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Even after decades of research, the problem of first passage time statistics for quantum dynamics remains
a challenging topic of fundamental and practical importance. Using a projective measurement approach, with
a sampling time τ , we obtain the statistics of first detection events for quantum dynamics on a lattice, with
the detector located at the origin. A quantum renewal equation for a first detection wave function, in terms of
which the first detection probability can be calculated, is derived. This formula gives the relation between first
detection statistics and the solution of the corresponding Schrödinger equation in the absence of measurement.
We illustrate our results with tight-binding quantum walk models. We examine a closed system, i.e., a ring,
and reveal the intricate influence of the sampling time τ on the statistics of detection, discussing the quantum
Zeno effect, half dark states, revivals, and optimal detection. The initial condition modifies the statistics of a
quantum walk on a finite ring in surprising ways. In some cases, the average detection time is independent of
the sampling time while in others the average exhibits multiple divergences as the sampling time is modified.
For an unbounded one-dimensional quantum walk, the probability of first detection decays like (time)(−3) with
superimposed oscillations, with exceptional behavior when the sampling period τ times the tunneling rate γ is
a multiple of π/2. The amplitude of the power-law decay is suppressed as τ → 0 due to the Zeno effect. Our
work, an extended version of our previously published paper, predicts rich physical behaviors compared with
classical Brownian motion, for which the first passage probability density decays monotonically like (time)−3/2,
as elucidated by Schrödinger in 1915.
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I. INTRODUCTION

How long does it take a lion to find its prey, a particle
to reach a domain, or an electric signal to cross a certain
threshold? These are all examples of the first passage time
problem [1–5]. A century ago, Schrödinger showed that a
Brownian particle in one dimension, i.e., the continuous limit
of the classical random walk, starting at x0, will eventually
reach x = 0, with, however, a probability density function
(PDF) of the first arrival time that is fat tailed, in such a way
that the mean first passage time diverges [6]. Ever since, the
classical first passage time problem has been a well studied
field of research. More recently, much work has been devoted
to the analysis of quantum walks [7–11] (see [12] for a review).
These exhibit interference patterns and ballistic scaling and
in that sense exhibit behaviors drastically different from the
classical random walk. While several variants of quantum
walks exist [12], for example discrete time walks, coin tossing
walks, and tight-binding models, one line of inquiry addresses
a question generally applicable to all these cases, namely,
the statistics of first passage or detection times of a quantum
particle (to be defined precisely below). Quantum walk search
algorithms which are supposed to perform better than classical
walk search methods have vitalized this line of research in
recent years. A physical example might be the statistics of
the time it takes a single electron, ion, or atom to reach a
detection device. This question, which at first sight appears
well defined and physically meaningful, has nevertheless been
the subject of much controversy. The Schrödinger equation
and the standard postulates of quantum mechanics [13] do
not give a ready-made recipe for calculating these statistics.
There are no textbook quantum operators or wave function
associated with the first passage time measurements (see
[14–16] for related historical accounts). Actually, time is a

nonquantum ingredient of quantum mechanics and is treated
as an object detached from the probabilistic interpretation
inherent to nonclassical reality. From the nondeterministic
nature of quantum mechanics, we may expect that the time it
takes a single particle to reach a detection point or domain for
a given Hamiltonian and initial condition should be random
even in the absence of external noise, but how to precisely
obtain the distribution of first detection times has remained in
our opinion a controversial matter.

The key to the solution is that we must take into considera-
tion the measurement process [17–22]. For example, consider
a zebra sitting at the origin waiting for a lion to arrive for the
first and, unfortunately for her, the last time. At some rate, the
zebra records: did the lion arrive or did it not? The outcome is
a string of answers: e.g., no, no, no, ..., and finally yes. If the
lion is a quantum particle, then continuous attempts to detect
it by the zebra will preserve the zebra’s life since the wave
function of the lion is collapsed in the vicinity of the zebra;
this is the famous quantum Zeno effect [23] (see more details
below). On the other hand, if the zebra samples the arrival
of the lion at a finite constant rate, its likelihood of death is
much higher. In this sense, the measurement of the time of
first detection, which implies a set of null measurements for
times prior to the final positive recording, is very different
than the familiar measurements of canonical variables like
position and momentum. There, the system is prepared at time
t = 0 in some initial state and it evolves free of measurement
until time t , at which point an instantaneous recording of some
observable is made. Furthermore, we must distinguish between
first arrival or first passage problems [15] and first detection
at a site. Note that even classically the first detection does not
imply that the particle arrived at the site for the first time at
the moment of detection if the sampling is not continuous
in time. More importantly, arrival times are ill defined in
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quantum problems [24] because we cannot have a complete
record of the trajectory of a quantum particle, whereas the first
detection problem under repeated stroboscopic measurements
is a well-defined problem, and that is what we treat in this
paper.

Here, we investigate the first detection problem of quantum
walks following Dhar et al. [21,22] who formulated the
problem as a tight-binding quantum walk, with projective
local measurements every τ units of time (see also [18]).
Specifically, we consider a particle on a discrete graph,
the quantum evolution determined by the time independent
Hamiltonian H . Initially, the particle is localized so that the
state function is |ψ〉 = |x〉 (some of our general results are not
limited to this initial condition, see below). Detection attempts
are performed locally at a site we call the origin which is
denoted with |0〉. Measurements at the origin are stroboscopic
with the sampling time τ , and as mentioned the measurement
stops once the particle is detected after n attempts, so nτ is
the random first detection time. We investigate the statistics
of the random observable n. The questions are as follows: Is
the particle eventually detected? What is the probability of
detection after n attempts? What is the average of number
of attempts of detection before a successful measurement?
This we investigate both for closed systems and open ones.
Below we present a physical derivation of the quantum renewal
equation describing the probability amplitude of first detection
for the transition |x〉 → |0〉. In classical stochastic theories this
corresponds to Schrödinger’s renewal equation [6] for the first
time a particle starting on x reaches 0 (see details below).
We show how the solution of Schrödinger’s wave equation
free of measurement can be used to predict the quantum
statistics of the first detection time. Previously, Grünbaum
et al. [25] considered the case where the starting point is also
the detection site |x〉 = |0〉. A topological interpretation of the
detection process was provided for that initial condition and
among other things they showed that the expected time of first
detection is either an integer multiple of τ or infinity. This
integer is the winding number of the so called Schur function
of the underlying scalar measure; the latter is determined by the
initial state and the unitary dynamics. Hence, the expectation
of the first detection time is quantized [26]. A vastly different
behavior is found when we analyze the transition |x〉 → |0〉
for x �= 0 [18,22]. The average of n is not an integer, nor is
detection finally guaranteed. As demonstrated below for a ring
geometry, half dark states are observed in some cases while in
others the average of n exhibits divergences and nonanalytical
behaviors for certain critical sampling times. Finally, we show
that critical sampling, including slowing down, is found even
for an infinite system. Namely, for the quantum walk on the
line, the first detection probability decays like a power law,
with additional oscillations, where the amplitude of decay is
not a continuous function of the sampling rate. Thus, rich
physical behaviors are found for the quantum first detection
problem, as compared with the known results of the classical
random walker.

The spatial quantum first detection problem is a timely
subject. Current day experiments on quantum walks can be
used to study these problems in the laboratory [27–31]. First
passage time statistics in the classical domain are usually
recorded based on single particle analysis. Namely, one

takes, say, a Brownian particle, releases it from a certain
position, and then detects its time of arrival at some other
location. This single particle experiment is repeated many
times and then a histogram of the first passage time is reported.
While in principle one could release simultaneously many
particles from the same position, their mutual interaction will
influence the statistics of first arrival and similarly statistics of
identical particles, either bosons or fermions, alter the many
particle statistics compared to the single particle case. Hence,
measurement should be made on single particles, or in other
words at least classically the first detection time is a property
of the single particle path and hence its history. The recent
advance of single particle quantum tracking and measurement,
for systems where coherence is maintained for relatively long
times, is clearly a reason to be optimistic with respect to
possible first detection measurements. Such measurements
could test our predictions as well as those of a variety of
other theoretical approaches [15,24,32–39], some of which
are compared with our results towards the end of this paper.

The navigation map of this paper is as follows. We start
with the presentation of the quantum walk model and the
measurement process in Sec. II. In Sec. III, the first detection
wave function formalism is developed. The main tool for
actual solution of the problem is based on the generating
function formalism given in Sec. IV and in Sec. IV B the
quantum renewal equation is discussed. Section V presents
the example of first detection on rings, with special emphasis
on the peculiar statistics found on a benzene-like ring. In
Sec. VI we obtain statistics of first detection times, for a
one-dimensional quantum walk on an infinite lattice. We end
with further discussion of previous results (Sec. VII) and a
summary. A short account of part of our main results was
recently published [40].

II. MODEL AND BASIC FORMALISM

We consider a particle whose evolution is described by a
time independent Hermitian Hamiltonian H according to the
Schrödinger equation ih̄|ψ̇〉 = H |ψ〉. The initial condition is
denoted |ψ(0)〉. For simplicity, we consider a discrete x space.
As an example, we shall later consider the tight-binding model

H = −γ

∞∑
x=−∞

(|x〉〈x + 1| + |x + 1〉〈x|) (1)

on a lattice, although our general results are not limited to
a specific Hamiltonian. We denote a subset of lattice points
X, and loosely speaking we are interested in the statistics
of first passage times from the initial state to any site x ∈
X in the subset. More generally, X could be any subset of
orthogonal states. An example is when X consists of a single
lattice point, say x = 0, and initially the particle is localized
at some other lattice point |ψ(0)〉 = |x ′〉. We then investigate
the distribution of the first detection times. For that we must
define the measurement process following [9,17,21].

Measurements on the subset X are made at discrete times
τ,2τ, . . . ,nτ . . . and hence clearly the first recorded detection
time is either tf = τ or 2τ , etc. The measurement provides two
possible outcomes: either the particle is in x ∈ X or it is not.
Consider the first measurement at time τ . At time τ− = τ − ε
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with ε → 0 being positive, the wave function is

|ψ(τ−)〉 = U (τ )|ψ(0)〉 (2)

and U (τ ) = exp(−iHτ/h̄) as usual. In what follows, we set
h̄ = 1. The probability of finding the particle in x ∈ X is,
according to the standard interpretation,

P1 =
∑
x∈X

|〈x|ψ(τ−)〉|2. (3)

If the outcome of the measurement is positive, namely, the
particle is found in x ∈ X, the first detection time is tf = τ .
On the other hand, if the particle is not detected, which
occurs with probability 1 − P1, the evolution of the quantum
state will resume. According to collapse theory, following
the measurement the particle’s wave function in x ∈ X is
zero. Namely, a null measurement alters the wave function
in such a way that the probability of detecting the particle in
x ∈ X at time τ + ε vanishes. In this sense, we are considering
projective measurements whose duration is very short, while
between the measurements the evolution is according to the
Schrödinger equation. Mathematically the measurement is a
projection [13], so that at time τ+ = τ + ε we have

|ψ(τ+)〉 = N

(
1 −

∑
x∈X

|x〉〈x|
)

|ψ(τ−)〉, (4)

where 1 is the identity operator, and the constant N is
determined from the normalization condition. Here, we have
used the assumption of a perfect projective measurement that
does not alter either the relative phases or magnitudes of the
wave function not interacting with the measurement device,
i.e., outside the observation domain the wave function is left
unchanged beyond a global renormalization. This is the fifth
postulate of quantum mechanics [13], though clearly it should
be subject to continuing experimental tests. Since just prior to
measurement the probability of finding the particle in x not
belonging to X is 1 − P1, we get

|ψ(τ+)〉 = 1 −∑
x∈X |x〉〈x|√

1 − P1
|ψ(τ−〉

= 1 −∑
x∈X |x〉〈x|√

1 − P1
U (τ )|ψ(0)〉. (5)

In sum, the measurement nullifies the wave functions on x ∈ X

but maintains the relative amplitudes of finding the particles
outside the spatial domain of measurement device, modifying
only the normalization.

