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Performance of a quantum heat engine at strong reservoir coupling
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We study a quantum heat engine at strong coupling between the system and the thermal reservoirs. Exploiting
a collective coordinate mapping, we incorporate system-reservoir correlations into a consistent thermodynamic
analysis, thus circumventing the usual restriction to weak coupling and vanishing correlations. We apply our
formalism to the example of a quantum Otto cycle, demonstrating that the performance of the engine is diminished
in the strong coupling regime with respect to its weakly coupled counterpart, producing a reduced net work output
and operating at a lower energy conversion efficiency. We identify costs imposed by sudden decoupling of the
system and reservoirs around the cycle as being primarily responsible for the diminished performance, and we
define an alternative operational procedure which can partially recover the work output and efficiency. More
generally, the collective coordinate mapping holds considerable promise for wider studies of thermodynamic
systems beyond weak reservoir coupling.
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I. INTRODUCTION

Heat engines played a major role in formulating the laws
of thermodynamics. For example, the second law can be
understood in terms of the efficiency of an ideal Carnot
cycle [1,2]. Recently, significant effort has been invested into
studying quantum mechanical analogues of these engines as
an approach to establishing whether the same laws apply also
to quantum systems; see Refs. [3–6] for some contemporary
reviews. Though quantum engines that have been designed
to operate in standard cycles seem to respect the laws of
thermodynamics [7–10], it has been shown that in certain
situations quantum effects can be used to enhance their
performance [11,12], and in some cases even violate classical
thermodynamic bounds [13,14]. However, these treatments
usually involve circumstances beyond the scope for which the
laws apply, for example, nonthermal baths [13,14] or systems
out of equilibrium [15].

Typically, quantum mechanical models of heat engines
are restricted to the weak coupling regime [3,4,9,13,16–18].
That is, they assume the interaction strength between the work-
ing system and each reservoir to be negligible in comparison
to their respective self-energies. During processes in which the
system is coupled to a reservoir the total state may then be ap-
proximated as remaining a product state, with no correlations
generated between the two. As well as significantly simplify-
ing the analysis, this is advantageous as it makes distinguishing
energy flows in terms of heat and work less problematic [19].
However, it is of both fundamental and practical importance to
understand whether and how thermodynamic treatments can
be modified to apply beyond such simplifying assumptions.
For example, the strong coupling regime is experimentally
accessible in nanoscale devices [20–26] and exciting tech-
nological implications of quantum heat machines have been
proposed, such as in laser cooling [27,28]. This motivates the
requirement for a greater understanding of heat engines, which
operate under conditions of strong reservoir coupling [29].

*d.newman14@imperial.ac.uk

Though considerable attention has recently been focused on
identifying consistent definitions of heat, work, and internal
energy in the strong coupling regime [19,30–32], and on
formulating the second law by studying strong coupling
versions of quantum fluctuation relations [33–35], or entropy
and entropy production [36–39], a consensus on a consistent
approach to analyzing thermodynamic cycles beyond weak
reservoir coupling is arguably still lacking. In fact, there are
few studies of heat engines in this regime to date, with some
exceptions being Refs. [40–42] that analyze continuously
coupled engines, and Ref. [43], which considers a general
work extraction process from a single temperature reservoir,
rather than a full heat engine cycle.

In this article, we study a quantum heat engine operating
in a discrete stroke thermodynamic (Otto) cycle between two
thermal reservoirs, close in spirit to its classical counterpart,
though without the usual restriction to weak reservoir coupling
and vanishing system-reservoir correlations. By generalizing
the energetic analysis of the cycle strokes to account for both
the system and reservoirs, including sudden coupling and
decoupling steps, we find that strong reservoir coupling acts
to diminish the engine’s performance compared to a standard
weak coupling treatment. This is due primarily to the work
cost incurred in turning off such interactions, which we show
can be mitigated by an adiabatic decoupling procedure that
partially recovers the engine’s output.

To facilitate thermodynamic calculations in the strong
coupling regime we apply a collective coordinate mapping
(see below). This was recently shown to predict the dynamics
and equilibrium states of a quantum spin strongly coupled to
a bosonic environment—the spin-boson model [44–48]—in
very close agreement with accurate numerical simulations
[49], and also independently put forward in Ref. [41] to
analyze a continuously coupled engine. As we shall show,
the collective coordinate mapping enables us to redefine the
boundary between our system and its thermal reservoirs,
making calculations of energy flows tractable without recourse
to vastly simplifying weak coupling assumptions that neglect
the generation of system-reservoir correlations. Furthermore,
it allows us to retain a description in terms of reduced thermal
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FIG. 1. Quantum Otto cycle for a TLS with ground state |g〉
and excited state |e〉. The vertical axis represents the TLS splitting
μ and the horizontal axis represents the population of the excited
state Pe. The shaded planes indicate hot and cold reservoirs at
temperatures Th and Tc, respectively. It is standardly a four stroke
cycle: isochoric thermalization A′ → B, isentropic expansion B ′ →
C, isochoric thermalization C ′ → D, and isentropic compression
D′ → A. However, here we expand the cycle to explicitly include
energetic contributions from coupling and decoupling the system and
reservoirs: coupling to the hot reservoir A → A′, decoupling from
the hot reservoir B → B ′, coupling to the cold reservoir C → C ′,
and decoupling from the cold reservoir D → D′.

states even within the strong coupling regime, albeit defined on
an enlarged state space, such that our engine cycle calculations
proceed in very close analogy to standard thermodynamic
approaches.

II. OTTO CYCLE MODEL

We shall focus on the example of a heat engine operating
in an Otto cycle. Quantum Otto cycles have previously been
studied in the weak coupling regime [3,4,9,13,17,18] with
various results ranging from those analogous to classical
thermodynamic bounds [9], to interesting violations thereof
[8]. An advantage of the Otto cycle is that it allows energetic
changes to be distinguished by means of separate strokes where
either work is extracted from (or done on) the system, or energy
is exchanged between the system and the reservoirs.

We consider a quantum system with self-Hamiltonian HS ,
which may be coupled to and decoupled from two heat
reservoirs, one at the hot temperature Th and the other at
the cold temperature Tc. The protocol for our Otto cycle is
schematically depicted in Fig. 1. It consists of four strokes that
also include system-reservoir coupling and decoupling steps:

(1) A′ → B: At point A′ the system is coupled to the hot
thermal reservoir at temperature Th and then allowed to reach
a steady state (point B), while its self-Hamiltonian remains
fixed. The classical analog of this stroke is referred to as the hot
isochore. The system is then decoupled from the hot reservoir
(B → B ′). In standard treatments of the cycle, there is no
energy exchange associated with the decoupling step and so it
is typically ignored.

(2) B ′ → C: From point B ′, the system does not interact
with either reservoir. Along the stroke, referred to as isentropic
expansion, its self-Hamiltonian is changed from HB

S to HC
S .

Once at point C, the system is coupled to the cold reservoir,
point C ′, ready for the next stroke.

