides with
the corresponding expression for a nonchiral medium [24].
The cross-polarization coefficient (42) is proportional to �m,
and therefore the cross-polarized wave can be observed in the

linear approximation. In the case �m = 0, cross-polarization is
absent, and the expressions for the field components coincide
perfectly with the known results for a nonchiral medium
[24,37–40]. Thus, the presence of the cross-polarization wave
in the vacuum area is a distinctive feature of an interface with
a chiral medium.

IV. RADIATION IN THE VACUUM AREA

Here, asymptotic analysis of the additional field (34) and
(35) in the vacuum area is performed. Using a standard
procedure, in these expressions, we can transform semi-
infinite integrals to infinite ones that contain Hankel functions
H

(1)
0 (krr) instead of Bessel functions. We introduce a spherical

coordinate system R, θ , ϕ as shown in Fig. 2. Note that angle
θ is counted off from the negative direction of the z axis,
and therefore the unit vectors �eR , �eϕ , �eθ form a right-hand
orthogonal set, and

r = R sin θ, z = −R cos θ. (43)

We also introduce new integration variable ψ as follows:

kr = kv sin ψ, kv
z = kv cos ψ, kv = k0nv. (44)

Then, the longitudinal components (transversal components
can be handled similarly) can be written in the form{

Ebv
ωz

Hbv
ωz

}
= iqk2

v

8πω

∫
�ψ

sin 2ψH
(1)
0 (� sin θ sin ψ)

×
⎧⎨
⎩

Bv
co(kv sin ψ)

inv

μv

Bv
cr(kv sin ψ)

⎫⎬
⎭ exp (i� cos ψ cos θ )dψ,

(45)

where � = Rkv and �ψ is an integration path in the complex
plane ψ . In the far-field zone determined by the condition
|�| � 1, the asymptotic analysis of integrals (45) can be
performed by the use of saddle-point method [41]. Using the
asymptotic of the Hankel function for |� sin θ sin ψ | � 1 [42],
we obtain{

Ebv
ωz

Hbv
ωz

}
= iqk2

v

8πω

∫
�ψ

sin 2ψ

√
2

π� sin θ sin ψ

× e
−iπ

4

⎧⎨
⎩

Bv
co(kv sin ψ)

inv

μv

Bv
cr(kv sin ψ)

⎫⎬
⎭ exp (�ϕv)dψ, (46)

where

ϕv = i cos (ψ − θ ). (47)
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FIG. 3. Angular dependencies of copolarization component Hωϕ (a) and cross-polarization component Eωϕ (b) over angle θ for q = −1 nC,
β = 0.6 and for two values of frequency (in units of ωrm) in the case of the Condon model (61) with the following parameters: ωrm = ωpm =
2π×10 GHz, ω0 = 0.03ωpm, ωdm = 10−3ωpm, ωpv = 10−4ωpm, ωdv = 10−3ωpv. The green points correspond to the calculation via rigorous
integral formulas (34) and (35), and the red solid line corresponds to the calculation via asymptotic formulas (54) and (55).

The saddle point is ψs = θ , and the corresponding steepest
descent path (SDP) �SDP can be calculated. Then, we should
transform �ψ to �SDP. The integral over SDP is determined
mainly by the contribution of the saddle point (since |�| � 1).
In this case, we obtain the contribution of the saddle point as
follows:{

Ebv
ωz

Hbv
ωz

}
≈
{
Evrad

ωz

Hvrad
ωz

}

= qkv cos θ

2πω

⎧⎨
⎩

Bv
co(kv sin θ )

inv

μv

Bv
cr(kv sin θ )

⎫⎬
⎭exp (ikvR)

R
. (48)

Note that the integrands in (34) and (35) have singular points,
such as poles

kr = ±sv, sv =
√

s2
v , Im sv > 0, (49)

kr = ±s±
m, sm± =

√
s2
m±, Im sm± > 0, (50)

and branch points

kr = ±
√

k2
0n

2
v, kr = ±

√
k2

0n
2
m±, Im

√
> 0. (51)