We now proceed in the same way to the second measure-
ment. Between the first and second detection attempts we
have |ψ(2τ−)〉 = U (τ )|ψ(τ+)〉. The probability of finding the
particle in x ∈ X at the second measurement, conditioned on
the quantum walker not having been found in the first attempt,
is

P2 =
∑
x∈X

| 〈x|︸︷︷︸
Projection

U (τ )︸︷︷︸
Evolution

|ψ(τ+)〉︸ ︷︷ ︸
Null X state

|2. (6)

We define the projection operator

D̂ =
∑
x∈X

|x〉〈x|, (7)

and using Eqs. (5) and (6)

P2 =
∑

x∈X |〈x|U (τ )(1 − D̂)U (τ )|ψ(0)〉|2
1 − P1

. (8)

This iteration procedure is continued to find the probability
of first detection in the nth measurement, conditioned on prior
measurements not having detected the particle

Pn =
∑
x∈X

|〈x|[U (τ )(1 − D̂)]n−1U (τ )|ψ(0)〉|2
(1 − P1) . . . (1 − Pn−1)

. (9)

In the numerator, the operator 1 − D̂ appears n − 1 times cor-
responding to the n − 1 prior measurements. Similarly, in the
denominator we find n − 1 probabilities of null measurements
1 − Pj . Following [21,22] we define the first detection wave
function

|θn〉 = U (τ )[(1 − D̂)U (τ )]n−1|ψ(0)〉 (10)

or, equivalently, |θn〉 = [U (τ )(1 − D̂)]n−1|θ1〉 with the initial
condition |θ1〉 = U (τ )|ψ(0)〉. The bra |θn〉 is defined only for
the moments of detection n = 1,2, . . . , unlike |ψ(t)〉 which is
a function of continuous time. With this definition

Pn = 〈θn|D̂|θn〉
�n−1

j=1(1 − Pi)
. (11)

The main focus of this work is on the probability of
first detection in the nth measurement, denoted Fn. This
is of course not the same as Pn which as mentioned is a
conditional probability, namely, the probability of detection on
the nth attempt given no previous detection. The conceptual
measurement process for the calculation of Fn is as follows.
We start with an initial spatial wave function |ψ(0)〉 and evolve
it until time τ when the detection of the particle in x ∈ X is
attempted, and with probability P1 the first measurement is
also the first detection. Hence, to simulate this process on
a computer, we toss a coin using a uniform random number
generator and, if the particle is detected, the measurement time
is τ . If the particle is not detected, we compute P2. Then, at
time 2τ either the particle is detected with probability P2 or
not. Simulating the measurement process we again generate
a random variable uniformly distributed in (0,1) and if this
variable is smaller then P2, the first detection time is 2τ .
Importantly, the uniform random variables generated in this
procedure, corresponding to these first two measurements,
are independent random variables. Thus, the probability of
measuring the particle for the first time after n = 2 attempts is
F2 = (1 − P1)P2.

This process is repeated until a measurement is recorded
(see remark below), and that measurement constitutes the
random first detection event. In order to gain statistics
of the first detection time, we return to the initial step and
restart the process with the same initial condition. In this way,
repeating this many times, we construct the first detection
probability

Fn = (1 − P1)(1 − P2) . . . (1 − Pn−1)Pn. (12)

Using Eq. (11) we obtain

Fn = 〈θn|D̂|θn〉. (13)
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We see that the first detection probability Fn is the expectation
value of the projection operator D̂ with respect to |θn〉, which
we term the first detection wave function.

Remark. We shall see that not all sequences of measure-
ments, generated on a computer or in the laboratory, yield
a detection in the long-time limit. This is not problematic
since also classical random walks in say three dimensions are
not recurrent and, hence, the total probability of detection is
not necessarily unity. In many works one defines the survival
probability, i.e., the probability that the particle is not detected
in the first n attempts,

Sn = 1 −
n∑

n=1

Fn. (14)

The eventual survival probability S∞ can equal zero or not.
If the initial condition and the detection location are identical
and S∞ = 0, the quantum walk is called recurrent. We will
later investigate whether or not the quantum walk is recurrent,
both for the cases of an infinite lattice and a finite ring.

III. FIRST DETECTION AMPLITUDE

In this section, we solve the first detection time problem
for quantum dynamics with a single detection site, which we
label x = 0, so D̂ = |0〉〈0|. We define the amplitude of the
first detection as

φn = 〈0|θn〉 (15)

so that Fn = |φn|2. Using Eq. (10), φ1 = 〈0|U (τ )|ψ(0)〉, φ2 =
〈0|U (2τ )|ψ(0)〉 − φ1〈0|U (τ )|0〉, and a short calculation yields

φ3 = 〈0|U (3τ )|ψ(0)〉 − φ1〈0|U (2τ )|0〉 − φ2〈0|U (τ )|0〉.
(16)

In Appendix A, using induction we find our first main equation

φn = 〈0|U (nτ )|ψ(0)〉 −
n−1∑
j=1

φj 〈0|U [(n − j )τ ]|0〉. (17)

We call this iteration rule the quantum renewal equation. It
yields the amplitude φn in terms of a propagation free of
measurement; i.e., 〈0|U (nτ )|ψ(0)〉 is the amplitude for being
at the origin at time nτ in the absence of measurements, from
which we subtract n − 1 terms related to the previous history
of the system. The physical interpretation of Eq. (17) is that the
condition of nondetection in previous measurements translates
into subtracting wave sources (hence the minus sign) at the
detection site |0〉 following the j th detection attempt. This is
due to the nullification of the wave function at the detection
site in the j th measurement. The evolution of that wave source
from the j th measurement onward is described by the free
Hamiltonian, hence, 〈0|U [(n − j )τ ]|0〉 which gives the am-
plitude of return back to the origin in the time interval (jτ,nτ ).

We now consider the formal solution to the first detec-
tion problem for an initial condition on the origin, hence,
|ψ(0)〉 = |0〉 and as mentioned the origin is also the point at
which we perform the detection trials. Clearly, in this case
φ1 = 〈0|U (τ )|0〉 and since U (0) = 1 we get φ1 = 1 when
τ → 0 which is expected. For φ2 = 〈0|U 2|0〉 − 〈0|U 1|0〉2

where we use the shorthand notation Un ≡ U (nτ ). Simi-
larly, φ3 = 〈0|U 3|0〉 − 2〈0|U 2|0〉〈0|U 1|0〉 + 〈0|U 1|0〉3. The

general solution is obtained by iteration using Eq. (17),

φn =
n∑

i=1

∑
{m1,...,mi }

(−1)i+1〈0|Um1 |0〉 . . . 〈0|Umi |0〉. (18)

The double sum is over all partitions of n, i.e., all i-tuples of
positive integers {m1, . . . ,mi} satisfying m1 + · · · + mi = n.
For example, for n = 5 we have five partitions corresponding
to i = 1, . . . ,5, for i = 1 the set in the second sum is {5},
for i = 2 we sum over {2,3},{3,2},{1,4}, and {4,1}, for i =
3 we use {1,1,3},{1,3,1},{3,1,1},{2,2,1},{2,1,2},{1,2,2}, for
i = 4, {1,1,1,2},{1,1,2,1},{1,2,1,1},{2,1,1,1}, and for i = 5
we have one term {1,1,1,1,1}. Hence,

φ5 = 〈0|U 5|0〉 − 2〈0|U 4|0〉〈0|U 1|0〉
+ 3〈0|U 1|0〉2〈0|U 3|0〉 − 4〈0|U 1|0〉3〈0|U 2|0〉
+ 3〈0|U 2|0〉2〈0|U 1|0〉 − 2〈0|U 3|0〉〈0|U 2|0〉
+ 〈0|U 1|0〉5. (19)

With a symbolic program like Mathematica one can obtain
similar exact expressions for intermediate values of n. How-
ever, to gain some insight, we turn now to the generating
function approach [41].

IV. GENERATING FUNCTION APPROACH

The Z transform, or discrete Laplace transform, of φn is by
definition [41,42]

φ̂(z) =
∞∑

n=1

znφn. (20)

φ̂(z) is also called the generating function. Multiplying Eq. (17)
by zn and summing over n, we obtain

φ̂(z) =
∞∑

n=1

〈0|znUn|ψ(0)〉

−
∞∑

n=1

n−1∑
j=1

φjz
j 〈0|zn−jUn−j |0〉. (21)

Evaluating the first term on the right hand side we get

Û (z) =
∞∑

n=1

znUn =
∞∑

n=1

exp(−iHτn)zn = ze−iHτ

1 − ze−iHτ
.

(22)

The second term in Eq. (21) is a convolution term and after
rearrangement we find one of our main results [42]

φ̂(z) = 〈0|Û (z)|ψ(0)〉
1 + 〈0|Û (z)|0〉 (23)

or, more explicitly,

φ̂(z) = 〈0| 1
z−1eiHτ −1 |ψ(0)〉

1 + 〈0| 1
z−1eiHτ −1 |0〉 . (24)

This equation relates the generating function φ̂(z) to the
Hamiltonian evolution between the initial condition and the
detection attempt.
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This approach is also valid for other types of measurements,
repeatedly performed at times τ,2τ, . . . . For example, the
case where we measure a set of points x ∈ X is given in
Eq. (A4) in Appendix A. First detection measurements of
general observables are also treated there.

A. Relations between φ̂(z) and φn, S∞, and 〈n〉
As usual, the amplitudes φn are given in terms of their Z

transforms by the inversion formula

φn = 1

n!

dn

dzn
φ̂(z)|z=0 (25)

or

φn = 1

2πi

∮
C

φ̂(z)z−n−1dz, (26)

where C is a counterclockwise path that contains the origin
and is entirely within the radius of convergence of φ̂(z).

The probability of being measured is also related to the
generating function φ̂(z) by

1 − S∞ =
∞∑

n=1

Fn =
∞∑

n=1

|φn|2

= 1

2π

∫ 2π

0

∞∑
k=1

φke
iθk

∞∑
l=1

φ∗
l e

−iθ ldθ

= 1

2π

∫ 2π

0
|φ̂(eiθ )|2dθ. (27)

Similarly,

〈n〉 =
∞∑

n=1

nFn = 1

2π

∫ 2π

0
[φ̂
(
eiθ
)
]∗
(

−i
∂

∂θ

)
φ̂(eiθ )dθ.

(28)

The latter is the average of n only when the particle is detected
with probability one, namely, when S∞ = 0. A shorthand
notation for Eq. (28) is 〈n〉 = 〈φ̂| − i∂θ |φ̂〉.

B. Connection between first detection and spatial wave function

In classical random walk theory, the key approach to the first
passage time problem is to relate it to occupation probabilities
[1]. Let us unravel a similar relation in the quantum domain,
connecting between first detection statistics and the corre-
sponding wave packet, namely, the time dependent solution
of the Schrödinger equation in the absence of measurement
(see also [25] for the |0〉 → |0〉 transition). To that end, we
first briefly review the classical random walk.

Consider a classical random walk in discrete time t =
0,1, . . ., for example, a random walk on a cubic lattice in
dimension d with jumps to nearest neighbors. The main
assumption is that the random walk is Markovian. Denote
Pcl(r,t) as the probability that the walker is at r at time t when
initially the particle is at the origin r = 0 and in the absence
of any absorption. Let Fcl(r,t) be the first passage probability:
the probability that the random walk visits site r for the first
time at time t with the same initial condition. Following the
first equation in the first chapter in [1], Pcl(r,t) and Fcl(r,t) are

related by

Pcl(r,t) = δr0δt0 +
∑
t ′�t

Fcl(r,t ′)Pcl(0,t − t ′). (29)

This equation [6,43,44], sometimes called the renewal equa-
tion, is generally valid for Markov processes in the sense
that it is not limited to discrete time and space models; in
the continuum one needs only to replace summation with
integration and probabilities by probability densities. The idea
behind Eq. (29) is that a particle on position r at time t must
have either arrived there previously at time t ′ for the first time
and then returned back or it arrived at r exactly at time t for
the first time (the t ′ = t term) [1,6]. Using the Z transform,
the following equations are derived [1]:

Fcl(r,z) =
{

Pcl(r,z)
Pcl(0,z), r �= 0

1 − 1
Pcl(0,z) , r = 0.

(30)

From this formula, various basic properties of random walks
can be derived. One example is the Pólya theorem which
answers the following question: Does a particle eventually
return to its origin, i.e., is the random walk recurrent? A second
is that in one dimension, for an open system without bias, the
famous law Fcl(0,t) ∼ t−3/2 is found for large first passage
time t and hence the first passage time has an infinite mean, as
mentioned in the Introduction. We will later find the quantum
analog to this well known t−3/2 behavior.