(3) C ′ → D: At point C ′, the system is allowed to interact
with the cold thermal reservoir at temperature Tc and reaches
a steady state (point D), while its self-Hamiltonian remains
fixed. Classically, this stroke is referred to as the cold isochore.
The system is then decoupled from the cold reservoir to reach
point D′.

(4) D′ → A: From point D′, the system does not interact
with either reservoir. Its self-Hamiltonian is changed from HD

S

(=HC
S ) to HA

S (=HB
S ) during the stroke, known as isentropic

compression. The system is then coupled to the hot reservoir,
reaching point A′, and the cycle proceeds once more.

In order to perform the cycle analysis, we shall study
a model consisting of a two-level system (TLS) interacting
sequentially with two harmonic oscillator reservoirs, Rh (hot)
and Rc (cold). This model, typically referred to as the spin-
boson model, is paradigmatic in the study of dissipation in
quantum systems [44], and has been applied to case studies
such as semiconductor quantum dots, spins in magnetic
fields, superconducting circuits, and decoherence in biological
systems [22–25,50–54]. The self-Hamiltonian for the TLS is
(we set h̄ = 1 throughout)

HS(t) = μ(t)

2
I + ε(t)

2
σz + �(t)

2
σx, (1)

where ε(t) represents the TLS bias, �(t) the tunneling matrix
element, σx,z denote the usual Pauli matrices, and I is the
identity. The eigenstates of HS are associated with eigenvalues
0 and μ(t), with splitting given by

μ(t) =
√

ε2(t) + �2(t). (2)

The first term in Eq. (1) thus provides a time-dependent shift
of the system energy scale. Due to the periodicity of the cycle,
it does not affect the work output or efficiency so that it can
be chosen at will. We shall therefore use it to arrive at an
unambiguous definition of positive (negative) work as that
done on (by) the system during the relevant isentropic strokes.

We assume that the TLS couples to each reservoir via
oscillator position, which may be expressed along with the
reservoir self-Hamiltonian in the general form

HSR =
∑

k

pk
2

2mk

+ mkωk
2

2

(
xk − dk

mkωk
2
σz

)2

, (3)

with dk denoting the coupling parameters for the interaction
between the spin and the bosonic field. In terms of creation
and annihilation operators, Eq. (3) decomposes into a reservoir
Hamiltonian and an interaction term. We define position xh

k =
( 1

2mh
kω

h
k

)1/2(b†k + bk) and momentum ph
k = i(mh

kω
h
k

2 )1/2(b†k − bk)

for the hot reservoir Rh, and analogous relations for the cold
reservoir Rc. The self-Hamiltonians for the reservoirs are then
given by

HRh
=

∑
k

ωh
k (b†kbk + 1/2), (4)

HRc
=

∑
q

ωc
q(c†qcq + 1/2), (5)

written in terms of creation (annihilation) operators b
†
k (bk)

and c
†
q (cq) for the hot and cold reservoir, respectively. The
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FIG. 2. Schematic of the RC mapping. Original picture (left):
The TLS S is strongly coupled via fk to an environment of harmonic
oscillators E with natural frequencies ωk . Mapped picture (right): An
enlarged system S ′—consisting of the TLS strongly coupled via λ

to a RC with natural frequency �—is weakly coupled via gk to a
residual oscillator environment E′ of natural frequencies νk .

corresponding oscillator frequencies are denoted by ωh
k and

ωc
q . The interactions between the TLS and each reservoir, with

all constants subsumed into couplings f h
k ≡ dk√

mh
kω

h
k

and f c
q ≡

dq√
mc

qωc
q

, may then be written

HIh
= −σz

∑
k

f h
k (b†k + bk) +

∑
k

(
f h

k

)2/
ωh

k , (6)

HIc
= −σz

∑
q

f c
q (c†q + cq) +

∑
q

(
f c

q

)2/
ωc

q. (7)

The full Hamiltonian is given by the sum of all terms,

H (t) = HS(t) + HRh
+ HRc

+ HIh
+ HIc

, (8)

where it should be remembered that the interactions are only
present along the relevant isochores. In the following, we
shall omit terms in the reservoir and interaction Hamiltonians
proportional to the identity as they do not contribute when
evaluating a complete engine cycle, nor help in defining sign
conventions as was the case for HS(t).

A. Reaction coordinate formalism

Before turning to detailed calculations of the Otto cycle
performance, we review elements of the reaction (or collective)
coordinate formalism that are pertinent to the analysis of a heat
engine. A complete and thorough derivation of the mapping is
given in Refs. [49,55].

The reaction-coordinate (RC) approach to strong coupling
is based upon a unitary mapping of the system-reservoir
Hamiltonian, schematically depicted in Fig. 2. In our case,
a TLS S interacting with a multimode harmonic oscillator
environment E is mapped to an enlarged system S ′, consisting
of the TLS and a single collective degree of freedom of the
environment called the RC, which interact strongly. The RC
is also weakly coupled to a redefined residual environment
E′, though this does not restrict the coupling strength between
S and E in the original picture. For example, considering a
single reservoir, the original Hamiltonian is given by (ignoring
irrelevant terms in the reservoir and interaction Hamiltonians

as stated)

H = μ(t)

2
I + ε(t)

2
σz + �(t)

2
σx +

∑
k

ωkb
†
kbk

− σz

∑
k

fk(b†k + bk), (9)

where we shall characterize the system-reservoir interaction
by means of the spectral density [44],

J (ω) ≡
∑

k

f 2
k δ(ω − ωk). (10)

In the cycle computations, we shall take the continuum limit
for the bath oscillators and assume the following functional
form of the spectral density for each reservoir,

J (ω) = αωωc

ω2 + ω2
c

, (11)

where α is the coupling strength and ωc is a cutoff frequency.
The mapped Hamiltonian is then obtained by defining a

collective coordinate (the RC) with creation operator a† =
(1/λ)

∑
k fkb

†
k , which satisfies bosonic commutation relations

for λ =
√∑

k f 2
k , such that

HI = −σz

∑
k

fk(b†k + bk) = −λσz(a
† + a). (12)

The reservoir Hamiltonian maps as

HR =
∑

k

ωkb
†
kbk

= �a†a +
∑

k

gk(a† + a)(r†k + rk) +
∑

k

νkr
†
k rk, (13)

while the system Hamiltonian remains unchanged. The full
mapped Hamiltonian thus becomes [56]

H̃ = μ(t)

2
I + ε(t)

2
σz + �(t)

2
σx − λσz(a

† + a)

+ �a†a +
∑

k

gk(a† + a)(r†k + rk) +
∑

k

νkr
†
k rk. (14)

Here, the RC has natural frequency �, it couples to the
system with strength λ, and to the residual environment via gk ,
whose oscillator excitations at natural frequency νk are created
(annihilated) by r

†
k (rk). These obey bosonic commutation

relations and commute with the RC operators as they describe
different modes in the mapped representation. Since the
residual bath is traced out when deriving a master equation for
the enlarged system S ′, explicit expressions for the frequencies
νk and the operators rk are not required. It suffices to find a
functional form in the continuum limit for the spectral density
function J̃ (ω) ≡ ∑

k g2
k δ(ν − νk) characterizing the coupling

between S ′ and the residual bath E′, as well as the parameters
� and λ, such that the Heisenberg equations of motion for the
TLS are equivalent in both pictures. This results in

� = 2πγωc, (15)

λ =
√

πα�

2
, (16)

and

J̃ (ω) = γωe−ω/, (17)
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where we set the (free) parameter γ =
√

ε2+�2

2πωc
and eventually

take to infinity the cutoff frequency , in order to ensure
that the original form of spin-boson spectral density is still
accurately represented post mapping [49].