The integrands in (45) also have corresponding poles and

branch points, excluding the branch points kr = ±
√

k2
0n

2
v ,

which are eliminated by substitution (44). It can be shown

that the poles do not contribute to (46). For certain parameters,
the transformation �ψ → �SDP is accompanied by the capture
of branch points, and corresponding contributions to the field
are connected by the generation of so-called lateral waves [43].
Thus, Eq. (48), which does not consider such contributions, is
not valid for the mentioned parameters. However, in Sec. V,
we will calculate the field numerically using exact integral
representations (34) and (35) and show that the lateral waves
can be neglected for sufficiently large distances.

Calculating the transversal components of the field and
rewriting them in spherical coordinates, we obtain for copo-
larization Evrad

ωR = 0,{
Evrad

ωθ

Hvrad
ωϕ

}
= q cot θ

2πω
Bv

co(kv sin θ )

{
kv−ωεv

c

}
exp (ikvR)

R
, (52)

and for cross-polarization Hvrad
ωR = 0,

{
Hvrad

ωθ

Evrad
ωϕ

}
= iqnv cot θ

2πω
Bv

cr(kv sin θ )

⎧⎨
⎩

kv

μv

k0

⎫⎬
⎭exp (ikvR)

R
, (53)

These formulas describe the volume radiation in the far-field
zone defined by the inequality kvR � 1 (for real positive kv).
There are two transversal spherical waves with linear polar-
ization. They have identical phase velocity, and the vectors of
the electric fields of these waves are mutually orthogonal. If
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FIG. 4. Radiation patterns (Evrad
ω is in Vm−1 s) and ellipses of polarization (calculated for a lobe maximum) for q = −1 nC and various

charge velocities β and frequencies ω of the Condon model (61) with relatively weak chirality (chiral parameter ω0 = 0.03ωpm). Other media
parameters are as follows: ωrm = ωpm = 2π×10 GHz, ωdm = 10−3ωpm, ωpv = 10−4ωpm, ωdv = 10−3ωpv.

we set εv = μv = 1, then nv = 1, and therefore

Evrad
ωθ = −Hvrad

ωϕ = q cot θ

2πc
Bv

co(k0 sin θ )
exp (ik0R)

R
, (54)

Hvrad
ωθ = Evrad

ωϕ = iq cot θ

2πc
Bv

cr(k0 sin θ )
exp (ik0R)

R
. (55)

If dissipation in a chiral medium is negligible and co-
efficients Bv

co and Bv
cr are purely real, then the phase

difference between the waves (54) and (55) is equal to
π/2, and the summary wave in vacuum is characterized
by elliptic polarization with the main axes �eθ and �eϕ .
In other cases, the polarization ellipse is rotated over
some angle depending on the phase of the polarization

coefficient

P = |P |eiϕP = Evrad
ωϕ

Evrad
ωθ

= i
Bv

cr

Bv
co

∣∣∣∣
kr=k0 sin θ

. (56)

Let us calculate the ellipses of polarization. In the harmonic
regime, we have in the far-field zone:

�Evrad(t) = 2 Re
[ �Evrad

ω exp(−iωt)
]

= q cot θ

πRc

∣∣Bv
co(k0 sin θ )

∣∣{�eθ cos

[
ω

(
R

c
− t

)
+ ϕco

]

+ �eϕ|P | sin

[
ω

(
R

c
− t

)
+ ϕco + ϕP

]}
= �eθEθ (t) + �eϕEϕ(t), (57)
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FIG. 5. Radiation patterns (Evrad
ω is in Vm−1 s) and ellipses of polarization (calculated for a lobe maximum) for q = −1 nC and various

charge velocities β and frequencies ω of the Condon model (61) with relatively strong chirality (chiral parameter ω0 = 0.3ωpm is 10 times
larger compared with that in Fig. 4). Other medium parameters are the same.

where ϕco is the phase of Bv
co(k0 sin θ ). If (Rc−1 − t) increases

and the wave propagates to the observer, vector �E rotates
counterclockwise in the plane orthogonal to �eR .