At first glance, this classical picture might not seem related
to ours. However, consider the case where we detect the
particle at the origin, so D̂ = |0〉〈0| and initially |ψ(0)〉 = |0〉.
Then, Eq. (24) reads as

φ̂(z) = 〈0| 1
z−1eiHτ −1 |0〉

1 + 〈0| 1
z−1eiHτ −1 |0〉 . (31)

We add and subtract one in the numerator and use 〈0|0〉 = 1
and

1 + 1

z−1eiHτ − 1
= 1

1 − ze−iHτ
(32)

to rewrite Eq. (31) as

φ̂(z) = 1 − 1

〈0| 1
1−ze−iHτ |0〉 . (33)

Expanding in z we get a geometric series

φ̂(z) = 1 − 1

〈0|∑∞
n=0 zn exp(−iHτn)|0〉 . (34)

By definition, the sum 〈0|∑∞
n=0 zn exp(−iHτn)|0〉 is the

generating function of the amplitude of being at the origin
retrieved from the solution of the Schrödinger equation
without detection. Namely, let |ψf (t)〉 be the solution of
the Schrödinger equation for the same initial condition
|ψf (0)〉 = |0〉 (the subscript f denotes a wave function free of
measurement). The amplitude of being at the origin at time t

is 〈0|ψf (t)〉 and |ψf (t)〉 = exp(−iH t)|0〉 as usual. We define
the generating function of this amplitude, for the sequence of
measurements under consideration,

〈0|ψ̂f (z)〉0 ≡
∞∑

n=0

zn〈0|ψf (nτ )〉 (35)
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and clearly 〈0|ψ̂f (z)〉0 = ∑∞
n=0〈0|zn exp(−iHτn)|0〉, the sub-

script zero denotes the initial condition. Hence, we get the
appealing result reported already in [25]:

φ̂(z) = 1 − 1

〈0|ψ̂f (z)〉0
. (36)

Thus, the generating function of the first detection time is
determined from the Z transform of the spatial wave function
at the point of detection x = 0. This connection is the quantum
analog of the second line in the classical expression (30) since
in both cases we start and detect at the origin.

Similarly for an initial condition initially localized at some
site x �= 0, so |ψ(0)〉 = |x〉, with detection at site 0 we find

φ̂(z) = 〈0|ψ̂f (z)〉x
〈0|ψ̂f (z)〉0

, (37)

where |ψ̂f (z)〉x is the Z transform of the wave function free
of measurements initially localized on site x, |ψ̂f (z)〉x =∑∞

n=0 zn|ψf (nτ )〉x with |ψf (nτ )〉x = exp(−iHnτ )|x〉. We
see that the ratio of the generating functions of the amplitudes
of finding the particle on |0〉 for initial condition on x

and the location of measurement site 0, obtained from the
measurement-free evolution, yields the generating function of
the measurement process. This is the sought after quantum
renewal equation, namely, the amplitude analog of the upper
line of the classical Eq. (30).

Remark. In Eq. (35) the lower limit of the sum is n = 0,
while in Eq. (20) the sum starts at n = 1 as noted already [42].
Since φ0 = 0, one may of course use a summation from 0 also
in Eq. (20).

Remark. Our formalism is not limited to spatially homo-
geneous Hamiltonians. Note that in our classical discussion,
following the textbook treatment [1] and for the sake of
simplicity, we have assumed translation invariant random
walks. In nontranslation invariant systems, one should replace
Pcl(0,t − t ′) in the left hand side of Eq. (29) with Pcl(r,t −
t ′|r,0). Since the convolution structure of the equation remains,
related to the Markovian hypothesis, Eq. (30) can be easily
modified to include nonhomogeneous effects.

Remark. Sinkovicz et al. [45] found a quantum Kac lemma
for recurrence time, thus analogies between quantum and
classical walks are not limited to the renewal equation under
investigation.

C. Zeno effect

As pointed out in Refs. [20,21], when τ → 0 we find the
Zeno effect [23,46]. Since in that limit exp(−iHτ ) = 1 and
Û (z) = z/(1 − z), using Eq. (23) we get

lim
τ→0

φ̂(z) = z〈0|ψ(0)〉. (38)

The amplitude of finding the particle at the origin in the first
attempt is given by the initial wave function projected on the
origin, i.e., the probability amplitude of finding the particle
at the origin at t = 0. Hence, the above expression gives
an obvious answer for the first measurement; the repeated
measurements being very frequent do not allow the wave
function to be built up at the origin, and hence φn = 0 for
all n > 1. This means that we may investigate the problem for

τ small relative to the time scales of the Hamiltonian, but we
cannot take the limit τ → 0 if we wish to retain information
on the measurement process beyond the initial state.

D. Energy representation

Equation (22) for a time-independent Hamiltonian yields

〈Em|Û (z)|Ei〉 = [z−1 exp (iEmτ ) − 1]−1δmi (39)

so that the operator Û (z) is diagonal in the energy represen-
tation. Here, |Ei〉 is a stationary state of the Hamiltonian H ,
namely, H |Ei〉 = Ei |Ei〉. Clearly, it is worthwhile presenting
the solution in that basis. Consider the example of the measure-
ment at the spatial origin corresponding to state |0〉. This state
can be expanded in the energy representation |0〉 = ∑

k Ck|Ek〉
with Ck = 〈Ek|0〉. Here as usual 〈Em|Ek〉 = δmk . Similarly,
the initial condition is expanded as |ψ(0)〉 = ∑

k Ak|Ek〉. The
matrix element

〈0|Û (z)|ψ(0)〉 =
∑

k

C∗
k Ak[z−1 exp(iEkτ ) − 1]−1 (40)

together with

〈0|Û (z)|0〉 =
∑

k

|Ck|2[z−1 exp(iEkτ ) − 1]−1 (41)

yields φ̂(z) using Eq. (23). For the special case where |ψ(0)〉 =
|0〉, we get Ak = Ck and

φ̂(z) =
∑

k |Ck|2[z−1 exp(iEkτ ) − 1]−1

1 +∑
k |Ck|2[z−1 exp(iEkτ ) − 1]−1

. (42)

Here as usual
∑

k |Ck|2 = 1. It is easy to check that when
τ → 0 we get F1 = |φ1|2 = 1 since a particle starting at the
origin is with probability one detected when τ → 0.

V. RINGS

For our explicit calculations, we will focus on tight-binding
models in one dimension [12]. The first model is a quantum
walk on a ring of length L:

H = −γ

L−1∑
x=0

(|x〉〈x + 1| + |x + 1〉〈x|). (43)

This describes a quantum particle jumping between nearest
neighbors on the ring. We use periodic boundary conditions
and thus from the site labeled x = L − 1 one may jump
either to the origin x = 0 or to the site labeled x = L − 2.
In condensed matter physics, the parameter γ is called the
hopping rate.

A. Benzene-type ring

As our first example, we consider the tight-binding model
on a hexagonal ring illustrated in Fig. 1, namely, a structure
similar to the benzene molecule [13,47]. We consider the
influence of initial states |ψ(0)〉 = |x〉 with x = 0,1, . . . ,5
on the statistics of first detection times for detection at
site 0 so D̂ = |0〉〈0|. According to our theory, to find the
generating function we need the energy levels of H and its
eigenstates. The six energy levels of the system are Ek =
−2γ cos(θk) with k = 0, . . . ,5 and the eigenstates are |Ek〉T =
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|0

|1 2

|3

|4|5

FIG. 1. Schematic model of a benzene ring. In the text, measure-
ment is performed on site 0 and we discuss several initial conditions.

(1,eiθk ,e2iθk ,ei3θk ,ei4θk ,ei5θk )/
√

6 with θk = 2πk/6 [13] (the
superscript T is the transpose). Hence, the coefficients |Ck|2 =
|〈Ek|0〉|2 = 1

6 , reflecting the symmetry of the problem.

1. Starting at x = 0

We use Eq. (42) and find

φ̂(z) =
1
6

∑5
k=0

1
z−1 exp(iEkτ )−1

1 + 1
6

∑5
k=0

1
z−1 exp(iEkτ )−1

. (44)

The nondegenerate energy levels are −2γ and 2γ while −γ

and γ are doubly degenerate, hence, for real z

φ̂(z) =
1
3

{
Re
[

1
z−1e2iγ τ −1

]+ 2 Re
[

1
z−1eiγ τ −1

]}
1 + 1

3

{
Re
[

1
z−1e2iγ τ −1

]+ 2 Re
[

1
z−1eiγ τ −1

]} . (45)

It is interesting to note that the generating function satisfies
the identity

φ̂(eiθ )φ̂(e−iθ ) = 1, (46)

an identity we will return to below when discussing 〈n〉 and
S∞. Inserting Eq. (46) in Eq. (27) and integrating over θ gives
S∞ = 0. Thus, the survival probability is zero in the long-time
limit. This behavior is classical in the sense that for finite
systems a classical random walker is always detected. Note
that for a quantum walker this conclusion is not generally
valid. If we start at |1〉 for example and measure at |0〉, and
perform measurements on full revival periods, the particle is
never recorded (see further details and other examples below).
Hence, for a quantum particle the survival probability Sn does
not generally decay to zero as n → ∞, even for finite systems.

For special values of γ τ we get exceptional behaviors.
When γ τ is 2π times an integer, we get φ̂(z) = z, namely,
the measurement in the first attempt is made with probability
1, so the first detection time is τ , which is expected since the
wave function is fully revived at these τ ’s in its initial state at
the origin [12]. If γ τ = π we get φ̂(z) = z(3z − 1)/(3 − z).
Inverting we find φ1 = − 1

3 and φn = 8/3n for n � 2, thus,
the amplitude φn decays exponentially. It follows that the first

detection probabilities are

Fn =
{

1
9 , n = 1
64
9n , n � 2.

(47)

The average number of detection attempts is
∑∞

n=1 nFn = 2.
If γ τ = π/2 we find φ̂(z) = −z(1 + 2z + 3z2)/(3 + 2z + z2)
which has simple poles and, hence,

Fn =

⎧⎪⎪⎨
⎪⎪⎩

1
9 , n = 1
16
81 , n = 2
24
3n sin2 [ζ1(n − 2) − ζ2], n � 3

(48)

where ζ1 = tan−1(
√

2) and ζ2 = tan−1(
√

2/5). For this case
〈n〉 = 3. Similarly, for γ τ = 2π/3 + 2kπ and γ τ = 4π/3 +
2kπ we get 〈n〉 = 2. The general feature of finite rings is
an exponential decay of Fn with a superimposed oscillation
determined by the poles of the generating function. However,
the sampling times γ τ = 0,π/2,2π/3,π . . . considered so far
exhibit behaviors which are not typical, as we now show.

A surprising behavior is found for the average, with

〈n〉 = 4 (49)

for any sampling rate in the interval (0,2π ) besides what we
call the exceptional sampling times γ τ = 0,π/2,2π/3,π, . . .

where as mentioned 〈n〉 = 1,3,2,2, . . . , respectively, which
is continued periodically (see Fig. 2). This result is derived
below. As mentioned in the Introduction, the fact that 〈n〉
is some integer was already pointed out rather generally by
[25] and this is related to topological effects. Except for the
exceptional points, the variance of n is

Var(n) = −11 + 27

4 − 4 cos γ τ
+ 1

6 cos2 γ τ

+ 3

4 + 4 cos γ τ
+ 3

(1 + 2 cos γ τ )2
(50)

N 500

N 10000

0 1 2 3 4 5 6
ΓΤ

1

2

3

4
n N

FIG. 2. The average number of detection attempts 〈n〉 for a
quantum walk on a benzene ring, with initial condition |ψ(0)〉 = |0〉
and projective measurements on the origin, by Eq. (49), 〈n〉 = 4,
except for the cases when γ τ is a multiple of π/2 or 2π/3. Here,
we plot 〈n〉N = ∑N

n=1 nFn for N = 500 and 10 000, the results
converging to the analytic result as we increase N further (not shown).
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0 1 2 3 4 5 6 7
γ τ

10-1

100

101
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V

ar
(n

)

FIG. 3. The variance of n versus γ τ [Eq. (50)] for the 0 → 0
first detection problem on the benzene ring. Divergences of the
fluctuations are found close to exceptional sampling times, while
for these times themselves the fluctuations are finite (blue circles).
For γ τ = 0,2π , Var(n) = 0.

so that the first detection time exhibits large fluctuations near
these points. Thus, for the 0 to 0 transition it is only the average
〈n〉 that is nearly always not sensitive to the sampling rate, not
the full distribution of first detection times. In Fig. 3, we plot the
variance of n versus the sampling time γ τ including also the
exceptional points. As mentioned a measurement of 〈n〉 gives
4 for nearly all values of γ τ ; the discontinuities for special
sampling times are point discontinuities and hence exceptional
sampling times seem difficult to detect in measurements of the
mean. In contrast, the blowup of the fluctuations in the vicinity
of the critical sampling times, presented in Fig. 3, seems to
provide a more realistic way to detect critical sampling times
in the laboratory.

There are numerous methods to find 〈n〉 = ∑∞
n=1 nFn. For

the exceptional points we used the exact solution for Fn (as
mentioned). For other sampling times we use two approaches:
the first using Mathematica and is based on a Taylor expansion
of φ̂(z) and the second is an analytic calculation. The former
approach is very general in the sense that it can be used in
principle for general initial conditions and other problems
beyond the benzene ring.

Specifically, we calculate Fn exactly using the expan-
sion of φ̂(z) with symbolic programming on Mathematica.
This is performed up to some large N . We then calculate
〈n〉N = ∑N

n=1 nFn. Clearly, 〈n〉 > 〈n〉N , and increasing N we
see convergence towards 〈n〉 = 4 except for the mentioned
exceptional points. An example is shown in Fig. 2 for the
cases N = 500 and 10 000.