A standard Born-Markov treatment [47] of the enlarged
open quantum system S ′ now leads to a second-order master
equation where the strong coupling between the TLS and
the RC is treated exactly, while only the weakly coupled
residual environment is traced out. The master equation can
be solved numerically to obtain the dynamics of the TLS
(or RC) as in Refs. [49,55], where the number of RC basis
states, labeled n here, is truncated at a sufficient size to
ensure convergence. Benchmarking against other numerical
techniques has validated that this combination of Hamiltonian
mapping and second-order master equation is capable of
very accurately capturing both the TLS dynamics and steady
states over a wide range of parameters [49,55], particularly
when non-Markovian and strong reservoir coupling effects
preclude second order (i.e., Born-Markov) expansions in the
original unmapped representation. Furthermore, the mapping
also allows access to properties of the reservoir through the
RC itself, as well as to the system-reservoir correlations,
something that is often impossible within other open systems
approaches. This will in fact prove to be crucial in studying
the heat engine at strong coupling in the following sections, as
it allows a tractable analysis of the Otto cycle to be formulated
in terms of the full system-reservoir Hamiltonian, including
interactions and the resulting correlations.

Of particular importance in the present context is then the
steady-state solution of the master equation governing the
dynamics of S ′, as this will determine the state of the correlated
system and reservoir at the end of each isochore. Since the
coupling to the residual environment is treated according to
the Born-Markov approximations within the RC formalism,
this steady state is given by a thermal state of the mapped
system Hamiltonian,

H̃S ′ ≡ μ(t)

2
I + ε(t)

2
σz + �(t)

2
σx − λσz(a

† + a) + �a†a,

(18)
as

ρ̃S ′ = exp(−βH̃S ′ )

tr[exp(−βH̃S ′ )]
, (19)

where β = 1/kBT is the inverse temperature. The full state is
then approximately

ρ̃ ≈ ρ̃S ′ ⊗ ρ̃E′ , (20)

where

ρ̃E′ = exp(−βH̃E′ )

tr[exp(−βH̃E′ )]
(21)

is a Gibbs thermal state of the residual environment with
H̃E′ = ∑

k νkr
†
k rk . One can obtain the reduced state of the

TLS by performing a partial trace over the RC degrees of
freedom, ρS = trRC+E′ [ρ̃] = trRC[ρ̃S ′ ], which in general does
not take the form of a canonical Gibbs thermal state due to the
correlations generated between the system and reservoir via
their nonnegligible interactions. Likewise, the reduced state
of the RC can be obtained from a partial trace over the TLS.

Equations (19) and (20) are thus central to our analysis of the
Otto cycle beyond weak coupling assumptions.

This can be exemplified by considering the energy expec-
tation with respect to the full Hamiltonian,

〈H 〉 = tr[Hρ], (22)

where H is given by Eq. (9) and ρ =exp(−βH )/tr[exp(−βH )]
is a thermal state of the interacting system and reservoir in
the original representation. Equation (22) is often difficult to
evaluate—requiring advanced numerical techniques—without
making a factorization assumption between the system and
reservoir. However, under the RC treatment it becomes

〈H 〉 = tr[H̃ ρ̃]

≈ tr[H̃S ′ ρ̃S ′ ] + tr[H̃E′ ρ̃E′], (23)

where in the last line we have used Eq. (20) for the mapped
density operator and the fact that tr[

∑
k gk(a† + a)(r†k +

rk)ρ̃E′] = 0. Thus, within the RC approach, the average energy
of the interacting system and reservoir reduces to a sum
of thermal expectations for the enlarged mapped system
Hamiltonian and the residual bath, substantially simplifying
calculations in the strong coupling regime. This is also
intuitively appealing as it draws a natural boundary between
the system and reservoir at finite coupling strength to link
to standard thermodynamics, i.e., the residual environment
provides a well-defined temperature as well as a reference for
energy absorption and dissipation even at strong coupling.

B. Generalized Otto cycle analysis

We shall now present a detailed analysis of the Otto
cycle beyond weak system-reservoir coupling and vanishing
correlations. We accomplish this by considering energetic
changes with respect to the full system-reservoir Hamiltonian
H and state χ , rather than just the internal system Hamiltonian
HS and the reduced system state ρS . This leads to expressions
that may be evaluated for arbitrary interaction strength using
the RC formalism and further reduce to the standard weak
coupling forms under the assumption of fully factorizing
system-reservoir states.

1. Hot isochore

Without loss of generality, we consider starting the analysis
of the cycle at point A′ (see Fig. 1), when the interaction
between the system and the hot reservoir has just been switched
on (assumed instantaneous). The interaction with the cold
reservoir is not present, however. The Hamiltonian along the
isochore is given by

H = HA′
S + HRh

+ HRc
+ HIh

, (24)

where

HA′
S = HB

S = μh

2
I + εh

2
σz + �h

2
σx (25)

is unchanging along the stroke, with HA′
S and HB

S representing
the system Hamiltonian at point A′ and B, respectively. At the
end of the stroke (point B) the full state of the system and both
reservoirs has relaxed to equilibrium, which we write as

χB = ρh ⊗ ρRc
, (26)
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where

ρh = exp
[−βh

(
HB

S + HRh
+ HIh

)]
tr
{
exp

[−βh

(
HB

S + HRh
+ HIh

)]} (27)

is the equilibrium state of the interacting TLS and hot reservoir
and ρRc

represents the state of the uncoupled cold reservoir.
We have made the assumption that there are no correlations
between the system and the cold reservoir at this stage in the
cycle, since they are noninteracting, and hence the state ρRc

may be factored out.
In general, ρh is difficult to evaluate for a nonvanishing in-

teraction term HIh
. However, by employing the RC formalism,

in particular Eq. (20), we may write

ρh = exp
(−βhH̃

B
S ′

)
tr
[
exp

(−βhH̃
B
S ′

)] ⊗ ρ̃E′
h
= ρ̃S ′

h
⊗ ρ̃E′

h
, (28)

which is far easier to calculate for finite system-reservoir cou-
pling. Here ρ̃E′

h
is a thermal state of the hot reservoir residual

environment (self Hamiltonian H̃E′
h
) at inverse temperature

βh = 1/kBTh, and

H̃ B
S ′ = HB

S − λhσz(a
†
h + ah) + �ha

†
hah (29)

is the mapped (enlarged) system Hamiltonian including a RC
for the hot reservoir.

