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The existence and search for thermodynamic phase transitions is of unfading interest. In this paper, we present
numerical evidence of dynamical phase transitions occurring in boundary-driven systems with a constrained
integrated current. It is shown that certain models exhibit a discontinuous transition between two different
density profiles and a continuous transition between a time-independent and a time-dependent profile. We also
verified that the Kipnis-Marchioro-Presutti model exhibits no phase transitions in a range much larger than
previously explored.
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I. INTRODUCTION

Out-of-equilibrium systems are currently an object of
considerable attention both in classical and quantum physics
[1–8]. An important aspect of out-of-equilibrium physics
resides in the study of nonequilibrium steady states of
boundary-driven systems (e.g., two reservoirs at nonequal
densities) and corresponding fluctuations about the steady
state. A useful approach in the study of nonequilibrium
steady states is a hydrodynamic description known as the
macroscopic fluctuation theory (MFT) [9–11]. The MFT
provides an efficient way to obtain an expression for the
probability of observing steady-state fluctuations. As such, the
MFT has proven useful in obtaining various properties such
as out-of-equilibrium density fluctuations [12–14], Clausius
inequality [15], the emergence of void formations [16], and
others [17–22].

Another important problem in that field is the charac-
terization of current fluctuations. Current fluctuations have
been thoroughly studied in statistical physics [23–27] as well
as in mesoscopic physics [28–30]. Knowledge of current
fluctuations allows us to measure how close a fluctuation
is to the steady state. Moreover, the noisy nature of the
measurement allows us to obtain information about the system
under study [31].

Current fluctuations can be obtained from the probability
Pt (Q) that a net amount of Q particles (or any other amount,
e.g., heat) flowed through the system during a time t . Generally,
Pt (Q) is dominated by a single fluctuation. However, it is a
difficult optimization problem [32]. It was conjectured in [33]
that the dominant trajectory is time-independent. This is the
content of the additivity principle (AP), which allows us to
simplify the aforementioned minimization problem, and it has
proven useful [8,24,32,34–36].

In certain cases, the AP solution may become nonunique,
or overtaken by a time-dependent solution. Until recently [37],
there were no known physical examples of a transition between
AP solutions in boundary-driven systems. Moreover, as of yet
there is no example of a continuous transition from an AP
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solution to a time-dependent one (namely, breaking of the AP
assumption1). The possibility of discontinuous transitions was
discussed in [32,38], and a mechanism for them was found
in [37].

By analogy with thermodynamic phase transitions, it is
useful to interpret a breaking of the AP assumption or
a discontinuous transition as a dynamical phase transition
(DPT) of first and second order, respectively, due to the
nonanalyticity of Pt (Q) at the transition point [34,38,39].
This interpretation has been used in [39] to obtain a sufficient
and necessary condition for the validity of the AP for small
fluctuations. Note that while one-dimensional equilibrium
thermodynamic systems with short-range interactions never
display phase transitions [40], constrained systems—in or out
of equilibrium—may very well present them [25,41,42].

The purpose of this paper is to numerically implement the
tools developed in [39] for some models of interest. First, we
report a thorough numerical study of the Kipnis-Marchioro-
Presutti (KMP) model [43], which shows that it never violates
the sufficient and necessary conditions given in [39] and for
a much broader parameter range than previously explored.
Second, we present numerical evidence for either first- or
second-order DPT as a function of the strength of a constrained
current in some boundary-driven systems. A physical example
for such a process is the long-range hopping with exclusion
model proposed by Bodineau [44].

The outline of this paper is as follows. In Sec. II, we
recapitulate briefly the MFT and the calculation of current
fluctuations. The AP assumption—as presented in [33]—is
outlined, and a sufficient and necessary condition for its
validity is derived for continuous transitions, similarly to [39].
Section III reviews the models we probe numerically for DPTs.
In Sec. IV, we show evidence for DPTs in two models, and
we assert the absence of DPT in the KMP process for a
broad range of currents in accordance with [34]. Section V
summarizes our findings and presents further directions of
study.