Even better is to write φ̂(z) = z4H (1/z)/H (z), which is the
extension to general z of the identity (46) that we used to show
S∞ = 0. To find 〈n〉 we use Eq. (44) to find

H (z) = [2 cos(γ τ ) + cos(2γ τ )]z3

− [3 + 6 cos(γ τ ) cos(2γ τ )]z2

+ [4 cos(γ τ ) + 5 cos(2γ τ )]z − 3, (51)

and with Eq. (28)

〈n〉 = 1

2πi

∫ 2π

0

e−4iθH (eiθ )

H (e−iθ )

∂

∂θ

[
e4iθH (e−iθ )

H (eiθ )

]
dθ

= 4 − 1

iπ

∫ 2π

0

∂

∂θ
ln H (eiθ )dθ. (52)

Rewriting H (z) = a(z − z1)(z − z2)(z − z3) we can proceed
to show that

〈n〉 = 4 − 1

iπ

3∑
j=1

∫ 2π

0

∂

∂θ
ln(eiθ − zj )dθ = 4 − 2α − β,

(53)

where α (or β) is the number of zeros of H (z) for z within (or
on) the unit circle, respectively. As explained in Appendix B,
α = 0 for otherwise we would find Fn > 1. For the exceptional
values of γ τ we find β > 0, as follows:

β =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, γ τ = 1
2π + πk

2, γ τ = 2
3π + 2πk,π + 2πk, 4

3π + 2πk

3, γ τ = 2πk

0, otherwise.

(54)

This agrees with the values of 〈n〉 we have found at the
exceptional points. This exercise shows that mathematically, at
least for this example, the exceptional points are those specific
values of τ where some of the zeros of the polynomial H (z)
are found to lie on the unit circle in the complex plane. We
will soon find a by far more physical and explicit formula for
these points Eq. (58) below.

2. Half dark states

Another peculiar behavior is found if the detection is at the
origin D̂ = |0〉〈0| and the starting point is |i〉 with i = 1,2,4,5.
The total probability of detection is found to be, by the method
explained in Appendix B,

1 − S∞ = 1/2 (55)

for all values of 0 < γτ < 2π aside from exceptional points
which are listed in Table I. The exceptions include the case
when τ is the full revival time, for which case the probability of
being detected is of course 0. The behavior (55) was observed
in [21,22] for even larger systems. It is remarkable that for

TABLE I. Total detection probability 1 − S∞ for a quantum
walker on a benzene ring, for different localized starting points
|ψ(0)〉 = |x〉. Measurements are performed at x = 0, hence, initial
conditions on sites 1 and 2 are equivalent to initial conditions on 5
and 4, respectively. Values of the parameter γ τ are listed in the first
row, and 0 < γτ < 2π∗ implies all values of γ τ in the interval, aside
from the listed special cases, e.g., γ τ = π .

x 0 < γτ < 2π∗ γ τ = 0 1
2 π 2

3 π π 4
3 π 3

2 π 2π

0 1 1 1 1 1 1 1 1
1 1/2 0 1/6 0 0 0 1/6 0
2 1/2 0 1/2 0 1/2 0 1/2 0
3 1 0 2/3 1 0 1 2/3 0
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15
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n

FIG. 4. The average 〈n〉 versus γ τ [Eq. (56)]. When τ → 0 we
find 〈n〉 → ∞ due to the Zeno effect, another expected divergence
of 〈n〉 is found when the sampling time is the full revival time
γ τ = 2π . In addition to these two points, we find singularities also
for π/2,π,3π/2. Notice the discontinuities of 〈n〉 for the exceptional
sampling times γ τ = 2π/3 and γ τ = 4π/3 which are discussed in
the text. Here, |ψ(0)〉 = |3〉 and the detection is on the origin. The plot
of 〈n〉 for this choice of initial condition is vastly different from that
presented in Fig. 2. The blue line is the analytic result (56). The blue
circles represent the values at the exceptional sampling times. The
black dashed line is the result of a numerical evaluation of

∑
n nFn

up to a large finite N .

certain initial conditions, the detection of the particle is not
guaranteed, and only in half of the measurement processes we
detect the particle, hence, we call these initial conditions half
dark states.

3. Starting on site 3 measuring on 0

In contrast, if the starting state is |3〉 the total probability of
detection is found to be 1, if the measurement time τ is not the
full revival time γ τ = 2π , or one of the exceptional sampling
times listed in Table I. In Appendix B, we find

〈n〉 = 4

9
+ 9

8 − 8 cos γ τ
+ 1

36 cos2 γ τ

− 1

9 cos γ τ
+ 17

72(1 + cos γ τ )
, (56)

an equation valid for all γ τ aside from the exceptional points.
The general behavior of 〈n〉 is obviously quite different from
the case when the initial location is 0 (compare Figs. 2 and
4 indicating that the initial condition plays a crucial rule). As
shown in Fig. 4, the average 〈n〉 exhibits nontrivial behavior
as it diverges as it approaches some of the exceptional points.
These singularities are found near those exceptional sampling
times where the total probability of measurement is not one.
Interestingly, the values of 〈n〉, conditioned on return, are finite
at the exceptional points themselves.

An analytical calculation for the exceptional sampling times
γ τ = 2π/3 or 4π/3 finds 〈n〉 = 4

3 . This sampling time is
unique since the average 〈n〉 exhibits a discontinuity: for γ τ

in the vicinity of 2π/3 and 4π/3 we find using Eq. (56)
〈n〉 = 2 (so at these points the equation is not valid). Similar to
any discontinuity at a point, the discontinuity of 〈n〉 at γ τ =

2π/3,4π/3 might not be detectable in experiment. However,
one finds critical slowing down, namely, the convergence of
〈n〉 for any point in the vicinity of these exceptional points is
very slow, as demonstrated in Fig. 4.

B. Rings of size L

While the benzene ring is instructive, one must wonder
how general are the main results. In Appendix B, we derive
the following four results:

(i) For a ring of size L and for a particle initially on site
x = 0 where the measurements are performed, the particle is
detected with probability unity, and in this sense the motion
is recurrent. We emphasize that this result is a property of the
specified initial condition.

(ii) For these same initial conditions, aside from those
isolated exceptional sampling times τ listed below, the average
number of detection events is

〈n〉 =
{

L+2
2 , L is even

L+1
2 , L is odd.

(57)

This result is remarkable since the average is independent of
the sampling time τ . Here, we see that 〈n〉 is the number
of distinct energy levels of the system. In the language of
[25] it is the winding number of the Schur function, or the
effective dimension of the Hilbert space. For large systems,
〈n〉 grows linearly with the size of the system L. This is the
same as a classical random walk on a ring where for the case of
starting and detecting at the same point, one finds from Kac’s
return theorem 〈n〉cl = L [see Eq. (1) in [5]]. The quantum
search for large systems seems slightly faster since 〈n〉Qu =
〈n〉cl/2, however, in the presence of the slightest disorder,
which still removes the degeneracy of the energy levels, we
will get 〈n〉Qu = 〈n〉cl when the number of distinct energy
levels is L [see point (iv) below].

(iii) The exceptional sampling times τ are given by the rule

�Eτ = 2πn, (58)

where n is an integer, and �E = Ei − Ej > 0 is the energy
difference between pairs of eigenenergies of the underlying
Hamiltonian H . For example, the stationary energies of
the benzene ring are {−2γ,−γ,γ,2γ } as mentioned, and
hence Eq. (58) predicts the exceptional sampling times
0,π/2γ,2π/3γ,π/γ, . . . . The condition (58) implies a partial
revival of the wave packet free of measurement, namely, two
modes of the system behave identically when strobed at the
period τ . On these exceptional points, the solution exhibits
nonanalytical behavior. This is manifested in discontinuities or
diverging behavior of 〈n〉 or the fluctuations of n and also slow
critical-like convergence to the asymptotic theory. The exact
nature of the nonanalytical behavior depends on the initial
condition as we have demonstrated for the benzene ring.

(iv) For a particle starting on |0〉, every time the condition
(58) is satisfied by a pair of energy levels, the value of 〈n〉 is
reduced by unity. Thus, Eq. (58) is the upper limit of 〈n〉 for a
system of fixed size L. More specifically, we find that

〈n〉 = number of distinct phases exp(−iEkτ ), (59)

where Ek are the energy levels of the system (see also [25]).
For nearly any τ , this is the same as the number of distinct
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energy levels, but of course for special sampling times, this
integer is less than that.

C. Bose-Einstein distribution

A curiosity is the fact that we may express the solution
for the 0 (starting point) to 0 (measurement point) problem
for a general ring with L sites, in terms of a Bose-Einstein
distribution. The latter is defined as [48]

n̄k = 1

e−βμ+βEk − 1
, (60)

where β is the inverse temperature and μ the chemical
potential. In our case, z−1 = exp(−βμ) and βEk = iτEk with
the energy spectrum Ek = −2γ cos(2πk/L). The generating
function for a ring system with L sites is

φ̂(z) =
∑L−1

k=0 n̄k/L

1 +∑L−1
k=0 n̄k/L

. (61)

The mathematical relation of the problem at hand to the
Bose-Einstein distribution is not limited to the specific energy
spectrum under investigation (see also [25]). If the Hamil-
tonian is symmetric in the sense that all lattice points are
equivalent, such that |Ck|2 = 1/L, the above result is valid.
In the Bose-Einstein language, the sum

∑L−1
k=0 n̄k/L is the

spatially averaged density. Thus, the problem of finding the
generating function is mathematically equivalent to finding
the relation between chemical potential, temperature, and the
average number of particles, for a given energy spectrum of
a system. The main conditions are that all sites are equivalent
and that the initial and detection states are both on the same
single ring site.

D. Revivals

The amplitude of detection at the first measurement φ1 is
now investigated for a particle on a ring of size L starting on
the origin which is also the detection site

φ1 = 1

L

L−1∑
k=0

e2iγ τ cos (2πk/L). (62)

In the limit L → ∞, the sum becomes an integral and we
find φ1 = J0(2γ τ ) and J0(. . .) is a Bessel function of the first
kind [49]. Unlike the benzene, L = 6, case, for an infinite
system with γ τ �= 0, the probability of detecting the particle
at first measurement F1 = |φ1|2 is always less than unity since
|J0(2γ τ )|2 < 1. This is to be expected, as the wave function in
an infinite system does not revive at the origin. The following
question remains: Does a finite sized system always exhibit a
special choice or choices of γ τ �= 0 such that F1 = 1 (and then
all Fn for n > 1 are zero)? This corresponds to a deterministic
outcome of certainly detecting at a single detection attempt.
This question put differently is the well-studied question of
full revivals. Namely, does there exist some τ such that a
particle, in the absence of measurement, will fully return to its
initial state. If that is the case, the first measurement detects
the particle with probability one if the measurement time is τ .
As mentioned, for L = 6, this effect is found for γ τ = 2πk

for k = 0,1,2, . . . .

According to [12], full revivals take place for L = 1,2,3,4,6
only. This can be verified using our formalism. We checked
this for L = 5,7,8,9,10 finding that the absolute value squared
of the sum (62) is never equal 1 unless τ = 0. For example,
for L = 10,

φ1 = 1

5

[
cos (2γ τ ) + 4 cos

(γ τ

2

)
cos

(√
5γ τ

2

)]
, (63)

an expression which shows that |φ1| < 1 beyond the trivial
case γ τ = 0.

Remark. For a ring with four sites and sampling rate of
γ τ = π one finds φ̂(z) = z2, namely, the quantum walker is
detected in the second measurement with probability one. Such
a behavior is found when the initial wave packet is localized at
the place of detection. In this example, the first measurement
is performed when the wave function at the origin is zero,
and hence this measurement does not alter the wave function,
while in the second measurement we have full revival of the
wave function at the origin.

VI. FIRST DETECTION TIME FOR AN UNBOUNDED
QUANTUM WALKER

In this section, we consider the first detection problem for
a free particle in an infinite lattice. We use the tight-binding
Hamiltonian

H = −γ

∞∑
x=−∞

(|x〉〈x + 1| + |x + 1〉〈x|) (64)

for a particle launched from the origin |ψ(0)〉 = |0〉 and
investigate the probability of first detection Fn with projective
measurements performed at the origin.

Previously, Bach et al. [17] investigated a Hadamard
quantum walk introduced in Ref. [9], showing that the
survival probability of a one-dimensional walker exhibits a
power-law decay, Fn ∝ n−3 in our terminology, namely, a
scaling exponent 3 which is twice the classical one, i.e.,
3
2 . This was the topic of further analytical [25], numerical
[38,39], and perturbative approaches [21,22]. In this sense, it is
known already that quantum walks modify the known classical
exponents of classical random walk theory, where the first
passage time PDF decays like t−3/2 for large times. What seems
to be missed in previous literature is that even in an infinite
system there is a critical sampling effect. On a more technical
level, we show how to use the generating function formalism
to find the large-n behavior of the first detection probability.
We then discuss S∞, showing its nontrivial behavior.