For the cycle analysis, we are interested in the average
energy at the end of the stroke, point B. This is obtained by
taking the trace of the Hamiltonian with the full state,

〈H 〉B = tr
[(

HB
S + HRh

+ HRc
+ HIh

)
ρhρRc

]
= tr

[
H̃ B

S ′ ρ̃S ′
h

] + tr
[
H̃E′

h
ρ̃E′

h

] + tr
[
HRc

ρRc

]
, (30)

where in the second line we have rewritten the trace using the
RC approach, as in Eq. (23). This distinguishes correlated
and uncorrelated contributions due to the system and hot
reservoir, the latter of which depends only on the residual
thermal bath and will cancel out in the full cycle analysis.
The presence of the residual thermal bath is still important,
however, as it provides a reference against which we can
define energy absorption along the hot isochore. The third
term in Eq. (30) is the internal energy of the cold reservoir. To
remain close to the spirit of the classical Otto cycle, we shall
assume that the cold reservoir thermalizes when uncoupled
from the system, and likewise with the hot reservoir. In this
way, whenever the coupling between the system and either
reservoir is switched on, the reservoir is always initially in
a thermal equilibrium state of well-defined temperature, with
correlations then generated along the subsequent isochore. It
follows then that ρRc

should be taken at this point to be a Gibbs
thermal state at inverse temperature βc = 1/kBTc:

ρRc
= ρthc

= exp
(−βcHRc

)
tr
[

exp
(−βcHRc

)] . (31)

In the standard weak coupling analysis, one makes the
assumption that the full state remains separable at all times
with each reservoir in a thermal state at its given temperature.
Under these conditions the state ρh factorizes into a product
of the system state ρSh

and the hot reservoir state ρthh
. Each

state is of canonical Gibbs form with respect to the relevant

self-Hamiltonian, which for the system reads

ρSh
= exp

(−βhH
B
S

)
tr
[
exp

(−βhH
B
S

)] , (32)

with HB
S defined in Eq. (25), and for the hot reservoir is

ρthh
= exp

(−βhHRh

)
tr
[
exp

(−βhHRh

)] . (33)

With the system Hamiltonian defined in Eqs. (1) and (2), the
expression for the average energy then reduces to

〈H 〉Bweak = μh

2

[
1 − tanh

(
μh

2kBTh

)]
+ 〈

HRh

〉
th + 〈

HRc

〉
th,

(34)

where we denote the reservoir thermal expectations by
〈HRi

〉th = tr[HRi
ρthi

], for i = h,c.
The interaction between the TLS and the hot reservoir is

then switched off. In order to explicitly consider any cost
associated with this step, we define the point after decoupling
as B ′ and denote the corresponding Hamiltonian as

HB ′ = HB
S + HRh

+ HRc
, (35)

with energy

〈H 〉B ′ = tr
[(

HB
S + HRh

+ HRc

)
χB ′]

. (36)

If HIh
is switched off instantaneously, then the full state has no

time to change between points B and B ′ and so χB ′ = χB =
ρh ⊗ ρthc

, and the work in decoupling is given by

〈H 〉B ′ − 〈H 〉B = −tr
[
HIh

ρh

]
. (37)

For the standard weak coupling treatment ρh = ρSh
⊗ ρthh

and
the energy cost Eq. (37) associated with decoupling from
the environment evaluates identically to zero. Within the RC
approach for finite coupling on the other hand, the state is
given by Eq. (28) and we obtain

〈H 〉B ′ − 〈H 〉B = λhtr
[
σz(a

†
h + ah)ρ̃S ′

h

]
, (38)

which is generally nonzero, and the work contribution due to
decoupling must therefore be included in the cycle analysis.
If this contribution were negative, then we would extract
work. However, we shall see that in the examples considered
here it is positive and thus represents a cost. Alternatively, in
order to mitigate this cost, we also consider switching off the
interaction adiabatically. The details of which are described in
the Appendix.

2. Isentropic expansion

With the system now interacting with neither of the two
reservoirs, the parameters in HS are changed such that μh →
μc, εh → εc, �h → �c. The TLS Hamiltonian at the end of
the stroke (point C) becomes

HC
S = μc

2
I + εc

2
σz + �c

2
σx. (39)
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In the usual treatment of the Otto cycle, it is assumed that these
parameters are changed slowly enough such that the quantum
adiabatic theorem holds. We are then interested in the average
energy along the stroke,

〈H (t)〉 = tr
[(

HS(t) + HRh
+ HRc

)
χ (t)

]
. (40)

To see how the adiabatic theorem applies, one can define a
unitary transformation V (t) = exp [−iσyθ (t)/2], with θ (t) =
tan−1 [�(t)/ε(t)], and consider the Hamiltonian H ′ in the
frame defined by V (t). One finds

H ′(t) = V †(t)H (t)V (t) + iV̇ †(t)V (t)

= μ(t)

2
(I + σz) − θ̇ (t)

2
σy + HRh

+ HRc
. (41)

In the adiabatic limit, one assumes θ̇(t) 
 1 and the transfor-
mation approximately diagonalizes the system Hamiltonian
HS(t). The average energy at any point along the stroke, given
by Eq. (40), may then be calculated in this new basis:

〈H (t)〉 = μ(t)

2
{1 + tr[σzχ

′(t)]} + tr
[(

HRh
+ HRc

)
χ (t)

]
,

(42)

where χ ′(t) ≡ V †(t)χ (t)V (t). The term tr[σzχ
′(t)] remains

constant. To see this, we may substitute in for χ ′(t) ≡
U ′(t)χ ′(0)U ′†(t), where we define a time evolution operator
in the transformed frame as U ′(t) ≡ T exp [−i

∫ t

0 H ′
S(τ )dτ ],

with T denoting the time-ordered exponential. Thus, we have

tr[σzχ
′(t)] = tr[σzU

′(t)χ ′(0)U ′†(t)]

= tr[U ′†(t)σzU
′(t)χ ′(0)], (43)

where we have used the cyclic property of the trace. In
the adiabatic limit (θ̇ 
 1), H ′

S(t) ≈ (μ(t)/2)(I + σz), such
that the time evolution operator commutes with σz, and so
U ′†(t)σzU

′(t) = σz. This leaves us with

tr[σzχ
′(t)] = tr[σzχ

′(0)],

with the result that this term remains constant along the stroke.
The average energy along the stroke is then

〈H (t)〉 = μ(t)

2
{1 + tr[σzχ (0)]} + tr

[(
HRh

+ HRc

)
χ ′(t)

]

= μ(t)

μ(0)
〈HS(0)〉 + tr

[(
HRh

+ HRc

)
χ (t)

]
. (44)

As the reservoirs are evolving only under their own self-
Hamiltonians, their energy expectations are unchanging.
Hence, at the end of the stroke the energy of the system reads

〈H 〉C = tr
[(

HC
S + HRh

+ HRc

)
χC

]
= μc

μh

tr
[
HB

S ρh

] + tr
[
HRh

ρh

] + 〈
HRc

〉
th. (45)