Excluding time dependence from (57), we can obtain the
following relation:

E2
ϕ

E2
0 |P |2 + E2

θ

E2
0

− 2
EϕEθ

E2
0 |P | cos ϕP = (sin ϕP )2, (58)

where

E0 = qk0

πω

cot θ

R

∣∣Bv
co(k0 sin θ )

∣∣. (59)

Equation (58) determines the polarization ellipse, i.e., the
hodograph of the vector �Evrad(t). As one can deduce from

(58), the main axes of this ellipse are rotated with respect to �eθ

and �eϕ at the angle ψpe determined by the following relation:

tan 2ψpe = 2|P | cos ϕP (|P |2 − 1)−1. (60)

Angle ψpe differs from zero if ϕP differs from π/2. The
polarization ellipses will be calculated in Sec. V.

V. NUMERICAL RESULTS

The frequency dependencies of εm(ω) and �m(ω) in accor-
dance with Condon dispersion model [3] are determined by
the following relations:

εm(ω) = 1 + ω2
pm

[
ω2

rm − 2iωωdm − ω2
]−1

,

�m(ω) = ω0ω
[
ω2

rm − 2iωdmω − ω2
]−1

, (61)
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where ωrm is a medium resonant frequency, ωpm is an analog
of plasma frequency, ωdm is a parameter responsible for
dissipation, and ω0 is a chiral parameter. Further, to illustrate
the main effects, we will calculate the Fourier harmonics and
related values for two or three typical frequencies of the model
(61). For a vacuum area, we will use a cold plasma model with
dissipation

εv(ω) = 1 − ω2
pv[2iωdvω + ω2]−1, (62)

under the assumption that ωpv 	 ωpm. In this case, εv ≈ 1 for
all frequencies of interest, while model (62) is a convenient
way to introduce losses correctly.

First, we should clarify the statement concerning
the applicability of the saddle-point approximation (48).
Figure 3 compares the angular dependencies calculated using
asymptotic formulas (54) and (55) [these formulas follow
from (48)] and rigorous integral formulas (34) and (35).
Since the integrands in (34) and (35) are quickly oscillating
functions, the convergence of calculations is achieved by
dividing the essential area of integration into the appropriate
number of subareas. For large distances, such calculation takes
essential time.

In Fig. 3, angle θ = 0◦ corresponds to the trajectory of the
charge motion, while θ = 90◦ corresponds to the boundary
(see Fig. 2). The component Hωϕ determines the field with
copolarization, while the component Eωϕ determines the field
with cross-polarization. As shown by Fig. 3, for a relatively
small distance (|kvR| = 100, left column), the two curves
coincide throughout essentially the whole range of angles,
excluding some in the vicinity of the boundary. For angles
θ close to 90◦, branch points contribute to the integrals
(46), which means that lateral waves are generated near
the boundary. Rigorously speaking, the asymptotic formulas
(54) and (55) are not valid for these angles and this R.
However, with increasing distance R, the relative contribution
of the lateral waves becomes smaller compared with the
contribution of the spherical waves of the transition radiation
(Fig. 3, right column). For example, for ω = 0.99, the distance
R = 500|kv|−1 is large enough for the difference between
curves become invisible. For ω = 5, lateral waves become
insignificant for distances R � 5000|kv|−1 because angular
dependencies practically coincide for this R. We can conclude
that the angular distribution of the field components is
described correctly by asymptotic representations (54) and
(55) for sufficiently large distance R. Such distances will be
referred to henceforth as the far-field zone.