1However, for periodic boundary conditions, many models were
shown to break the AP assumption explicitly; see [25] and [41,42,49].
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II. THEORETICAL BACKGROUND

We consider diffusive particles in a one-dimensional system
of size L as described by the MFT (see [34,45] for a micro-
scopic derivation). Particles can be injected to—or extracted
from—the system at the boundaries only. This condition is
expressed by the continuity equation

∂τ�(x,τ ) = −∂xj (x,τ ), (1)

which relates the coarse-grained density �(x,τ ) and current
density j (x,τ ) by using rescaled coordinates for space x ∈
[0,1] and time τ ∈ [0,t/L2].

The MFT states that the probability to observe a fluctuation
(�,j ) can be written using only the macroscopic diffusion
coefficient D and conductivity σ , which generally depend on
the local density �. To define D(�) and σ (�), we consider a
system coupled at each end to a reservoir with fixed densities
�L and �R at x = 0 and 1, respectively. We take �L = � and
�R = � + �� with �� � 1. The diffusion and conductivity
are defined using the first two cumulant coefficients of the
integrated number of particles Q,

Js ≡ 〈Q〉
t

= − 1

L
D(�)��, (2a)

〈Q2〉C
t

= 1

L
σ (�), (2b)

where 〈 · 〉 stands for an averaging with respect to the steady-
state probability distribution, and 〈Q2〉C ≡ 〈Q2〉 − 〈Q〉2.

The large deviation principle assumes that the probability
to observe a net transfer of Q particles is given by

Pt (Q) ∼ exp[−t �(J = Q/t)], (3)

where J is the mean constrained current and �(J ) is the large
deviation function. Using the MFT, �(J ) is expressed as a
minimization problem [32,38,39]. Obtaining �(J ) explicitly
requires finding an optimal fluctuation (�,j ) that satisfies
Eq. (1) and the mean constrained current J = Q/t .

Another useful representation of current statistics is ob-
tained from the cumulant generating function μ(λ). Here, the
two previous constraints are relaxed, the mean constrained
current J is replaced by λ, and a Lagrange multiplier p is
introduced to account for the continuity equation (1). The
cumulant-generating function is the Legendre transform of
the large deviation function, μ(λ) = supJ [�(J ) − λJ ].

The cumulant-generating function is then explicitly written
as a minimization problem [30,34,46],

μ(λ) = −L

t
min
�,p

∫ 1

0
dx

∫ t

L2

0
dτ (p ∂τ� − H), (4)

where2

H = −D(�)∂x� ∂xp + 1
2σ (�)(∂xp)2. (5)

The trajectories (�,p), which solve the minimization prob-
lem, satisfy Hamilton equations subjected to the boundary

2Here we assume that the number of particles in the system is
bounded.

conditions [39]

�(x = 0,τ ) = �L, �(x = 1,τ ) = �R, (6a)

p(x = 0,τ ) = 0, p(x = 1,τ ) = λ. (6b)

Solving this problem proves generally difficult. In [33], it
was conjectured (the AP assumption) that the optimal density
profile is time-independent.3 In this case, the AP assumption
implies that (�0(x),p0(x)) are solutions of

∂x(D0 ∂x�0 − σ0 ∂xp0) = 0, (7a)

−D0 ∂xxp0 − 1
2σ ′

0(∂xp0)2 = 0, (7b)

where σ ′(�) ≡ dσ/d� and D0,σ0,σ
′
0 are evaluated at �0.