A. Generating function

The solution of the Schrödinger equation (64) is |ψf (t)〉 =∑∞
x=−∞ Bx |x〉 and the amplitudes satisfy iḂx = −γ (Bx+1 +

Bx−1). Using the Bessel function identity [49] 2J ′
ν(z) =

Jν−1(z) − Jν+1(z) and the initial condition Bx = δx,0, one finds

|ψf (t)〉 =
∞∑

x=−∞
ixJx(2γ t)|x〉. (65)

This is of course the same as |ψf (t)〉 = exp(−iH t)|0〉. To
obtain the generating function we use Eq. (36), we have
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〈0|ψ̂f (z)〉 = ∑∞
n=0 znJ0(2γ τn) so

φ̂(z) = 1 − 1

〈0|ψ̂f (z)〉 = 1 − 1∑∞
n=0 znJ0(2γ τn)

. (66)

Since J0(0) = 1, this can be rewritten as

φ̂(z) =
∑∞

n=1 znJ0(2γ nτ )

1 +∑∞
n=1 znJ0(2γ nτ )

. (67)

Before analyzing Eq. (67), we derive it again using the en-
ergy spectrum. The energy levels of a tight-binding ring system
(periodic boundary conditions) determined from the time in-
dependent Schrödinger equation are Ek = −2γ cos(2πk/L)
and the system size L tends to infinity. As we have seen,
|Ck|2 = 1/L in Eq. (42) since all lattice sites are equivalent
with respect to the Hamiltonian. Using Eq. (24) or (61) with
minor rearrangement,

φ̂(z) =
1
L

∑L−1
k=0

z exp [i2γ τ cos ( 2πk
L )]

1−z exp [i2γ τ cos ( 2πk
L )]

1 + 1
L

∑L−1
k=0

z exp [i2γ τ cos ( 2πk
L )]

1−z exp [i2γ τ cos ( 2πk
L )]

. (68)

This is exact for all L and reduces to Eq. (44) when L = 6.
Let

I (z) ≡ lim
L→∞

1

L

L−1∑
k=0

z exp
[
i2γ τ cos

(
2πk
L

)]
1 − z exp

[
i2γ τ cos

(
2πk
L

)] , (69)

where the sum is an integral in the limit. Changing variables
2πk/L = y,

I (z) = 1

2π

∫ 2π

0

ze2iγ τ cos(y)dy

1 − ze2iγ τ cos(y)
(70)

and expanding to get a geometric series gives

I (z) = z

2π

∫ 2π

0
e2iγ τ cos(y)

∞∑
k=0

[ze2iγ τ cos (y)]kdy. (71)

Integrating over y using the identity
∫ 2π

0 exp[iz cos(y)]dy =
2πJ0(z) and shifting the summation by unity, we get

I (z) =
∞∑

k=1

zkJ0(2γ kτ ). (72)

Using

φ̂(z) = I (z)

1 + I (z)
(73)

we find the generating function (67). Note that 1 + I (z) =
〈0|ψ̂f (z)〉, and we use it as a matter of convenience.

B. Small-n behavior

To analyze the small-n behavior of φn, we expand the
generating function as a power series of z using Eqs. (20) and
(67). Such an expansion is easy to perform with a symbolic
program like Mathematica, which provides Table II giving
explicit expressions for φn when n = 1, . . . ,7. If we set γ τ to
a fixed value, the expansion can be carried out for relatively
large n, and in this sense we may find numerically exact
results which are later presented in the figures. Of course, this
information is the same as that found from the exact solutions
(18) and (19).

From Table II, we see that when γ τ → 0 we have φn = δn1

since then the particle is detected in the first attempt. The
table also gives the leading order corrections to this expected
behavior

φn ∼
{

1 − (γ τ )2, n = 1

−2(γ τ )2, n � 2.
(74)

This can be derived from Eq. (67) using J0(x) � 1 − x2/4 for
x � 1. Equation (74) exhibits equal probability of detection
for n > 1 which is merely an outcome of the Taylor expansion.
Clearly, the range of validity of Eq. (74) as a small-τ
approximation shrinks to smaller τ as n increases.

When γ τ → ∞, the amplitudes φn are zero for n =
1,2,3, . . . since the wave packet spreads in an infinite system,
hence, its probability of being detected on the origin is zero
in this limit. A close look at Table II shows that in this
limit φn � J0(2nγ τ ). Using Fn = |φn|2 and the asymptotic
behavior of the Bessel function

Fn ∼ cos2 (2γ τn − π/4)

πγ τn
(75)

when γ τ � 1. Thus, the probability of first detection decays
like a 1/n power law, when γ τ is large and n is fixed and finite.
This approximation breaks down for sufficiently large n. For

TABLE II. Amplitudes of φn for an infinite system, the quantum walker dispatched and detected at the origin.

n φn

1 J0(2γ τ )

2 J0(4γ τ ) − J0(2γ τ )2

3 J0(2γ τ )3 − 2J0(4γ τ )J0(2γ τ ) + J0(6γ τ )

4 −J0(2γ τ )4 + 3J0(4γ τ )J0(2γ τ )2 − 2J0(6γ τ )J0(2γ τ ) − J0(4γ τ )2 + J0(8γ τ )

5 J0(2γ τ )5 − 4J0(4γ τ )J0(2γ τ )3 + 3J0(6γ τ )J0(2γ τ )2 + 3 J0(4γ τ )2J0(2γ τ ) − 2J0(8γ τ )J0(2γ τ ) − 2J0(4γ τ )J0(6γ τ ) + J0(10γ τ )

6 −J0(2γ τ )6 + 5J0(4γ τ )J0(2γ τ )4 − 4J0(6γ τ )J0(2γ τ )3 − 6J0(4γ τ )2J0(2γ τ )2 + 3J0(8γ τ )J0(2γ τ )2 + 6 J0(4γ τ )J0(6γ τ )J0(2γ τ )

−2J0(10γ τ )J0(2γ τ ) + J0(4γ τ )3 − J0(6γ τ )2 − 2J0(4γ τ )J0(8γ τ ) + J0(12γ τ )

7 J0(2γ τ )7 − 6J0(4γ τ )J0(2γ τ )5 + 5J0(6γ τ )J0(2γ τ )4 + 10J0(4γ τ )2J0(2γ τ )3 − 4J0(8γ τ )J0(2γ τ )3 − 12 J0(4γ τ )J0(6γ τ )J0(2γ τ )2

+3J0(10γ τ )J0(2γ τ )2 − 4J0(4γ τ )3J0(2γ τ ) + 3J0(6γ τ )2J0(2γ τ ) + 6 J0(4γ τ )J0(8γ τ )J0(2γ τ ) − 2J0(12γ τ )J0(2γ τ )

+3J0(4γ τ )2J0(6γ τ ) − 2J0(6γ τ )J0(8γ τ ) − 2 J0(4γ τ )J0(10γ τ ) + J0(14γ τ )
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example, using γ τ = 80, by comparison with the numerically
exact solution, we observe roughly 30% deviation from theory
already for n = 10.

C. Large-n behavior

The large-n behavior of φn is of particular theoretical
interest since it is expected to exhibit universal features. For or-
dinary random walks the transformation from z back to large n

is performed with machinery called the Tauberian and Abelian
theorems [1,50]. While the technique is widely applicable, the
transformation method for the quantum problem is slightly
more involved as compared with the corresponding classical
problems, the reason being that φn turns out to exhibit a decay
superimposed with oscillations, while in classical random
walks the first passage probability decays monotonically to
zero for large n.

The large-n analysis of φn is performed by integration in the
complex plane using Eqs. (26), (72), and (73). The behavior
at large n is governed by the singularity structure of I (z)
[Eq. (72)], which in turn is generated by the summation of
the large k terms in the infinite sum since each individual
summand is analytic. For large k, the asymptotic behavior of
the Bessel function [49] is

J0(2γ τk) ∼ cos (2γ τk − π/4)√
πγ τk

. (76)

To capture the singular behavior of I (z), it is sufficient to
replace the Bessel function in Eq. (72) with its asymptotic
behavior, hence, we define

Iγ τ (z) =
∞∑

k=1

zk cos (2γ τk − π/4)√
πγ τk

. (77)

The advantage of this is that Iγ τ (z) can be explicitly calculated
in terms of the polylogarithm function. As we shall see, Iγ τ (z),
and so also I (z), has a (z − z0)−1/2 singularity at some set
of points z0 on the unit circle. The large-n behavior of φn

[Eq. (73)] is then determined by the behavior of φ̂(z) near z0:

φ̂(z) = I (z)

1 + I (z)
≈ 1 − 1

I (z)
= 1 − c(z − z0)1/2 (78)

for some constant c, near the singular points z0 of I (z) (see
below). This behavior is independent of the finite corrections
to the singular behavior of I (z), and thus using Iγ τ gives the
exact same result as using the original I (z). We start with an
example.

1. Infinite system: γ τ = π/2

We consider the case γ τ = π/2 and find

Iπ/2(z) = 1

π
Li1/2(−z), (79)

where Lis(z) = ∑∞
k=1 zk/ks is the polylogarithm function.

Using Eq. (26),

φn ∼ 1

2πi

∮
C

z−n−1
1
π

Li1/2(−z)

1 + 1
π

Li1/2(−z)
dz (80)

in the large-n limit. The integration path is shown in Fig. 5.
A branch cut is found in the complex plane of integration

Re[z]

Im[z]

-1

FIG. 5. Counterclockwise integration path C in Eq. (26) for
evaluation of φn for an unbounded lattice with the sampling rate
γ τ = π/2. Equation (80) avoids the branch cut along the negative
real axis when |z| > 1. The outer radius approaches infinity.

along the negative real axis when |z| > 1, with the singularity
at z0 = −1, since there −z = 1 and Li1/2(−z) = ∑∞

k=1 1/
√

k

does not converge. The radius of the outer path of integration
is taken to be large (r → ∞ in Fig. 5) and then

φn ∼ I+ + I−
2πi

. (81)

The integration in the complex plane reduces to two integrals
running parallel to the branch cut (see Fig. 5). The first line
integral I+ to be evaluated is slightly above the negative real
axis along z = x + iε with −∞ < x < −1 and 0 < ε → 0.
The second integral follows in the opposite direction with
z = x − iε (see Fig. 5). We consider I+ using z−(n+1) =
exp[−(n + 1) ln z] and Eq. (80):

I+ =
∫ −1

−∞
exp [−(1 + n) ln (x + iε)]

Li1/2(−x − iε)

π + Li1/2(−x − iε)
dx.

(82)

I− is similarly defined with a change of sign in ε and the lower
and upper integration limits switched. Changing variables to
y with x ≡ −1 − y,

I+ =
∫ ∞

0
exp [−(1 + n) ln (−1 − y + iε)]

× Li1/2(1 + y − iε)

π + Li1/2(1 + y − iε)
dy. (83)

When n → ∞ clearly the small-y limit of the integration
dominates. Close to the singularity at z = 1 [51],

Li1/2(z) �
√

π

1 − z
+ ζ (1/2) + · · · , (84)

where ζ (. . .) is the Riemann zeta function. Indeed, to obtain
the leading term (which will eventually give the large-n limit of
φn), we replace the summation with integration in the definition
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of Li1/2(z), using

∞∑
k=1

zk

√
k

�
∫ ∞

0

dk√
k
ek ln(z) = √

π[− ln(z)]−1/2 �
√

π

1 − z
,

(85)

where z < 1. We write z = 1 + y ± iε, where the choice of
sign depends on the path evaluated, namely I±. In the limit of
small y, corresponding to large n, we find, using Eq. (84),

Li1/2(1 + y ± iε) �
√

π

−y ∓ iε
∼
√

π

ye∓iπ
= ±i

√
π

y
.

(86)

Given that ln(−1 − y + iε) = ln(1 + y) + iπ when ε → 0,

I+ =
∫ ∞

0
exp {−(1 + n)[ln(1 + y) + iπ ]} −i

√
π/y

π − i
√

π/y
dy.

(87)

Clearly, exp[−(1 + n)iπ ] = (−1)n+1, and approximating
(1 + n) ln(1 + y) ∼ ny in the exponential in the integrand in
Eq. (87), an approximation valid in the limit of large n since
then only small y contributes to the integration, and finally
Taylor expanding −i

√
π/y/[π − i

√
π/y] ∼ 1 − i

√
πy, we

find

I+ ∼ (−1)n+1
∫ ∞

0
exp(−ny)(1 − i

√
πy + · · · )dy. (88)

The integral yields

I+ ∼ (−1)n+1

(
1

n
− i

π

2n3/2

)
. (89)

The calculation of I− follows the same steps

I− ∼ (−1)n+1

(
−1

n
− i

π

2n3/2

)
. (90)

Finally, using Eq. (81),

φn ∼ (−1)n

2n3/2
. (91)

This solution exhibits an odd/even sign oscillation with an
overall decay of a power law. The probability of finding the
particle after n attempts goes like Fn ∼ 4−1n−3. Hence, it does
not exhibit oscillations, but that is merely due to our choice
of sampling rate γ τ = π/2 as we now show. In Fig. 6, a very
nice agreement between Eq. (91) and the exact solution is seen
already for not too large n.