The work extracted along the stroke is given by the difference
in energy between the start and end points,

〈H 〉C − 〈H 〉B ′ =
(

μc

μh

− 1

)
tr
[
HB

S ρh

]
, (46)

which reduces in the standard weak coupling limit to

〈H 〉Cweak − 〈H 〉B ′
weak =

(μc

2
− μh

2

)[
1 − tanh

(
μh

2kBTh

)]
,

(47)

where μh > μc.
The interaction between the system and the cold reservoir

is now switched on instantaneously, leading to point C ′, where
the energy is

〈H 〉C ′ = tr
[(

HC
S + HRh

+ HRc
+ HIc

)
χC ′]

, (48)

and χC ′ = χC . We make the assumption that the hot and
cold reservoirs rapidly relax to equilibrium at temperatures
Th and Tc, respectively, when disconnected from the system.
This means that when the interaction is turned on, the system
is connecting to a reservoir in a thermal equilibrium state.
Hence, the work associated with coupling to the cold reservoir,
〈H 〉C ′ − 〈H 〉C , evaluates to zero in both the weak coupling
and RC treatments as the cold reservoir state ρRc

is a thermal
state at this point. Note that we do not consider the option of
adiabatically turning on the coupling to the cold reservoir as
this would negate the need for the cold isochore that follows,
and thus has no equivalent in the standard Otto cycle.

3. Cold isochore

The system is now allowed to reach equilibrium with the
cold reservoir. In analogy to the hot isochore, the full state at
the end of the stroke (point D) is given by

χD = ρc ⊗ ρthh
, (49)

where

ρc = exp
[−βc

(
HD

S + HRc
+ HIc

)]
tr
{
exp

[−βc

(
HD

S + HRc
+ HIc

)]} (50)

is a thermal state of the interacting TLS and cold reservoir and
we assume that the hot reservoir has rethermalized along the
stroke; see Eq. (33).

Employing the RC treatment to account for the interacting
system and cold reservoir, the energy at point D is written

〈H 〉D = tr
[(

HC
S + HRh

+ HRc
+ HIc

)
ρcρthh

]
= tr

[
H̃C

S ′ ρ̃S ′
c

] + tr
[
H̃E′

c
ρ̃E′

c

] + 〈HRh
〉th, (51)

with

ρc = exp
(−βcH̃

C
S ′

)
tr
[
exp

(−βcH̃
C
S ′

)] ⊗ ρ̃E′
c
= ρ̃S ′

c
⊗ ρ̃E′

c
, (52)

where

H̃C
S ′ = HC

S − λcσz(a
†
c + ac) + �ca

†
cac (53)

is the RC mapped Hamiltonian for the system and cold reser-
voir, and ρ̃E′

c
is a thermal state of the cold reservoir residual

environment (self Hamiltonian H̃E′
c
) at inverse temperature βc.

In the weak coupling treatment, the state again reduces to the
product of three thermal states for the system and the two
reservoirs, such that

〈H 〉Dweak = μc

2

[
1 − tanh

(
μc

2kBTc

)]
+ 〈

HRh

〉
th + 〈

HRc

〉
th. (54)
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In both the RC and weak coupling treatments, the energy
exchanged with the cold reservoir is given by the energetic
change across the isochore, QC ′D = 〈H 〉D − 〈H 〉C ′

.
The interaction between the system and the cold reservoir

is now switched off and we consider point D′, where the
Hamiltonian contains no interaction terms, such that

〈H 〉D′ = tr
[(

HC
S + HRh

+ HRc

)
χD′]

. (55)

If the interaction is switched off instantaneously then χD′ =
χD = ρc ⊗ ρthh

, and the work cost is therefore

〈H 〉D′ − 〈H 〉D = −tr
[
HIc

ρc

]
. (56)

In the weak coupling treatment, the cold reservoir remains in
a thermal state and factorizes out of the expression for ρc, so
that the cost again evaluates to zero. At strong coupling we
obtain

〈H 〉D′ − 〈H 〉D = λctr
[
σz(a

†
c + ac)ρ̃S ′

c

]
, (57)

within the RC approach, which is generally nonzero once
more. As in the hot isochore, we consider the alternative of
adiabatic decoupling in the Appendix.

4. Isentropic compression

This stroke is analogous to the expansion stroke, with the
system parameters changed back to their original values such
that at point A

HA
S = μh

2
I + εh

2
σz + �h

2
σx. (58)

In the adiabatic limit the energy at point A is given by

〈H 〉A = tr
[(

HA
S + HRh

+ HRc

)
χA

]
= μh

μc

tr
[
HC

S ρc

] + tr
[
HRc

ρc

] + 〈
HRh

〉
th. (59)

The energy difference across the stroke, equivalent to the work
done on the system, is

〈H 〉A − 〈H 〉D′ =
(

μh

μc

− 1

)
tr
[
HC

S ρc

]
, (60)

which reduces to

〈H 〉Aweak − 〈H 〉D′
weak =

(μh

2
− μc

2

)[
1 − tanh

(
μc

2kBTc

)]
,

(61)

within the weak coupling treatment. The coupling to the hot
reservoir is now switched on instantaneously and we return to
point A′ where the Hamiltonian contains the term HIh

. The
energy is thus given by

〈H 〉A′ = tr
[(

HB
S + HRh

+ HRc
+ HIh

)
χA′]

= μh

μc

tr
[
HC

S ρc

] + tr
[
HRc

ρc

] + 〈
HRh

〉
th

= 〈H 〉A, (62)

where, as in the cold reservoir case, there is no cost associated
with switching on the coupling to the hot reservoir.

C. Work output and efficiency at strong coupling

We are now in a position to evaluate the net work output
and energy conversion efficiency of the strong coupling Otto
cycle. The work output is obtained by summing the energetic
changes along each isentropic stroke, including the work costs
associated with decoupling:

W = WBB ′ + WB ′C + WCC ′ + WDD′ + WD′A + WAA′

=
(

μc

μh

− 1

)
tr
[
HB

S ρh

] +
(

μh

μc

− 1

)
tr
[
HC

S ρc

]

− tr
[
HIh

ρh

] − tr
[
HIc

ρc

]
. (63)

Similarly, the energy transferred into the system is given by
the energetic change along the hot isochore:

QA′B = 〈H 〉B − 〈H 〉A′

= tr
[
HB

S ρh

] − μh

μc

tr
[
HC

S ρc

] + tr
[
HRh

(
ρh − ρthh

)]

+ tr
[
HRc

(
ρthc

− ρc

)] + tr
[
HIh

ρh

]
. (64)

In the weak coupling treatment, the reservoirs remain in
thermal equilibrium such that their internal energies cancel
out and the interaction terms evaluate to zero. The expressions
for the net work output and energy flow from the hot reservoir
then reduce to the standard forms,

Wweak = 〈H 〉C ′ − 〈H 〉B + 〈H 〉A′ − 〈H 〉D

= 1

2
(μc − μh)

[
tanh

(
μh

2kBTh

)
− tanh

(
μc

2kBTc

)]

(65)

and

Qweak = μh

2

[
tanh

(
μc

2kBTc

)
− tanh

(
μh

2kBTh

)]
, (66)

respectively.
The efficiency of the engine is given as usual by the ratio

of the net work output to the energy absorbed by the system
along the hot isochore,

η = W

QA′B . (67)

For weak coupling this reduces to

ηweak = 1 − μc

μh

, (68)

as expected.