Figure 4 shows the radiation patterns in the far-field zone
for two frequencies of the Condon model with relatively
weak chirality (ω0 = 0.03ωpm) calculated using (54) and (55)
for relatively small (β = 0.1) and relatively large (β = 0.99)
charge velocity. In most cases, the radiation patterns have a
single lobe. For ω = 0.99ωrm, the lobe for the Evrad

ωθ component
is usually several orders of magnitude larger than the lobe
for Evrad

ωϕ . Thus, the cross-polarized wave is excited weakly.
However, for large frequency (ω = 5ωrm), these lobes are
of the same order of magnitude, and therefore co- and
cross-polarized waves are comparable. Figure 4 also shows
ellipses of polarization calculated for the angles of the lobe
maxima (angles indicated near each lobe). It is supposed that
the corresponding wave propagates to the observer (along �eR).

In most cases, these ellipses are strongly prolonged along
the �eθ direction. However, for ω = 5ωrm and β = 0.1, the
polarization ellipse has relatively weak prolongation.

Figure 5 illustrates the radiation patterns and ellipses of
polarization for relatively strong chirality (ω0 = 0.3ωpm is ten
times larger than in Fig. 4, and other media parameters are
the same). The essential difference with Fig. 4 occurs for
relativistic charge velocity (β = 0.99), where the radiation
patterns have two lobes. Polarization ellipses have relatively
weak prolongation for ω = 5ωrm, that is, co- and cross-
polarized waves are comparable (for β = 0.1 the ellipse is
close to circle). In addition, for β = 0.99, these ellipses have
their axes rotated by a considerable angle.

VI. CONCLUSION

In this paper, we have investigated the radiation produced
by a point charge flying from a vacuum into a chiral
isotropic medium described by the Condon dispersion model.
This medium itself supports two fundamental transversal
electromagnetic waves with right-hand and left-hand circular
polarizations. We have deduced the analytical expression
describing the field generated by point charge in both vacuum
and medium. The distinguishing feature of this field in the
vacuum area is that it contains two waves with different
polarizations, one coinciding with the polarization of the
self-field of the charge (copolarization), while the other
is orthogonal to the polarization of the charge’s self-field
(cross-polarization). Since these two waves are coherent (have
the same propagation velocity), they form a total wave with
elliptical polarization.

By applying saddle-point approximation to rigorous inte-
gral representations of the field components, we have calcu-
lated the field in the far-field zone. This field is a sum of two
transversal spherical waves of transition radiation, one with
copolarization and the other with cross-polarization. Based on
these asymptotic formulas, we have calculated the radiation
patterns and ellipses of polarizations for the case of interface
between the vacuum and Condon chiral medium for various
frequencies (in the harmonic regime) and charge velocities.
We have shown that in most cases, the radiation patterns for
both the copolarized and cross-polarized field have a single
main lobe, but the angles of maxima can differ significantly.
The lobe for cross-polarization is typically several orders of
magnitude smaller than for copolarization, and therefore the
corresponding ellipses of polarization are strongly prolonged.
However, for relatively large frequency (several resonant
frequencies of the chiral medium), these magnitudes can be
comparable, and therefore the corresponding ellipses can be
close to a circle (that is, the co- and cross-polarized waves
are comparable). For relatively strong chirality and relativistic
charge velocity, the radiation patterns can have two lobes with
comparable magnitudes.
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APPENDIX A: CONNECTION BETWEEN LONGITUDINAL AND TRANSVERSAL COMPONENTS OF THE FIELD

For analysis performed in Sec. III, it is convenient to obtain some expressions connecting “longitudinal” and “transversal”
components of the field. We introduce another Cartesian frame x, y, z determined by the direction of the external current: it is
supposed that �jω = jω�ez. The direction along the z axis will be called “longitudinal,” while directions orthogonal to the z axis
will be called “transversal.” Decomposing the field

�Eω = �Eω⊥ + Eωz�ez, �Eω⊥ = Eωx �ex + Eωy �ey, (A1)

one can obtain from (6)