2. Infinite system: General τ

We now investigate φn for sampling time 0 < γτ < π with
γ τ �= π/2, sticking to the case where the origin of the quantum
walk is also the location where the particle is detected. We find
the large-n limit of φn using

φn ∼ 1

2πi

∮
C

z−n−1 Iγ τ (z)

1 + Iγ τ (z)
dz (92)

1 2 5 10 20 50 100 200
n

10 6

10 4

0.01

Fn

FIG. 6. First detection probability Fn versus n on a log-log plot,
for an open system, detection is at the starting point and the sampling
rate is γ τ = π/2. For large n, the exact result (dots) converges to the
asymptotic power-law behavior (91), Fn = |φn|2 ∼ 0.25n−3 (straight
line).

and similar to the previous subsection, the large argument limit
of the Bessel function (76) gives

Iγ τ (z) =
∞∑

n=1

zn cos (2γ τn − π/4)√
πγ τn

= 1

2
√

πγ τ

[
e−iπ/4

∑
n=1

(ze2iγ τ )n√
n

+ eiπ/4
∞∑

n=1

(ze−2iγ τ )n√
n

]
. (93)

Clearly, for z = r exp(iθ ) with θ = 2γ τ or θ = −2γ τ and r �
1 either the second or first sums diverge, respectively. Thus,
for 0 < 2γ τ < 2π we find two branch cuts which are shown
in Fig. 7, with two singular points z0 = exp(±2iγ τ ). The
exception is the case treated in the previous subsection, 2γ τ =
π , where the two branch cuts merge. The integration path in the

Re[z]

Im[z]

|z| = 1
2γτ

FIG. 7. Integration path for the calculation of φn in the complex
plane bypasses two branch cuts (dashed lines). Integration along four
lines just above and below the two dashed lines is explained in the
text, while the integration around the outer circle does not contribute
in the limit of an infinite radius. When 2γ τ = kπ the two branch cuts
merge (k = 0,1, . . . ).
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1 2 5 10 20 50 100 200
n

10 6

10 4

0.01

1

Fn

FIG. 8. Fn versus n for the rational sampling time γ τ/π = 1
3 .

Now, the detection probability Fn decays monotonically like n−3

with a superimposed periodic oscillation. The lines are the asymptotic
theory (95) which for large n nicely match the exact expression (dots).

complex plane now avoids two branch cuts, but otherwise the
calculation is similar to the one we performed in the previous
section. In Appendix C, we find one of our main results

φn ∼ 2

√
γ τ

πn3
cos

(
2γ τn + π

4

)
. (94)

Thus, the probability of measuring the quantum walker
returning to its origin for the first time is

Fn ∼ 4γ τ

πn3
cos2

(
2γ τn + π

4

)
. (95)

This formula predicts that when γ τ/π is a rational number, the
probability Fn multiplied by n3 is periodic. Such a behavior is
shown in Fig. 8. In contrast, if γ τ/π is not rational, the asymp-
totic behavior is quasiperiodic and appears noisy, the theory
(95) perfectly matching the exact solution. This we demon-
strate in Fig. 9 for the choice of irrational γ τ/π = 0.8/π .

3. Critical sampling

A strange aspect of Eq. (95) is that in the limit of 2γ τ → π

it does not recover the result found for 2γ τ = π , Fn ∼ 0.25n−3

0 20 40 60 80 100
10 9

10 7

10 5

10 3

10 1

n

F n

FIG. 9. Fn versus n for the choice of an irrational sampling rate
γ τ/π = 0.8/π , for a quantum walk on a one-dimensional lattice
(note the log linear scale). The numerically exact solution (red circles)
nicely matches the theory (the curve) already for moderate values of n.

found in Eq. (91). Instead, lim2γ τ→π Fn ∼ n−3, so a factor 4
mismatch is found. This surprising result is no doubt due to the
presence of two branch cuts for the case under study, while for
2γ τ = π we have only one. This implies that the convergence
to formula (95) when 2γ τ � π is very slow, and is reminiscent
of the behavior at the exceptional sampling times we saw for
finite L.

These calculations can be extended for γ τ > 2π and
critical behavior is found for γ τ = kπ/2 with k = 1,2, . . .

since then the two branch cuts merge, and one finds Fn ∼
k/(4n3). Otherwise, Eq. (95) is valid for all sampling periods
0 < γτ . Note that the energies on a finite tight-binding ring are
given by Ek = −2γ cos(2πk/L), as mentioned. Hence, in the
limit of large L we find a band of energies of size �E = 4γ . If
we use this width in Eq. (58), we find the exceptional sampling
time 2γ τ = kπ . This argument leads us to speculate that the
width of the band, in an infinite system, will determine the
exceptional points that survive the L → ∞ limit.

Critical sampling implies that the convergence of the
generic formula for 2γ τ close to π must be a little funny.
Thus, for 2γ τ = 0.95π , we have that at n = 40 the ratio of
prediction to exact is −2.72 (i.e., even the sign is wrong),
whereas for n = 60 the ratio is 0.705, for n = 80, the ratio is
1.03, at n = 100, the ratio is 0.947, and at n = 120, the ratio is
0.968, so things are converging, even though even intermediate
n’s are way off.

D. One-dimensional quantum walks are not recurrent,
the survival probability is highly irregular

The probability that the quantum walker will eventually be
detected on its origin is given by 1 − S∞ = ∑∞

n=1 Fn. Here,
S∞ is the probability that the particle survived, namely, the
probability that it was not detected. For a one-dimensional
(1D) classical random walk on the integers, i.e., the binomial
random walk, where the particle has probability 1

2 to jump
left or right, the survival probability is zero, so eventually the
particle is detected at its origin. The quantum walk in one
dimension is generally nonrecurrent as previously pointed out
[9,17]. The spreading is ballistic, not diffusive, and hence the
return to the origin is not guaranteed in an open system.

We focus therefore on the nontrivial value of the survival
probability S∞. Using the exact expressions for Fn we have
used Mathematica to obtain estimation for 1 − S∞ using two
methods. The first is summing Fn for a large value of n using
the exact expression for Fn. More precisely, we expand the
generating function φ̂(z) in z the coefficients giving φn up to
some large value of n, and hence also Fn. Then, we estimate the
reminder using our asymptotic large-n formulas. In the second
method we numerically perform the integration in Eq. (27),
using Eq. (67). Both methods yield the same results.

In Fig. 10, we show 1 − S∞ versus γ τ . For γ τ → 0,
we get S∞ = 0 since the particle starting at the origin is
detected with probability one if the measurement is made
immediately after the release of the particle. Not surprisingly,
when γ τ → ∞, S∞ → 0 (though it remains small though
finite for γ τ � 10). An unforeseen property is the cusps in
1 − S∞, presented in the figure, found for γ τ = πk/2 with
k = 1,2, . . . . Mathematically, these cusps must be related to
the appearance of two branch cuts in the complex plane.
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FIG. 10. For the one-dimensional tight-binding quantum walk,
the probability that the particle is eventually detected 1 − S∞ =∑∞

n=1 Fn versus the sampling rate γ τ exhibits a nonmonotonic
behavior. Unlike its classical random walk counterpart, the quantum
walk is not recurrent, unless γ τ → 0, which is the trivial case.

The nonmonotonic behavior of the probability of eventual
measurement is not something we could have anticipated.

For large γ τ , we find Fn ∝ 1/n for finite n and Fn ∝ n−3

for large n [Eqs. (75) and (95)]. Matching these solutions
indicates a transition occurs when ntr = c(γ τ ) where c is a
constant of order unity. We may estimate the probability of
detection as

∑ntr

n=1 Fn. Here, we do not sum in the interval
(ntr ,∞) since here Fn decays like n−3 and hence is negligible.
Using Eq. (75), switching from summation to integration, we
find

1 − S∞ � ln γ τ

2πγ τ
(96)

when γ τ � 1. In this rough estimation, we used ln γ τ � ln c.
Further discussion on S∞ and a far better approximation is
provided in Appendix D.

E. Transition to large system

For a large but finite ring of size L we expect to see, for
intermediate times, a behavior similar to the infinite system,
where on the one hand the asymptotic limit (95) is reached,
but the particle still does not sense the finiteness of the system.
This behavior is presented in Fig. 11 for a ring with L = 100
sites. At first Fn decays as for the infinite system with the
same sampling rate (see Fig. 12). However, at least in this
example, roughly at n � 70 we see a sudden increase in Fn.
This is a nonclassical behavior; for a classical random walk on
a large ring the survival probability has a power-law decay for
intermediate times, crossing over to an exponential decay for
long times. The significant increase in Fn is due to a partial
revival at the origin, a nonclassical effect, and is obviously
related to the ballistic nature of the quantum walk. The precise
nature of this transition merits further study.

VII. OTHER APPROACHES AND SOME CONNECTIONS

Krovi and Brun [18,19] derived a general expression for
the average hitting time 〈n〉 for discrete quantum walks.
Their formalism is based on a trace formula for a density
matrix, while we relate the statistics of the first detection

1 2 5 10 20 50 100
n

10 9

10 7

10 5

0.001

0.1

Fn

FIG. 11. Quantum walk on a ring with L = 100 sites for a
sampling rate γ τ = 0.6 with detection at the origin of the walk. For
small n, the system exhibits a behavior similar to that of an infinite
system (see Fig. 12). Roughly at n = 70, there is a sudden increase
in Fn, probably due to a partial revival of the packet at the origin.

event to the wave function free of measurements. They also
point out the possibility of infinite average hitting times on
finite graphs. This theme is important in the context of the
efficiency of search. A classical random walker, on a finite
graph, always finds the target (assuming the walk is ergodic).
In that sense, a classical walk is very efficient since it will
always reach its target. On the other hand, a classical walk
tends to explore territory previously visited, so the time it
takes to reach the target is relatively long. Quantum walks
are considered faster, if compared to classical walks, in the
sense that they scale ballistically. However, as we showed
for the simple benzene ring geometry, the average hitting
time (for specific initial conditions) may diverge. It implies
that one cannot categorically say that quantum search, in the
average hitting time sense, is more efficient than the classical
counterpart. Further, we have found the so called half dark
states, namely, certain initial conditions where the particle is
eventually detected only with probability 1

2 even on a small
graph like a benzene ring. For the ring geometry, and for
initial condition on the origin, Eq. (57) shows that the average
〈n〉 scales with the size of system, which is the same as
the classical search, as mentioned. It should be noted that

1 2 5 10 20 50 100
n

10 9

10 7

10 5

0.001

0.1
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FIG. 12. Same as Fig. 11 for an infinite system.
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diverging 〈n〉 for finite systems and half dark states are found
here for the stroboscopic measurement under investigation.
The latter has many advantages, for example, in revealing
quantum periodicities, but if the goal is to detect the particle
with probability one, measurements on random times drawn
from a Poisson process could be more efficient [20].

As mentioned in the Introduction, the quantum first passage
time question has been controversial in the sense that many
conflicting approaches to the problem have been suggested.
One way to treat the quantum first passage time problem is by
adding a non-Hermitian term to the Hamiltonian [36]. Briefly,
the non-Hermitian approach leads to the nonconservation of
the normalization of the wave function, which can be inter-
preted as the survival probability of the particle. This approach
was shown to be related to the projective measurement method
in the limit of small finite τ [21,22]. It is an interesting
question, however, as to whether the non-Hermitian approach
can predict the behaviors found in this paper, for example,
Eq. (95). Especially important is whether the limits of large n

and small τ commute, an issue left to future research.
Dhar et al. [21,22], after laying the general framework to

the problem, including introducing the fundamental concept
of the wave function φn, investigated the limit of small τ .
In this sense, the problem is investigated close to the Zeno
limit. The stroboscopic sampling for finite τ investigated
herein allows for revivals, critical sampling, and other special
quantum effects which are clearly missed in this Zeno limit.
They [21,22] use a perturbation theory and derive an effective
Hamiltonian where the effects of the failed prior detections
are included as a non-Hermitian part of the Hamiltonian. That
method together with numerical simulations predicts, for a
specific initial condition and a finite sized system, with infinite
walls at the edges, that the survival probability has a power-law
decay of − 1

2 or − 3
2 . This is an interesting observation since

it shows that in some cases half integer exponents control the
decay of the survival probability, while so far we have found
only integer values. We have verified the main qualitative
findings of Dhar et al. using both the generating function
and, alternatively, the recursion relation (17) (not shown), in
particular the n−3/2 of 1 − Sn when the initial and measurement
sites are at opposite ends of the system and a n−1/2 decay
when the initial site is at the center of the system and the
measurements are performed at one end. We find oscillations
to be superimposed on these decays. The presence of these new
exponents which are not reflected in the 0-0 infinite chain case
we studied herein clearly merits further study, but indicates
that the geometry plays a crucial role.