III. OTTO CYCLE RESULTS

We shall now present some specific examples to explore the
impact of strong coupling and system-reservoir correlations
on the quantum Otto engine’s performance. We begin by
considering adiabatic isentropic strokes, as outlined above,
though for completeness we shall subsequently extend the
analysis to the opposite limit of sudden isentropes as well.
In both instances, we shall see through comparison to the
weak coupling analysis that strong coupling acts to reduce the
performance of the cycle. This is also consistent with findings
for continuous heat engines in the strong coupling regime [40].
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FIG. 3. Adiabatic limit. Work output (a) and energy absorbed
from the hot reservoir (b) for a quantum Otto cycle plotted as a
function of the TLS bias at point A, εh. Blue dashed curves, weak
coupling; orange dotted curves, strong coupling with instantaneous
decoupling of the reservoirs; red solid curves, strong coupling with
adiabatic decoupling of the reservoirs. Parameters (in units of εc):
�h = �c = 1, βh = 1, βc = 2.5, ωc = 2, α = 0.005, and n = 30
states are taken in the RC calculations.

However, in our case, we can identify the work costs imposed
in decoupling the system and reservoirs after each isochore as
the primary reason for the reduced performance, which is thus
distinct from considerations for continuous engines. In fact,
as we shall see, in the absence of this cost, it is possible for
the strong coupling engine to output more work than its weak
coupling counterpart, though in all cases we have explored the
decoupling cost outweighs this benefit.

A. Adiabatic isentropic strokes

As considered in Sec. II B, in the adiabatic limit the
isentropic strokes of the cycle are carried out slowly enough
for the quantum adiabatic theorem to hold. In Fig. 3 we
show representative plots of the work output and energy
absorbed from the hot reservoir in this case, here as a
function of the TLS bias at point A. We compare the weak
coupling limit (dashed curves), Eqs. (65) and (66), with our
two alternative cycles in the strong coupling regime, which
consider either instantaneous (dotted curves) or adiabatic

1.0 1.5 2.0 2.5 3.0 3.5
0.00

0.01

0.02

0.03

0.04

0.05

0.06

h� c

W
or
k
co
st
�w
or
k
ex
tra
ct
ed

FIG. 4. Adiabatic limit. Net work output of the Otto cycle split
into decoupling work cost and magnitude of the remaining work
extracted, plotted as a function of the TLS bias at point A, εh.
Blue dashed curve, weak coupling (no decoupling cost) and strong
coupling work extracted ignoring work cost (adiabatic decoupling
case); orange dotted curve, strong coupling work extracted ignoring
work cost (instantaneous decoupling case); red dashed line, strong
coupling cost of instantaneous decoupling; purple solid line, strong
coupling cost of adiabatic decoupling. Parameters as described in the
caption of Fig. 3.

(solid curves) decoupling of the reservoirs from the system. For
strong coupling, all calculations have been performed using the
RC formalism, as previously described.

In the weak coupling limit, net work output vanishes when
μh/μc = 1, since the engine requires nonzero work input in
order to operate. Similarly, from Eq. (65) it can be seen that for
Wweak to be negative (representing work output) the condition
μh/μc < Th/Tc must be satisfied, meaning that at μh/μc =
Th/Tc the work output vanishes as well, as does the energy
absorbed from the hot reservoir. We note that beyond this point
for weak coupling, μh/μc > Th/Tc, the engine turns over to
operate instead as a refrigerator, absorbing energy from the
cold reservoir and dissipating into the hot reservoir.

It is clear that the strong coupling treatments yield lower
work outputs than the weak coupling calculations, and that
work cannot be extracted right up to the limit of μh/μc =
Th/Tc. They do, however, show a reduction in the energy
absorbed from the hot reservoir. Note also that in contrast to the
weak coupling case, for strong coupling the work output and
energy absorbed do not change sign at the same point, meaning
that there are regimes in which the strong coupling cycle acts
neither as an engine nor as a refrigerator. Looking more closely
at the work output, we find that the decoupling cost terms
account for the majority of the reduction for strong coupling.
To illustrate this point we have separated these contributions
from the remaining work output in Fig. 4. For instantaneous
decoupling we see that even neglecting the cost of switching
off the reservoir interactions (dotted curve), the net work
extracted along the isentropic strokes is slightly lower than
in the weak coupling case (dashed curve). However, the size
of the cost term (dashed line) dwarfs this effect, to an extent
that emphasizes just how severe a simplification is made by
neglecting interaction effects in the weak coupling treatment.
We see that the cost can be mitigated to a certain extent by
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FIG. 5. Adiabatic limit. Parametric plots of work output against
efficiency in the adiabatic regime for a quantum Otto cycle plotted by
varying the TLS bias at point A, εh. Blue dashed curve, weak coupling;
red solid curve, strong coupling with adiabatic decoupling of the
reservoirs; orange dotted curve, strong coupling with instantaneous
decoupling of the reservoirs. Parameters (in units of εc): �h = �c =
1, βh = 1, βc = 2.5, ωc = 2, α = 0.005, and n = 30 states are taken
in the RC calculations.

the adiabatic decoupling procedure (solid line). As the work
extracted neglecting the decoupling cost only recovers to the
weak coupling limit in this case, the total work output is still
lower and so the cost cannot be fully overcome.

We show a parametric plot of the work output against the
efficiency of the engine for both strong and weak coupling
in Fig. 5. The parameter that is varied along these curves is
the bias, εh, at point A. In the weak coupling regime, the
efficiency increases monotonically with εh and saturates at the
Carnot limit, ηC = 1 − Tc/Th, at the point where the work
output vanishes, μc/μh = Tc/Th. The efficiency at maximum
work output occurs prior to the Carnot bound being attained.
The efficiency of the engine is inferior at strong coupling:
work output is reduced in this regime and the energy absorbed
from the hot reservoir is not reduced sufficiently to prevent
a reduction in efficiency. We observe a qualitatively different
behavior compared with the weak coupling limit: the efficiency
is maximized below the Carnot limit before turning over and
falling to zero as the work output vanishes. This creates
the loop structure of both the instantaneous decoupling and
adiabatic decoupling curves. This structure is reminiscent of
studies of heat engines containing some degree of internal
frictional loss, for example, in Ref. [57]. The adiabatic
decoupling protocol yields an improved efficiency, with some
mitigation of the decoupling costs, and a loop that lies beyond
the instantaneous decoupling case.