�⊥ �E+
ω⊥ = 2π

n+

μ√
εμ

∇⊥ρω + 2π

c

iμ√
εμ

rot(�ezjω) − 1

2
∇⊥

∂E+
ωz

∂z
+ k0

2
n+rot(�ezE

+
ωz),

�⊥ �E−
ω⊥ = 2π

n−

μ√
εμ

∇⊥ρω − 2π

c

iμ√
εμ

rot(�ezjω) − 1

2
∇⊥

∂E−
ωz

∂z
− k0

2
n−rot(�ezE

−
ωz), (A2)

where

�⊥ �Eω⊥ = �ex�⊥Eωx + �ey�⊥Eωy, �⊥Eωx,y = ∂2Eωx,y

∂x2
+ ∂2Eωx,y

∂y2
, ∇⊥ = �ex

∂

∂x
+ �ey

∂

∂y
. (A3)

Equation (A2) gives the relation between the longitudinal and transversal components of potentials �E±
ω . In cylindrical coordinates

r , ϕ, z, for the case where dependence on ϕ is absent (cylindrical symmetry is supposed), one obtains from (A2) the equations

∂2E±
ωr

∂r2
+ 1

r

∂E±
ωr

∂r
− 1

r2
E±

ωr = 2π

n±

μ√
εμ

∂ρω

∂r
− 1

2

∂2E±
ωz

∂r∂z
,

∂2E±
ωϕ

∂r2
+ 1

r

∂E±
ωϕ

∂r
− 1

r2
E±

ωϕ = ∓1

2

ωn±
c

∂E±
ωz

∂r
∓ 2π

c

iμ√
εμ

∂jωz

∂r
.

(A4)

These expressions are used in Appendix B.

APPENDIX B: SOLUTION OF THE BOUNDARY VALUE PROBLEM

In the plane z = 0, due to the boundary conditions, the r and ϕ components of the total field should be continuous:{
Ev+

ωr +Ev−
ωr

Ev+
ωϕ +Ev−

ωϕ

}∣∣∣∣
z=−0

=
{
Em+

ωr +Em−
ωr

Em+
ωϕ +Em−

ωϕ

}∣∣∣∣
z=+0

,
nv

μv

{
Ev+

ωr −Ev−
ωr

Ev+
ωϕ −Ev−

ωϕ

}∣∣∣∣
z=−0

= nm

μm

{
Em+

ωr − Em−
ωr

Em+
ωϕ − Em−

ωϕ

}∣∣∣∣
z=+0

. (B1)

Using relations (A4), we can rewrite these conditions for the longitudinal components of the potentials:

8πμv

n2
v

ρω −
(

∂Ev+
ωz

∂z
+ ∂Ev−

ωz

∂z

)∣∣∣∣
z=0

= 4πμm

nm

nm+ + nm−
nm+nm−

ρω −
(

∂Em+
ωz

∂z
+ ∂Em−

ωz

∂z

)∣∣∣∣
z=0

, (B2)

nvE
v+
ωz − nvE

v−
ωz

∣∣
z=0 = nm+Em+

ωz − nm−Em−
ωz

∣∣
z=0, (B3)

− nv

μv

(
∂Ev+

ωz

∂z
− ∂Ev−

ωz

∂z

)∣∣∣∣
z=0

= 4π
nm− − nm+
nm+nm−

ρω − nm

μm

(
∂Em+

ωz

∂z
− ∂Em−

ωz

∂z

)∣∣∣∣
z=0

, (B4)

nv

μv

(
nvE

v+
ωz + nvE

v−
ωz

)∣∣
z=0 = nm

μm

(
nm+Em+

ωz + nm−Em−
ωz

)∣∣
z=0. (B5)

After a series of transformations, we obtain from (B2)–(B5) the following system of equations for the unknown functions Bv
±,

Bm
± :