Another approach suggests the use of the classical renewal
equation, derived by Schrödinger [6] long before the appear-
ance of wave mechanics in the context of the first passage
time of a Brownian motion, to investigate also the quantum
first passage time problem [32,37]. This approach seems very
different than ours since it does not take into consideration
the effect of measurement, and it uses probabilities instead of
amplitudes to describe the quantum statistical aspects of the
first passage problem.

In [34], a discarding system method was used for the
problem of recurrence of quantum walks. These authors
investigated an ensemble of identically prepared systems and
suggested the following measurement procedure. After one

time step measure the occupancy of the particle at the origin
(the outcome is a binary yes or no answer) and then discard
the system. Take a second identically prepared second system
and let it evolve for two time steps, measure at the origin,
and again discard the system. Continue similarly for a long
time. One then constructs the probability of measurement at
the origin, for times t = 1,2, . . . . In this way, one may define
a Pôlya number, which in classical random walks gives the
criterion whether a random walk is transient or recurrent. This
approach is of course very different than ours. As pointed out in
Ref. [34], one can imagine several approaches to the problem
of recurrence of a quantum random walker.

Historical remark. Equation (10) in Ref. [15] is the renewal
equation for classical random walks after which the author
writes: “The equation was proposed by Schrödinger in terms
of cumulative probabilities.” A minor historical remark is that
a close look at the original publication [6] does not reveal
an explicit equation. However, translating the original work to
English reveals that indeed the origin of the renewal equation is
in that classic paper. In Appendix B of [15], Muga and Leavens
mention a quantum renewal equation; their conclusion is that
this equation (which is not at all related to ours) is not valid.

VIII. SUMMARY

The quantum first detected passage time problem rests on
two fundamental postulates of quantum reality. The first is
the Schrödinger equation and the second is the projective
measurement postulate. The latter is the fifth postulate listed
in [13] which states that immediately after the measurement,
the state of the system is a normalized projection of |ψ〉,
where |ψ〉 is the state function of the system just prior to the
measurement. Without these assumptions, the first tested in
many experiments but the second in far fewer, quantum theory
is not complete. Our goal, following [21], was not to question
basic physical assumptions, but rather to show how these
postulates lead to the solution of the first detection problem.

The quantum renewal equation (17) and the Z transforms
equations (23), (36), and (37) give a rather general relation
between the amplitude of first detection φn and the wave
function of the system free of measurement |ψf 〉. In that sense,
the problem of first detection reduces to the solution of the
Schrödinger equation, e.g., the determination of the energy
spectrum. In particular, similar to the corresponding classical
first passage problems, the generating function is a powerful
tool with which we can attain many insights.

We have illustrated several surprising features, both for
closed systems, i.e., rings, and for open systems. Generally,
the quantum first detection problem exhibits behaviors very
different than classical, but still some relations remain. For
example, for a classical random walk on an infinite line, the
first passage PDF decays like n−3/2, similarly the correspond-
ing quantum amplitude (neglecting the oscillations) gives
φn ∼ n−3/2 [see Eqs. (91) and (94)]. However, the quantum
problem exhibits rich behaviors, which are related to the
sampling rate γ τ , including oscillations of Fn superimposed
on the power-law decay, the Zeno effect when τ → 0 and a
surprising critical behavior when γ τ = kπ/2. Critical slowing
down, namely ultraslow convergence, is found when the
sampling time τ times the energy band is equal to multiples
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of 2π . Thus, the first detection problem is critically sensitive
to the sampling rate even for an infinite system and even in
the large-n limit. Of course, for real systems this conclusion
can be reached only if the coherence is maintained for long
times. Another notable result is the nonanalytical behavior of
the survival probability S∞ as we tune γ τ (see Fig. 10). This
should be compared with the classical result where the final
probability of detecting the particle in one dimension is unity.

For a finite system like a ring, we find strong sensitivity
to the initial condition: for an initial condition starting on
the origin x = 0, which is also the detected site, the average
number of measurements until detection 〈n〉 increases linearly
with the system size L [see Eq. (57)]. Furthermore, 〈n〉 does
not depend on the sampling time τ , aside from ever present
exceptional sampling [see Eq. (58)]. Since 〈n〉 ∝ L, we find
essentially classical behavior for the average and for this
particular initial condition [the quantum effects are observed
in the variance (50)].

However, when starting at other sites, 〈n〉 depends crucially
on the sampling time τ , and in fact 〈n〉 may diverge as τ is
tuned. The revivals, optimal detection times, exceptional points
given by the simple formula (58), half dark states, quantization
of 〈n〉 for the |0〉 → |0〉 transition [25], unbounded fluctuation
of n̄ (Fig. 3) describe rich behaviors even in small systems.
They also point out the advantage of stroboscopic observation
of the system since this captures underlying quantum features.
Even for a finite sized system, the probability of being
eventually detected is not always unity. However, we showed
that at least when starting on the origin which is also
the location of the detection, the particle is detected with
probability unity for any sampling time τ , and in that sense the
quantum walk on a finite ring or more generally a graph [25] is
recurrent. Finally, the tools developed in this paper can serve
as a starting point for many other first detection problems and
the advance of single particle first detection theory.
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APPENDIX A: ITERATIONS, GENERAL MEASUREMENTS

In this Appendix, we present the details of the derivation of
our general formulation.

1. Derivation of φn, φ̂(z)

We here show by induction that

|θn〉 = [U (τ )(1 − D̂)]n−1U (τ )|ψ(0)〉 (A1)

is identical to

|θn〉 = U (nτ )|ψ(0)〉 −
n−1∑
k=1

U [(n − k)τ ]D̂|θk〉. (A2)

The case n = 1 can be easily verified since both equations give
|θ1〉 = U (τ )|ψ(0)〉. We now argue by induction, assuming the
validity of Eq. (A2) for some n, and proving it for n + 1. As can

be seen from Eq. (A1), the effective waveform is propagated
between measurements

|θn+1〉 = U (τ )(1 − D̂)|θn〉
= U (τ )U (nτ )|ψ(0)〉

−
n−1∑
k=1

U [(n + 1 − k)τ ]D̂|θk〉 − U (τ )D̂|θn〉

= U [(n + 1)τ ]|ψ(0)〉 −
n+1−1∑
k=1

U [(n + 1 − k)τ ]D̂|θk〉.

(A3)

This is of course the same as Eq. (A2) but for n + 1, hence,
the proof is completed.

The Z transform of Eq. (A2) gives a closed formula for
|θ (z)〉 = ∑∞

n=1 zn|θn〉. Using the convolution theorem, we find

|θ (z)〉 = [1 + U (z)D̂]−1U (z)|ψ(0)〉. (A4)

For a single detected site at 0 (D̂ = |0〉〈0|) and denoting φn =
〈0|θn〉, Eqs. (A2) and (A4) can be represented as

φn = 〈0|U (nτ )|ψ(0)〉 −
n−1∑
k=1

〈0|U [(n − k)τ ]|0〉φk,

(A5)

φ̂(z) = 〈0|U (z)|ψ(0)〉
1 + 〈0|U (z)|0〉 ,

respectively, as it is stated in the text.

2. General measurements

We consider the first detection measurement of an ob-
servable whose corresponding bra is 〈O| with the additional
condition 〈O|O〉 = 1 so

∑
x∈X〈x| is not such a measurement

if the set X has more then one element, but 〈x| or 〈Em|,
denoting an energy state of the system, are. For example,
we select a specific energy level denoted Em and ask what
is the statistics of first detection time of that state, so here
〈O| = 〈Em| (the subscript m is for measurement). The energy
states are assumed to be nondegenerate for simplicity. The
generating function in this case is

φ̂(z) = 〈O|Û (z)|initial〉
1 + 〈O|Û (z)|O〉 . (A6)

Here, the state 〈O| is not only normalized but it must be
an eigenstate of a Hermitian operator, in such a way that
it describes a physical measurement. For example, consider
the case where the initial state is a stationary state of the
Hamiltonian |Ei〉 and the observable state is |O〉 = |Em〉.
Then, the assumption that the Hamiltonian is time independent
means that

〈Em|Û (z)|Ei〉 = [z−1 exp (iEmτ ) − 1]−1δmi, (A7)

where δmi is the delta of Kronecker, we find

φ̂(z) = ze−iEmτ δmi. (A8)

This is the expected result, if we start with a stationary state i

this state will be detected with probability one only if m = i.
More than one measurement is actually not informative in this
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case, hence, φn = 0 for n > 1 (this is easily understood since
the generating function contains a single term linear in z when
m = i).

It is emphasized again that the measurement is different
from the standard textbook measurement that asks what is the
energy of the system at a certain time (say τ ). In our case, the
measurement performed gives a binary answer either yes or
no, and this gives a definitive answer to the question whether
the system is in the mth state at times τ,2τ . . . .

APPENDIX B: ANALYTIC CALCULATIONS OF
MOMENTS OF Fn FOR A L-SITE RING

1. 0 → 0

We start with the problem where the particle is both released
from and detected at the origin. There is a simple proof that
F ≡ ∑

n Fn = 1 − S∞ = 1. Equation (61) gives

φ̂(z) =
∑L−1

k=0 n̄k

L +∑L−1
k=0 n̄k

. (B1)

Now, for z = eiθ ,

n̄k = 1

ei(τEk−θ) − 1
= cos(τEk − θ ) − 1 − i sin(τEk − θ )

2 − 2 cos(τEk − θ )

= −1

2
− i

2
cot

τEk − θ

2
. (B2)

Thus, on the unit circle, z = eiθ , φ̂(z) has the form

φ̂(eiθ ) = −L/2 + iA

L/2 + iA
, (B3)

where A is real. Thus, |φ̂(eiθ )|2 = 1, and so, using Eq. (27),

F =
∑

n

Fn =
∫ 2π

0

dθ

2π
|φ̂(eiθ )|2 = 1 (B4)

and the particle is detected with probability unity.
For z off the unit circle, φ̂(z) can be written as a rational

function of z, that is to say, the quotient of two polynomials.
In fact, we have

φ̂(z) = N (z)

D(z)
. (B5)

The exact forms of the numerator and denominator depend
on whether L is even or odd since in the former case we
have K = L/2 + 1 different Ej ’s, of which all but two are
doubly degenerate, whereas in the latter case we have K =
(L + 1)/2 Ej ’s, all but one of which are doubly degenerate.
We treat the L odd case in detail, the even case being similar.

Note that we do not need in the following the specific values
of the energies for the different states, so we absorb τ into the
energies for efficiency. In particular, using Eq. (B1),

N (z) =
[

K−1∏
i=0

(eiEi − z)

]
K−1∑
j=0

dj z

eiEj − z
;

D(z) =
[

K−1∏
i=0

(eiEi − z)

]⎡⎣L +
K−1∑
j=0

dj z

eiEj − z

⎤
⎦. (B6)

Here, dj is the degeneracy of the j th energy level, so that
d0 = 1 and otherwise dj = 2. The denominator is a polynomial
of degree K − 1 since the zK term cancels out, while the
numerator is of degree K , and has no z0 term. For the
moment, we treat N (z) and D(z) as two order K polynomials
in z defined by Eq. (B6). The two polynomials both have
complex coefficients, each depending on the same set of real
numbers {E0, . . . ,EK−1}. What we want to show is that the
two polynomials are related, for arbitrary K , by the relation

DK (z) = (−1)K−1ei
∑

j Ej zKN ∗
K (1/z), (B7)

where we have made explicit the dependence of the poly-
nomials on K , and have left implicit the dependence on the
set of numbers {Ej }, j = 0, . . . ,K − 1. The polynomial N ∗
is the polynomial with coefficients conjugate to those of N .
Equivalently, this is the polynomial with all the {Ej } replaced
by {−Ej }. For example, for K = 1,

N1(z) = z; D1(z) = (eiE0 − z) + z = eiE0 , (B8)

which clearly obey the relation (B7), for arbitrary real E0. We
will now prove Eq. (B6) by induction. We start by noting the
most of the terms in NK and DK also appear in NK−1, DK−1

with the set of energies {Ej }, j = 0, . . . ,K − 2. We have

NK (z) = (eiEK−1 − z)NK−1(z) + 2z

K−2∏
i=0

(eiEi − z);

DK (z) = (eiEK−1 − z)DK−1(z)

+ 2
K−1∏
j=0

(eiEj − z) + 2z

K−2∏
i=0

(eiEi − z)

= (eiEK−1 − z)DK−1(z) + 2eiEK−1

K−2∏
j=0

(eiEj − z).