According to (6), the boundary conditions for Eqs. (7) are

�0(x = 0) = �L, �0(x = 1) = �R, (8a)

p0(x = 0) = 0, p0(x = 1) = λ. (8b)

In [39], a sufficient and necessary condition has been
derived, which verifies whether or not the AP solution is a
locally minimal solution. It relies on showing that the AP
solution is incorrect only if there is an allowed fluctuation
(δ�,δp) about the AP solution (�0,p0) that gives a lower value
to μ(λ) in Eq. (4) (this approach disregards first-order DPTs).4

It was found that the AP assumption is not valid for μ(λ̄) if
and only if [39] (a) ∃(ω̄,λ̄) such that there exists a nontrivial
solution to the equations

iωfω = ∂x[D′
0(∂x�0)fω + D0(∂xfω)

− σ ′
0(∂xp0)fω − σ0(∂xgω)], (9a)

iωgω = [ − D′
0 ∂xxp0 − 1

2σ ′′
0 (∂xp0)2]fω − D0(∂xxgω)

− σ ′
0(∂xp0)(∂xgω); (9b)

(b) for these (ω̄,λ̄), δs2
ω̄ < 0, where

δs2
ω =

∫
dx

[
D′

0σ
′
0 − D0σ

′′
0

4D0
(∂xp0)2|fω|2 + σ0

2
|∂xgω|2

]
.

(10)

Here (fω(x),gω(x)) are the Fourier modes of the fluctuations
(δ�,δp), namely δ� = ∑

ω fωeiωτ and δp = ∑
ω gωeiωτ , and

δs2
ω is the Fourier transform of the variation of μ(λ) to second

order in δ�,δp. The boundary conditions for (fω,gω) are

fω(x = 0) = fω(x = 1) = 0, (11a)

gω(x = 0) = gω(x = 1) = 0, (11b)

since the solutions (�0 + δ�,p0 + δp) must satisfy the
boundary conditions (8).

Note that fω = gω = 0 is a trivial solution to the linear
Eqs. (9). Clearly that trivial solution never corresponds to a

3We will also consider p to be time-independent, although it may
not necessarily be so.

4This scheme can only probe small fluctuations about the AP
solution. To our knowledge, there are no sufficient and necessary
conditions that accommodate large fluctuations.
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FIG. 1. (a) The diffusion D and (b) the conductivity σ . The
models under inspection: in solid blue, the Mexican flat hat model
for A = 1 and B = −20; in dotted red, the KMP model; in dashed
yellow, the long-range hopping with exclusion model for α = 1/24
and β = 9.

DPT as it yields δs2
ω = 0. Therefore, the main task of finding

a numerical solution of Eqs. (9) is to force out that trivial
solution and to find nontrivial ones.

We note that in [37], it was necessary to develop a nonlinear
perturbation theory, namely to include higher-order terms,
such as δ�2,δp2,δ� δp. However, it seems that the method
presented in [37] cannot be extended to find time-dependent
transitions. For the models considered here, linear perturbation
theory is sufficient to observe DPTs.

There is no direct method to systematically search for
first-order DPTs. However, one may encounter them while
solving the AP equations (7) with boundary conditions (8). It
happens when either the large deviation function �(J ) or the
cumulant-generating function μ(λ) favors one solution below
some critical value and a second one above it (see Appendix B).
There is no guarantee, however, that there is no third solution,
which is always favorable.

III. MODELS

As of now, there is no known example of a process leading
to a time-dependent second-order DPT under boundary drive.
Note that from Eq. (10), one can infer a sufficient condition
for the validity of the AP solution [39], namely

D′
0σ

′
0 � D0σ

′′
0 . (12)

Several models, e.g., the symmetric simple exclusion
process (SSEP) [23,33] and the zero-range process [32,33],5

satisfy Eq. (12), so that the AP can be used to evaluate the
cumulant-generating function.

Here we present three models (see Fig. 1) and discuss the
occurrence of a DPT: (a) a toy model with three extremal
points for σ (�), (b) the KMP model, and (c) the long-range
hopping with exclusion model suggested by Bodineau [44].
We will analyze them numerically in the next section.

5Where it is assumed there is no accumulation of particles in the
system. See [50] for an example in which this assumption does not
hold.

A. A toy model—The Mexican flat hat

The first model we consider is built in an attempt
to find a boundary-driven model that presents first- and
second-order DPTs as well as being relatively simple to
analyze numerically. The Mexican flat hat is not derived
from any microscopic dynamics. We take D(�) = 1 with
σ (�) = A(� − 1

2 )
2 + B(� − 1

2 )
4 − A

4 − B
16 , such that we may

have a region in � where the sufficient condition in Eq. (12) is
not fulfilled. In that region, we look for a violation of the AP.