It is worth noting that for instantaneous decoupling in
certain parameter regimes, the work output in the strong
coupling case can beat the weak coupling limit when ignoring
the decoupling cost. An example is shown in Fig. 6, where we
vary �h along the isentropic strokes rather than εh. However,
even in these situations the decoupling costs far outweigh such
enhancements, and the cycle always displays a reduction in
work output for the strong coupling calculations.

Finally, we consider how the engine performance scales
with system-reservoir coupling strength α in Fig. 7. We
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FIG. 6. Adiabatic limit. Work output of the Otto cycle plotted
as a function of the TLS tunneling at point A, �h, ignoring the
decoupling cost for strong coupling (instantaneous decoupling case).
Blue dashed curve, weak coupling; orange dotted curve, strong
coupling. Parameters (in units of �c): εh = εc = 1, βh = 1, βc = 2.5,
ωc = 2, α = 1, and n = 30 states are taken in the RC calculations.

observe that as the coupling strength is increased, the engine’s
performance deteriorates in all but the weak coupling case,
since there the magnitude of the interaction term is unim-
portant. Also, as expected, the weak coupling efficiency is
recovered as α → 0. It is clear that the detrimental effect of
the decoupling cost is more pronounced at higher couplings,
and the adiabatic decoupling procedure becomes increasingly
desirable, despite being unable to fully recover the weak
coupling efficiency. In fact, for large enough couplings, it
allows the cycle to perform as an engine even when the work
output has vanished in the instantaneous decoupling case.
It is also worth recognizing that the sensitivity of the cycle
performance to the system-reservoir decoupling procedure
(instantaneous or adiabatic) is a feature inherent to the strong
coupling regime; i.e., it is completely absent in the weak
coupling treatment. Hence, it could be used (even at fixed α) to
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FIG. 7. Adiabatic limit. Efficiency of the Otto engine plotted as
a function of coupling strength α. Blue dashed line, weak coupling;
orange dotted curve, strong coupling with instantaneous decoupling
of the reservoirs; red solid curve, strong coupling with adiabatic
decoupling of the reservoirs. Parameters as in Fig. 3 with εh/εc = 2.
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FIG. 8. Comparing the adiabatic and sudden limits. Work output
of the Otto cycle plotted as a function of the TLS bias at point
A, εh, ignoring the decoupling cost for strong coupling. Blue solid
curve, weak coupling adiabatic; orange (small) dashed curve, strong
coupling adiabatic with instantaneous decoupling; blue (large) dashed
curve, weak coupling sudden; orange dotted curve, strong coupling
sudden. Parameters as in Fig. 3 though with α/εc = 0.1.

signify the presence of strong coupling effects in experimental
realisations of quantum heat engines.

B. Sudden isentropic strokes

We move now to the sudden limit of the Otto cycle, where
the isentropes are carried out so quickly that the quantum
state has no time to evolve along the stroke. The states at
C and A thus read χC = χB ′

and χA = χD′
, which alters the

respective energy expressions at these points. Working through
the cycle (assuming instantaneous decoupling), we find that in
the sudden limit the net work output reads

W = tr
[
HB

S (ρc − ρh)
] + tr

[
HC

S (ρh − ρc)
]

− tr
[
HIh

ρh

] − tr
[
HIc

ρc

]
, (69)

while the energy absorbed from the hot reservoir becomes

QA′B = tr
[
HB

S (ρh − ρc)
]

+ tr
[
HRh

(
ρh − ρRh

)] + tr
[
HRc

(
ρRc

− ρc

)]
+ tr

[
HIh

ρh

]
. (70)

Both expressions may be evaluated within the RC formalism,
as was the case in the adiabatic treatment.

It is well known that operating the cycle in the sudden
limit introduces a process known as quantum friction [17,58],
which impacts negatively on the performance of the engine.
This is apparent, for instance, in Fig. 8, where we note a large
reduction in the weak coupling work output as compared to
the adiabatic limit. Interestingly, we see that in this example
the effect of quantum friction is less pronounced in the strong
coupling regime, and indeed if it were not for the cost of
decoupling (which outweighs the benefit), the strong coupling
engine would outperform its weakly coupled counterpart. The
impacts of the decoupling cost on the work output and energy
conversion efficiency are shown in Fig. 9. In this figure, we
see both the effect of quantum friction leading to a loop-like
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FIG. 9. Sudden limit. Parametric plots of work output against
efficiency in the sudden regime for a quantum Otto cycle plotted by
varying the TLS bias at point A, εh, for two different temperatures of
the cold reservoir. Blue dashed curve, weak coupling and βc = 2.5;
orange solid curve, strong coupling and βc = 2.5; blue dot-dashed
curve, weak coupling βc = 1.75; orange dotted curve, strong coupling
βc = 1.75. Parameters (in units of εc): �h = �c = 1, βh = 1, ωc = 2,
α = 0.001, and n = 30 states are taken in the RC calculations.

structure qualitatively similar to those seen in Fig. 5, and the
effect of finite coupling reducing work output and efficiency
such that the loops become smaller. We find that the scaling
of engine performance with coupling strength is qualitatively
similar to the adiabatic isentrope limit in Fig. 7.

IV. DISCUSSION

We have studied a quantum heat engine in the regime of
strong coupling between the system and reservoirs, employing
the RC formalism to account for the resulting generation of
system-reservoir correlations. Considering the quantum Otto
cycle, we have shown that the work cost incurred in decoupling
the system and reservoirs impacts negatively on the engine
and have established that a variation of the cycle can help to
improve its performance at strong coupling.

At the heart of our treatment lie the TLS-reservoir interac-
tions, which we have modeled as being of spin-boson form. As
such, we had to specify a certain spectral density, here chosen
to be Ohmic. Extending the RC formalism of Refs. [49,55] to
other forms of spectral density is the subject of ongoing work
and should yield further understanding on the generality of
our results. There are also alternative theoretical techniques,
for example, the polaron transformation [25,40], which could
be used to perform a similar and complementary analysis.

Several experimental realizations of nanoscale heat engines
have been proposed [59–64]. Although the protocols presented
here are idealized in that they involve complete decoupling
of the system from the reservoirs at various points during
the engine cycle, it is certainly possible to control very
precisely parameters such as the bias and tunneling, for
example, in experimental realizations of double-well quantum
dots in semiconductor nanowires [50,51]. An experimental
realization of a single-atom heat engine has recently been
achieved [59], indicating that tuning the interaction strength
as required for protocols such as those outlined here is
possible. The theoretical description of nanoscale quantum
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engines that do not require decoupling from the reservoirs
is given by continuously coupled models, recently reviewed
in Ref. [3]. The access afforded by the RC formalism to
hitherto unexplored regimes are compelling reasons to apply
the techniques discussed here to such models, as in Ref. [41].

For the purposes of this work, we have considered an ideal-
ized version of the Otto cycle where full equilibration occurs
along the isochores and the isentropic strokes are carried out
either in the adiabatic or sudden limit. Extensions to finite
time versions of the cycle could also be studied, in which case
work output and efficiency become functions of the cycle time,
and a power output may be defined. Considering such a cycle
within the RC formalism would enable us to evaluate finite
power situations at strong coupling, where full equilibration
does not occur along the isochoric strokes. The question of
whether strong system-reservoir couplings are also detrimental
for the performance of finite time cycles is an important and
interesting one, which merits further investigation.