(B9)

We can now use the induction hypothesis, assuming Eq. (B7)
is valid for K − 1, to rewrite the first line of Eq. (B9):

(−1)K−1zKei
∑

j EjN ∗
K (1/z) = (−1)K−1zKei

∑
j Ej

[
(e−iEK−1 − 1/z)N ∗

K−1(z) + (2/z)
K−2∏
i=0

(e−iEi − 1/z)

]

= −zeiEK−1 (e−iEK−1 − 1/z)DK−1(z) + 2zeiEK−1

K−2∏
i=0

(eiEi − z)

= (eiEK−1 − z)DK−1(z) + 2eiEK−1

K−2∏
i=0

(eiEi − z) = DK (z), (B10)
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where we have invoked the last line of Eq. (B9) in the final
step. This completes the induction proof.

As an immediate corollary, we obtain

φ̂∗(1/z)φ̂(z) = N ∗(1/z)

D∗(1/z)
× N (z)

D(z)
= 1, (B11)

which implies |φ̂(eiθ )|2 = 1, which we previously obtained.
An alternative route to prove Eq. (B7) is to use Eq. (B6)

and write

N (z) =
K−1∑
j=0

dj z

K−1∏
i=0
i �=j

(eiEi − z) (B12)

and so

D(z) = L

K−1∏
i=0

(eiEi − z) + N (z)

= L

K−1∏
i=0

(eiEi − z) +
K−1∑
j=0

dj [(z − eiEj )

+ eiEj ]
K−1∏
i=0
i �=j

(eiEi − z). (B13)

Clearly,

K−1∑
j=0

dj (z − eiEj )
K−1∏
i=0
i �=j

(eiEi −z) = −
⎛
⎝K−1∑

j=0

dj

⎞
⎠ K−1∏

i=0

(eiEi −z),

(B14)

and using
∑K−1

j=0 dj = L we find

D(z) =
K−1∑
j=0

dj e
iEj

K−1∏
i=0
i �=j

(eiEi − z). (B15)

Thus, D(z) is the same as N (z) when the replacement
dj z → dj exp(iEj ) is made. It is now easy to verify the
theorem (B7).

This factorization of φ̂(z) allows for a simple calculation
of 〈n〉, the mean detection time. The one added piece of
information we require is the location of the zeros of D. It is
clear that all these zeros lie outside the unit circle, as otherwise,
S∞ would diverge. For large n, φn decays geometrically as r−n,
where r is the absolute value of the radius of the pole nearest
to the origin. For the sum of |φn|2 to converge, we must have
r > 1. There is one exception to this rule. It turns out that
for a discrete set of exceptional values of γ τ , one (or in the
case of even L, a complex conjugate pair) zero hits the unit
circle. Given the relationship between the numerator N and
the denominator D, a zero of N must hit the unit circle and
coincide with the zero of D at the exceptional point. In this
case, there is no pole in φ̂(z) at this point, and all poles of φ̂(z)
still lie strictly outside the unit circle. We will return to the
identification of these exceptional values of γ τ in a moment,
but let us first proceed and calculate 〈n〉 for a nonexceptional

γ τ . Given our theorem (B7) relating N and D, we have

φ̂(z) = ze−i
∑

j Ej

K−1∏
i=0

z − 1/z∗
i

(z − zi)/zi

, (B16)

where, as before K = (L + 1)/2 for L odd and L/2 + 1 for
K even, and the zi are the zeros of D(z). Then,

φ̂∗(1/z)
d

dz
φ̂(z) = 1

z
+

K−1∑
i=1

[
1

z − 1/z∗
i

− 1

z − zi

]
. (B17)

We have to integrate this over the unit circle, which by the
residue theorem picks up a contribution of 2πi for each pole
in the interior, which lie at 0 and 1/z∗

i . Thus, as long as we are
not dealing with an exceptional point, we have

〈n〉 = K. (B18)

This agrees with explicit numerical calculations for L = 5,6.
If the exceptional point is such that a single pole touches the
unit circle (a real pole for even L or a complex one for odd L),
then 〈n〉 is reduced by one. If the exceptional point is such that
a complex conjugate pair touch the unit circle, 〈n〉 is reduced
by two at this value of γ τ .

2. Exceptional τ

For z on the unit circle, we may write z = eiθ . Studying the
structure of D, it is clear that one way to make D vanish is
to require that two of the factors eiEk − z are zero, in which
case every individual term in D vanishes separately. In other
words, we have, for a pair of energies Ej < Ek ,

θ = Ejτ + 2πnj = Ekτ + 2πnk, (B19)

for two integers nj , nk . This gives us

τ = 2πnjk/(Ek − Ej ); θ = mod(Ejτ,2π ) (B20)

for an integer njk . Thus, for each pair j,k, there are an infinite
number of exceptional values of τ . For L = 6, for example,
we have 〈n〉 = 4 for nonexceptional points. As the energy
levels in this case are {−2γ,−γ,γ,2γ }, we have an exceptional
τ = θ = 0, with degeneracy 3, so 〈n〉 is reduced by 3. A second
exceptional value is γ τ = π/2, θ = π , which comes from the
pair {E0,E3} with degeneracy 1. We also have γ τ = π , θ = π ,
coming both from the pair {E0,E3} with njk = 2 and also from
{E1,E2} so that this root has degeneracy 2. In addition, we have
γ τ = 2π/3, with θ = 2π/3, 4π/3, coming from {E0,E2} and
{E1,E3}, respectively, so that 〈n〉 is again reduced by 2.

3. L = 6, 3 → 0

Unfortunately, there does not appear to be any such miracle
occurring for the L = 6 ring when the particle starts at 3
and we detect at 0, the 3 → 0 transition. Again, φ̂(z) can
be written as a rational polynomial, but we have not found any
simple relationship between the numerator and denominator.
Nevertheless, we can still compute the moments of n. We start
by factoring D,

φ̂(z) = i
zN̂ (z)

D(z)
= −i

zN̂ (z)

D0(z − z1)(z − z2)(z − z3)
, (B21)
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where we have also factored out z and a phase from the
numerator, such that N̂ has real coefficients. In particular,

N (z) = 8 sin(γ τ ) sin2(γ τ/2)[1 + 2z cos(γ τ ) + z2];

D(z) = −2[z3{2 cos[γ τ ) + cos(2γ τ )]

− 3z2[1 + cos(γ τ ) + cos(3γ τ )]

+ z[4 cos(γ τ ) + 5 cos(2γ τ )] − 3}. (B22)

Given this, we have

F ≡ 1 − S0 =
∮

dz

2πiz
φ̂∗(1/z)φ̂(z)

=
∮

dz

2πi

N̂ (1/z)N̂ (z)

D2
0

∏
i[(z − zi)(z − 1/zi)]

. (B23)

We can formally do the contour integral, picking up the
residues at the three poles inside the unit circle, namely,
1/zi , i = 1, . . . ,3. The result can be written as the ratio of
polynomials in the three values zi . The key here is that both
polynomials are symmetric under permutations of the three
zi’s. Therefore, by the fundamental theorem of symmetric
polynomials [52] (p. 90), each can be expressed uniquely
in terms of the three elementary symmetric polynomials,
s1 = z1 + z2 + z3, s2 = z1z2 + z1z3 + z2z3, and s3 = z1z2z3.
These three elementary polynomials are, however, simply
related to the coefficients of the polynomial D:

s1 = 3[1 + cos(γ τ ) + cos(3γ τ )]/D0;

s2 = −[4 cos(γ τ ) + 5 cos(2γ τ )]/D0;

s3 = −3/D0, (B24)

where

D0 = −2[2 cos(γ τ ) + cos(2γ τ )] (B25)

is the coefficient of the z3 term inD. Performing these substitu-
tions (via the command SymmetricReduction in Mathematica)
in the numerator and denominator and, simplifying, we find
F = 1 so the survival is zero S0 = 0. This equation holds at
all but the exceptional points, which do not have three poles in
φ̂(z) due to the collision of a pole (or pair of conjugate poles)
with the zeros of N on the unit circle, leaving these cases to be
examined individually. Since D does not depend on the initial
condition, the set of exceptional points is the same as for the
0 → 0 transition.

This same general procedure works for the calculation of
〈n〉 as well, since again we only have the simple poles from
D(1/z) to contend with, again giving three contributions. The
result of this exercise is as given in the main text.

4. L = 6, 1 → 0

The same general procedure can be applied to the calcula-
tion of F for the 1 to 0 or 2 to 0 transitions, and gives F = 1

2 at
all but the exceptional points, which again have to be handled
separately.

APPENDIX C: CALCULATING THE INTEGRAL (92)

The integration path in Eq. (92) is shown in Fig. 7 and
since the integration along the outer zone |z| → ∞ does not

contribute, we need to consider four integration segments,
which are at a distance ε above and below the two branch
cuts. We distinguish these four paths with indices σ and β that
get values ±1. σ is an indicator for the branch cut, σ = +1
represents the upper branch cut (see Fig. 7), and σ = −1 the
lower one. The index β is for the direction of integration,
β = +1 for outward integration in the radial direction while
β = −1 is for inward integration (see Fig. 7). In the complex
plane, the parametrization of the four paths is

z(y) = (1 + y + iεβ)e2iσγ τ , 0 < y < ∞ ε → 0+. (C1)

Along these paths it is easy to show that

Iγ τ [z(y)] = 1

2
√

πγ τ
{e−iσπ/4Li1/2[(1 + y + iεβ)e4iσγ τ ]

+ eiπσ/4Li1/2(1 + y + iεβ)}. (C2)

In the integration we consider the small-y limit corresponding
to large n using Eq. (84) along the four paths. The second term
in Eq. (C2) Li1/2(1 + y + iεβ) � βi

√
π/y is the large term

and we get

lim
ε→0

Iγ τ [z(y)] ∼ iβeiπσ/4

2
√

γ τy
. (C3)

The generating function is given by

φ̂[z(y)] ∼ 1 − 1

Iγ τ [z(y)]
∼ 1 + 2iβe−iπσ/4√γ τy. (C4)

Integrating along the four lines, taking into consideration the
clockwise direction of the integration we find

φn =
∑

β=±,σ=±

βIσβ

2πi
, (C5)

where

Iσβ ∼
∫ ∞

0
exp{−(1 + n) ln[(1 + y + iεβ)ei2σγ τ ]}︸ ︷︷ ︸

z(y)−n−1

× (1 + 2iβe−iσπ/4√γ τy)︸ ︷︷ ︸
∼φ̂[z(y)]

e2iσγ τ dy︸ ︷︷ ︸
dz

. (C6)

In the limit ε → 0 the integration gives

Iσβ ∼ e−2inσγ τ

(
1

n
+ iβe−iσπ/4

√
πγ τ

n3

)
, (C7)

where we used (1 + n) ln(1 + y) ∼ ny since n is large and∫∞
0

√
y exp(−yn)dy = n−3/2√π/2. Using Eq. (C5) we find

Eq. (94).

APPENDIX D: SURVIVAL PROBABILITY FOR
A PARTICLE ON A LINE

We presented the final detection probability 1 − S∞ in
Fig. 10 for a particle starting on the origin of an infinite line.
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{ , N= }
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FIG. 13. 1 − SN versus γ τ for a quantum walk on a line, the
particle is launched from the origin.

Here, we discuss briefly approximations for this probability.
A simple approximation is to consider the finite sum

1 − SN =
N∑

n=1

Fn. (D1)

The values of Fn are taken from Table II. As shown in Fig. 13,
already for N = 2 the general features, i.e., nonmonotonic
decay of 1 − S∞ and periodic minima as τ is varied, are clearly
observed. This approximation works very well already for
N = 10. This shows that the small-n behavior of Fn controls
the final survival probability.

1 5 10 50 100
n

1

10

100

1000

J0 (2 n)2

Fn

=105

FIG. 14. The ratio J0(2nγ τ )2/Fn for γ τ = 105.
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FIG. 15. 1 − S∞ versus γ τ . The approximation (96) is compared
with the exact result, and it works reasonably well for large γ τ ,
as expected. However, it does not predict the spiky cusps or the
nonmonotonic behavior of 1 − S∞.

For large γ τ we have φn � J0(2nγ τ ) [see discussion
above Eq. (75)]. This approximation is compared with the
exact result in Fig. 14. In this limit of large γ τ , Eq. (75)
holds. The approximation for 1 − S∞ [Eq. (96)] which
also works in the large-γ τ limit is tested in Fig. 15. The
approximation is just qualitative. We obtained a far better
approximation

1 − S∞ � 1

4πγ τ
{ln[16π2(γ τ )2θ∗(π − θ∗)] − 2}, (D2)

where θ∗ = modulo(2γ τ,π ). This approximation is demon-
strated in Fig. 16.
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FIG. 16. 1 − S∞ versus γ τ . The approximation (D2) works well.
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