B. The KMP model

The KMP model [43] was the first model of heat transfer
shown to satisfy Fourier’s law, which is the counterpart of
Fick’s law for heat transfer.

In the KMP model, each site i ∈ 1, . . . ,L stores an energy
ei � 0. At each time step t , we choose two neighboring sites
i and i ′. They redistribute their respective energies according
to a random value p ∈ [0,1], namely ei(t + dt) = p ei(t) +
(1 − p)ei ′(t) and ei ′ (t + dt) = (1 − p)ei(t) + p e′

i(t). This
implies energy conservation at each time step, with fast
equilibration between neighboring sites. The boundaries are
considered as fictitious sites with energies drawn from a
Boltzmann distribution of respective temperatures �l and �r .

Macroscopically, the KMP model is obtained by taking
D(�) = 1 and σ (�) = 2�2 [43], where �(x,τ ) denotes the
energy density instead of the particle density.

C. Long-range hopping with exclusion model

The long-range hopping with exclusion model proposed by
Bodineau [44] is a one-dimensional lattice-gas model with L

sites whose occupancy ni = {0,1} for i ∈ 1, . . . ,L. A particle
can hop from site i to a nearest-neighbor site i ± 1 with rate
1 just like in the SSEP. Unlike SSEP, however, a particle is
also allowed to hop from site i to site i ± (β + 1) with a rate
α provided that the β sites separating them are all occupied,
as depicted below:

α1

· · ·

β occupied sites

This model is a gradient model, a result that allows us
to obtain D and σ analytically [47]. We obtain D(�) = 1 +
α(β + 1)2�β and σ (�) = 2�(1 − �)D(�) with � ∈ [0,1]. This
model allows some freedom in the form of D and σ due to the
free parameters 1 � α � 0 and β ∈ N.

IV. NUMERICAL METHOD—RESULTS

To probe for a second-order DPT, we solve Eqs. (7) and (9)
with the boundary conditions (8) and (11).

A naive attempt to find a solution of Eqs. (9) using
the numerical solution of Eqs. (7) will almost always yield
the trivial solution fω = gω = 0 due to the linearity of the
equations and their corresponding boundary conditions (11).
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FIG. 2. Fixing the boundary conditions �L = �R = �̂ (green
diamond) between a minimal and a maximal point in σ (red circles).
For D = 1, we expect the AP density profile to increase as the
current is increasing (see Appendix A for some insight). However, at
some point the density profile reaches a maximal value of σ . Further
heightening of the density profile is no longer favorable. This calls
for a different characteristic solution of the density profile. It could
conceivably be a different AP solution or a time-dependent solution.

We therefore employ a “sniping method”: we condition the
numerical solver to the boundary conditions,

fω(x = 0) = 0, fω(x = 1) = 0, (13a)

gω(x = 0) = 0, ∂xgω(x = 0) = 1, (13b)

thus forcing the system away from the trivial solution. Note
that due to the linearity of Eqs. (9), the particular choice of
the value for the derivative condition, ∂xgω(0) = 1, changes
the solution (fω,gω) only by a multiplicative factor, which is
innocuous to the problem at hand. Generally, for a given (λ,ω)
the solution of Eqs. (9) with the boundary conditions (13) does
not satisfy the original boundary conditions (11). We identify
a proper solution (fω,gω) only if |gω(1)| = 0.

By changing the boundary conditions from (11) to (13),
we find proper solutions by systematically scanning the (λ,ω)
space. We then check the value of δs2

ω. Only proper solutions
with δs2

ω < 0 indicate a second-order DPT.
We note that, given a solution at some λs , one must check

that solutions also exist in a finite range around it. Otherwise,
it is required to go beyond the linear perturbation theory
considered here [37].