−qkv
z

πω
(Bv

+ + Bv
−) − qkm+

z

πω
Bm

+ − qkm−
z

πω
Bm

− = − 2q

πV εv

− 2q

πV εv

s2
v

k2
r − s2

v

+ qμm

πV nm

nm+ + nm−
nm+nm−

+ qμm

πV nm

(
1

nm+

s2
m+

k2
r − s2

m+
+ 1

nm−

s2
m−

k2
r − s2

m−

)
, (B6)

iqnv

πω
(Bv

+ − Bv
−) − iqnm+

πω
Bm

+ − iqnm−
πω

Bm
− = iqμm

πωnm

(
s2
m+

k2
r − s2

m+
− s2

m−
k2
r − s2

m−

)
, (B7)
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−qkv
z

πω

nv

μv

(Bv
+ − Bv

−) − qnm

πωμm

(
km+
z Bm

+−km−
z Bm

−
)= q

πV

nm−−nm+
nm+nm−

+ q

πV

(
1

nm+

s2
m+

k2
r −s2

m+
− 1

nm−

s2
m−

k2
r −s2

m−

)
, (B8)

iqεv

πω
(Bv

+ + Bv
−) − iqnm

πωμm

(nm+Bm
+ + nm−Bm

− ) = −2iq

πω

s2
v

k2
r − s2

v

+ iq

πω

(
s2
m+

k2
r − s2

m+
+ s2

m−
k2
r − s2

m−

)
. (B9)

It is convenient to rewrite these equations with respect to new functions:

Bv
co(kr ) = Bv

+(kr ) + Bv
−(kr ), Bv

cr(kr ) = Bv
+(kr ) − Bv

−(kr ). (B10)

After a large amount of algebraic calculations, we obtain

Bv
co(kr ) = k2

r

�c

(
kv
z nm−
μv

+ nm

μm
km−
z

)(
ω
V

εm

εv

nm+
nm

− km+
z

)
k2
r − s2

v

+ k2
r

�c

(
kv
z nm+
μv

+ nm

μm
km+
z

)(
ω
V

εm

εv

nm−
nm

−km−
z

)
k2
r − s2

v

− k2
r

�c

⎛
⎝ kv

z nm−
μv

+ nm

μm
km−
z

ωV −1 + km+
z

+
kv
z nm+
μv

+ nm

μm
km+
z

ωV −1 + km−
z

⎞
⎠, (B11)

Bv
cr(kr ) = k2

r

�c

1

nv

[
nm

μm

(
nm+km−

z − nm−km+
z

)
ωV −1 + kv

z

− εvk
m−
z + nmμ−1

m nm−kv
z

ωV −1 + km+
z

+ εvk
m+
z + nmμ−1

m nm+kv
z

ωV −1 + km−
z

]
, (B12)

�c = nm

2μm

[
nm+

(
kv
z nm−
μv

+ nm

μm

km−
z

)(
km+
z εvμm

nm+nm

+ kv
z

)
+ nm−

(
kv
z nm+
μv

+ nm

μm

km+
z

)(
km−
z εvμm

nm−nm

+ kv
z

)]
, (B13)

where �c is a determinant of the system (B6)–(B9). For the sake of brevity, we do not present here the cumbersome expressions
for Bm

± because we will further investigate the field in the vacuum area only.
The transversal components of the self-field in the vacuum area are known [21]:{

E
qv±
ωr

E
qv±
ωϕ

}
= q

2π

μv

nv

{
(V nv)−1

(ic)−1

}
exp

(
i
ω

V
z

)∫ +∞

0
dkr

k2
r J1(krr)

k2
r − s2

v

. (B14)

The transversal components of the additional field are{
Ebv±

ωρ

Ebv±
ωϕ

}
= iq

2πω

∫ +∞

0
dkr

{
Cv

±(kr )

Dv
±(kr )

}
krJ0(krr) exp

(
ikv

z |z|
)
. (B15)

Coefficients Cv
±, Dv

± can be found from (A2):

Cv
± = ikv

z

kr

Bv
±, Dv

± = ∓k0
nv

kr

Bv
±. (B16)

Therefore, the field in the vacuum area is fully determined.
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