Let us finally comment that the RC formalism has allowed
us to consider explicitly the work costs involved in coupling
and decoupling the system and the reservoirs around a heat
engine cycle. These costs are typically ignored in the weak
coupling limit where it is assumed that the interaction term
in the Hamiltonian is small enough that the reservoirs remain
in thermal equilibrium, and so linear interaction terms may be
considered free. This assumption is frequently valid in classical
thermodynamic systems, though at the quantum scale this need
not necessarily be so. It may be argued that in considering
such costs, we have had to specify a particular microscopic
model of a heat engine and that, as a result, the emerging
thermodynamics becomes model dependent. As such, one
loses the appealing generality at the heart of the success
of classical thermodynamics. We would argue in response
that at strong coupling, whether on the quantum or classical
scale, given that the Hamiltonian interaction terms become
appreciable, a model specific description of thermodynamics
may be inevitable. In which case, a formalism such as the RC
method that allows for a physically intuitive treatment of these
interactions holds great promise.
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APPENDIX: ADIABATIC RESERVOIR DECOUPLING

In this Appendix we consider the possibility of mitigating
some of the work cost associated with decoupling from the hot
and cold reservoirs at points B ′ and D′, respectively. If, at the
end of the hot isochore, we consider decoupling the reservoir

from the system adiabatically, the state at B ′ then differs from
that at B and reads

χB ′ = ρSh
⊗ ρthh

⊗ ρthc
; (A1)

see Eqs. (31)–(33). Computing the cost of decoupling now
yields

〈H 〉B ′ − 〈H 〉B = tr
[
HB

S

(
ρSh

− ρh

)] + tr
[
HRh

(
ρthh

− ρh

)]
− tr

[
HIh

ρh

]
. (A2)

This cost remains zero in the standard weak coupling analysis.
For strong coupling, however, it will involve both a work
contribution and heat dissipation into the hot reservoir. We
thus compute the change in free energy and equate this to the
work associated with decoupling:

FB ′ − FB = 〈H 〉B ′ − 1

βh

S(χB ′
) −

[
〈H 〉B − 1

βh

S(χB)

]

= 1

βh

ln tr
{

exp
[
p − βh

(
HB

S + HRh
+ HIh

)]}

− 1

βh

ln ZSh
− 1

βh

ln ZRh
, (A3)

where S(ρ) = −tr[ρ ln ρ] is the von Neumann entropy, ZSh
=

tr[exp (−βhH
B
S )], and ZRh

= tr[exp (−βhHRh
)]. The heat dis-

sipated into the bath during decoupling is then

QBB ′ = 〈H 〉B ′ − 〈H 〉B − [FB ′ − FB], (A4)

and both the heat and work are calculated within the RC
approach.

We also need to consider decoupling from the cold reservoir
at point D. If the interaction is switched off adiabatically then
the state at D′ is given by

χD′ = ρSc
⊗ ρthh

⊗ ρthc
, (A5)

where

ρSc
= exp

(−βcH
C
S

)
tr
[
exp

(−βcH
C
S

)] . (A6)

The cost of decoupling may be evaluated in an analogous
fashion to the hot reservoir case to yield

〈H 〉D′ − 〈H 〉D = tr
[
HC

S

(
ρSc

− ρc

)] + tr
[
HRc

(
ρthc

− ρc

)]
− tr

[
HIc

ρc

]
, (A7)

which may be partitioned into a work contribution and energy
dissipated into the cold reservoir, just as was done for the hot
reservoir.

For adiabatic decoupling, the expression for the net work
output around a complete cycle then evaluates to

W =
(

μc

μh

− 1

)
tr
[
HB

S ρSh

] +
(

μh

μc

− 1

)
tr
[
HC

S ρSc

]

+ 1

βh

ln tr
{
exp

[−βh

(
HB

S + HRh
+ HIh

)]}

+ 1

βc

ln tr
{
exp

[−βc

(
HC

S + HRc
+ HIc

)]}
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− 1

βh

ln ZSh
− 1

βh

ln ZRh

− 1

βc

ln ZSc
− 1

βc

ln ZRc
. (A8)

To calculate the energy dissipated into the hot reservoir we
need to consider both the contribution from the hot isochore
and the subsequent decoupling, Q = QA′B + QBB ′ . We then

find

Q = −μh

μc

tr
[
HA

S ρSc

] − tr
[
HB

S ρSh

]

+ 1

βh

ln ZSh
+ 1

βh

ln ZRh

− ln tr
{
exp

[−βh

(
HB

S + HRh
+ HIh

)]}
. (A9)
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machines propres à développer cette puissance (Chez Bachelier,
libraire, quai des Augustins, no. 55, A Paris, 1824).

[2] S. Blundell and K. M. Blundell, Concepts in Thermal Physics,
2nd ed. (Oxford University Press, Oxford, 2010).

[3] R. Kosloff and A. Levy, Annu. Rev. Phys. Chem. 65, 365 (2014).
[4] D. Gelbwaser-Klimovsky, W. Niedenzu, and G. Kurizki, Adv.

At. Mol. Opt. Phys. 64, 329 (2015).
[5] S. Vinjanampathy and J. Anders, Contemp. Phys. 57, 545 (2016).
[6] R. Kosloff, Entropy 15, 2100 (2013).
[7] P. Skrzypczyk, A. J. Short, and S. Popescu, Nat. Commun. 5,

4185 (2014).
[8] H. E. D. Scovil and E. O. Schulz-DuBois, Phys. Rev. Lett. 2,

262 (1959).
[9] H. T. Quan, Y.-X. Liu, C. P. Sun, and F. Nori, Phys. Rev. E 76,

031105 (2007).
[10] T. D. Kieu, Phys. Rev. Lett. 93, 140403 (2004).
[11] M. O. Scully, M. S. Zubairy, G. S. Agarwal, and H. Walther,

Science 299, 862 (2003).
[12] M. O. Scully, Phys. Rev. Lett. 88, 050602 (2002).
[13] J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, and E. Lutz,

Phys. Rev. Lett. 112, 030602 (2014).
[14] R. Dillenschneider and E. Lutz, Europhys. Lett. 88, 50003

(2009).
[15] O. Abah and E. Lutz, Europhys. Lett. 106, 20001 (2014).
[16] D. Gelbwaser-Klimovsky, R. Alicki, and G. Kurizki, Phys. Rev.

E 87, 012140 (2013).
[17] Y. Rezek and R. Kosloff, New J. Phys. 8, 83 (2006).
[18] A. Friedenberger and E. Lutz, arXiv:1508.04128.
[19] U. Seifert, Phys. Rev. Lett. 116, 020601 (2016).
[20] K. Słowik, R. Filter, J. Straubel, F. Lederer, and C. Rockstuhl,

Phys. Rev. B 88, 195414 (2013).
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