A. A toy model—The Mexican flat hat

The motivation behind this model is to lure the AP solution
to follow a favorable path of the density profile due to a rapid
increase of σ . This trend becomes unfavorable if the density
profile hits a maximal point of σ (see Fig. 2 and Appendix A).
To achieve that, we consider a model where σ has at least one
minimum and one maximum, and we set �L = �R = �̂ such
that �̂ lies between the two extreme points (see Fig. 2).

From the large deviation function picture (see Appendix A),
one expects that increasing J (correspondingly, λ) manifests
in an increase of the density profile, since σ is monotonously
increasing initially for � > �̂. However, for a sufficiently large
current, the density profile reaches the maximal value in σ .
Then, it is no longer beneficial to continue and increase the
density profile. At this point a different solution, although not
necessarily time-dependent, should take over.

FIG. 3. The sniping method results for the Mexican flat hat and
the long-range hopping with exclusion models. We are interested
in finding a solution for which |gω(x = 1)| = 0 for some λ and ω

using the sniping method. Identification of numerical zeros is made
by going below the numerical error bars implying the existence of
a solution to (9) with the boundary conditions (11). Solid lines: the
absolute values of gω(x = 1) using the sniping method. Dashed lines:
the numerically estimated errors on |gω(x = 1)|. (a) The Mexican flat
hat model for A = 1 and B = −20. (b) The long-range hopping with
exclusion model for α = 1/24 and β = 9. No solutions to (9) were
found below λ = 5.6 in (a) and below λ = 10.22 in (b).

We find this behavior to be conceptually correct (see
Appendix A for details). First, we notice a discontinuous
transition between two AP solutions: a concave density profile
and a convex density profile at λc1 . Namely, for 0 < λ < λc1 the
concave density profile has a lower value for μ(λ) while for
λc1 < λ < λc2 the convex density profile is favorable. After
which, at a higher λc2 , the convex density profile becomes
unstable to small time-dependent fluctuations. We find this
behavior for �̂ = 0.55, with λc1 ≈ 3.70 and λc2 ≈ 5.60, which
correspond to Jc1 ≈ 4.91 and Jc2 ≈ 8.41. For the second-order
DPT at λc2 , there is a nonzero mode near ω0 = 4π that allows
nontrivial fluctuations (fω,gω) [see Fig. 3(a)]. This fluctuation
was found to give a lower value than the AP solution for
the cumulant-generating function μ(λ) as seen in Fig. 4(a).
We note that this behavior can also be found for nonequal
boundary conditions.

B. The KMP model

The KMP model was extensively studied numerically in
the context of current fluctuations. For periodic boundary
conditions, it was found that there exist such DPTs, and that for
a certain λ the optimal solution becomes a traveling wave rather
than a fixed density profile. However, for the boundary-driven
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FIG. 4. The value of δs2
ω for a range of ω and λ above the critical

region for the Mexican flat hat and the long-range hopping with
exclusion models. Here, red and blue highlight the positive and
negative values of δs2

ω, respectively. The locations for which δs2
ω = 0

imply that only the trivial solution fω = gω = 0 exists. The negative
values of δs2

ω imply a second-order DPT. (a) The Mexican flat hat
model for ω0 = 4π . (b) The long-range hopping with exclusion model
for ω0 = 6π . The reference points ω0 in (a) and (b) are chosen for
aesthetic reasons.

case, there is no theoretical or numerical indication for such
DPTs. In [35] the cumulant-generating function was probed
for a range of values of λ using an exact simulation of the
dynamics. For reservoir values of �L = 2 and �R = 1, they
were able to verify the AP solution up to λ ≈ [−0.8,0.45],
which corresponds to the range J ≈ [−5.06,13.9]. Using the
sniping method, we are able to verify that the AP solution is
valid in the range λ ≈ [−0.9977,0.49], which corresponds to
J ≈ [−78.8,30.6]. This range is not the limit of our method,
and it can be readily improved with further analysis. Note that
for the above boundary conditions, λ ∈ (−1,0.5) corresponds
to the whole range of current fluctuations. We find no nontrivial
solutions to Eqs. (9) for these boundary conditions as well as
for various others.

In summary, we were able to show that the AP solution
is a minimum solution for very large currents—an order-of-
magnitude improvement as compared to previous numerical
results [35].

C. Long-range hopping with exclusion model

Contrary to the Mexican flat hat model, the long-range
hopping with exclusion model is derived from a microscopic
model. We produce an almost constant range of D by applying
α = 1/24 and β = 9, as shown in Fig. 1, and we get σ having
three extremal points much in the spirit of the Mexican flat hat
model. Probing for boundary conditions of �L = �R = 0.75,
we find the same behavior as in the Mexican flat hat model,
and with λc1 ≈ 5.01 and λc2 ≈ 10.22, which correspond to

Jc1 ≈ 3.60 and Jc2 ≈ 7.54. At the continuous transition at λc2 ,
there is a nonzero mode near ω0 = 6π that allows nontrivial
fluctuations (fω,gω) [see Figs. 3(b) and 4(b)]. We note that the
description of convex and concave solutions (see Appendix B)
for this model is oversimplified due to the nontrivial D(�).
Beyond λc1 the AP density profile can support more than one
point at which d�

dx
= 0.

V. SUMMARY

We have presented evidence of two types of DPTs in the
context of current fluctuations in boundary-driven systems.
The first is a nonperturbative discontinuous transition between
two different AP solutions, and the second is a continuous
transition from an AP solution to a time-dependent solution.
We have also numerically verified that the KMP model does
not break the AP assumption under small perturbations up to
high currents. It should be understood that a key ingredient in
observing these DPTs is to set the boundary conditions such
that the steady-state density profile is in the regime between
two extreme values of the conductivity σ . We note that this
scheme need not be unique, and it does not guarantee DPTs
for general models. Moreover, continuous and discontinuous
DPTs do not necessarily come in pairs.

One open question is to characterize the role the diffusion
coefficient D plays in such a transition. We have also been
unable to find a simple model for which the two types of DPTs
can be analytically shown to occur. It is evident that there is a
significant lack of understanding of the typical time-dependent
density profile for boundary-driven processes, as opposed to
periodic boundary conditions, where after the transition the
density profile behaves like a traveling wave [41]. Moreover,
it is of interest, although inherently difficult [48], to probe this
transition in some experimental realization.
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APPENDIX A: THE LARGE DEVIATION FUNCTION
FORMALISM

The purpose of this appendix is to present the large deviation
function approach to current statistics, and to provide an
intuitive approach to search for multiple AP solutions. The
MFT provides a formal expression to the large deviation
function [which is an alternative to the cumulant-generating
function μ(λ)],

�(J ) = min
�,j∈AJ

L

t

∫
dx dτ L(�,j ), (A1)

where

L(�,j ) = (j + D∂x�)2

2σ
, (A2)
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such that �(x = 0,τ ) = �L, �(x = 1,τ ) = �R , and AJ is the
set of all currents j (x,τ ) such that

∫
dx dτ j (x,τ ) = J t/L2.

The AP assumption gives an upper bound U (J ) to �(J ), where

U (J ) = 1

L
min
�(x)

∫
dx LJ [�(x)] (A3)

with LJ = (J+D∂x�)2

2σ
, �(x = 0) = �L, and �(x = 1) = �R .

Finding the optimal solution �0(x) boils down to solving an
Euler-Lagrange equation δLJ

δ�
= d

dx

δLJ

δ∂x�
, which yields

∂xx�0 + (∂x�0)2

(
D′

0

D0
− σ ′

0

2σ0

)
+ J 2 σ ′

0

2D2
0σ0

= 0. (A4)

It is clear that the AP density profile solution is indifferent to
the sign of J , although U (J ) �= U (−J ) for �L �= �R .

Now, after presenting the large deviation function formal-
ism, it is possible to understand the logic behind searching for
DPTs in the scenarios depicted in Fig. 2. For �L = �R = �̂

at J = 0, the AP solution yields �0(x) = �̂. However, as we
increase J , it is favorable to increase �0(x) above �̂ as σ0,
the denominator of U , increases as well. However, for a large
enough J , the density profile reaches the maximal point of σ ,
as depicted in Fig. 2. Therefore, the density going above this
point decreases σ , and it will not be an optimal solution. We
thus expect a change of trend in the optimal solution, where
it can be a different AP solution or result in a transition to
a time-dependent solution. We are unable to provide analytic
proof for the transition or even an analytic estimation of the
critical J , where we expect it to occur. However, the numerical
solution for the AP corresponds to the prediction that there is
a transition.

APPENDIX B: DETECTING FIRST-ORDER TRANSITIONS

In the main text, we report a discontinuous DPT for the
Mexican flat hat and the long-range hopping with exclusion
models. However, the numerical method described there
is designed to systematically search for continuous DPTs.
The discontinuous DPTs were found as a byproduct of this
examination. They were observed in the following way.

The implementation of the method utilizes a numerical
solver, which searches for a solution for the AP Eqs. (7).
However, there is no guarantee that Eqs. (7) have a single
solution. In the case of multiple solutions, the solver converges
to one of them in an unpredictable way (depending on the initial
guess, λ value, and boundary conditions). In other words, the
solver has no preference to choose the optimal solution; it only
finds saddle point (AP) solutions. Yet, the existence of multiple
AP solutions may lead to a discontinuous DPT.

Using the main text method, the fingerprints of such a
discontinuous DPT between different AP solutions are as
follows: (a) an observation of a second spatially distinct
solution in adjacent λ values, and (b) an identification of an
overtaking of the cumulant-generating function corresponding
to the first solution by the cumulant-generating function
corresponding to the second solution in some finite interval
of λ (similarly to the large deviation function depicted in
Fig. 7). This provides a clear indication of a discontinuous
DPT. However, this method is unreliable in evaluating the
cumulant-generating function around the transition, or in

FIG. 5. The trajectories of the density profile �(x) for different
values of J . Red (light gray) indicates the frowning solutions, and
blue (dark gray) indicates the smiling solutions.

obtaining the value of the transition; it can only suggest the
general vicinity of the transition.

To properly describe a transition, we must procure its
value and calculate the cumulant-generating function around
it. To achieve these two purposes and to have a “sanity
check” of the transition, we present below a different nu-
merical approach. This approach relies heavily on insights
from [33].

It is possible to show that Eq. (A4) can be reduced to a
nonlinear first-order equation,

D2(�)

(
d�

dx

)2

= J 2[1 + 2Kσ (�)], (B1)

where K is a constant determined by the boundary conditions.
For equal boundary conditions �L = �R = �̂ such that σ ′(�̂) �=
0, the density profile is never monotonous, except for J = 0,
where the solution is flat, namely �0(x) = �̂. Since it is not
monotonous, there is at least one point for which d�

dx
= 0 for

differentiable density profiles. It makes sense to consider only
a symmetric solution about x �→ 1 − x. We assume that there
is exactly one extreme point in the density profile for any
J �= 0, relying on the numerical results obtained by solving
Eqs. (7) and (8) (see Fig. 5).

The density profile trajectory is analyzed as follows. Since
the density profile is nonmonotonous, and from (B1), we find
that K ∈ [−1/2σmax, − 1/2σ (�̂)], where σmax is the maximal
value σ can reach. For a given K in this range, one can find
��, the value at which the density profile gradient vanishes at
x = 1/2, by using (B1) to obtain σ (��) � − 1

2K
. Here one can

consider − 1
2K

playing the role of a total energy, σ (�) being
the potential, and � the position. Therefore, one can deduce
from this picture the possible density profiles for each K (see
Fig. 6). Since σ is a nonmonotonous function, much like for a
potential picture, there is some degeneracy in the value of ��.
For each K , there are two values for ��, each corresponding
to a different density profile. For �� > �̂, the density profile is
monotonously increasing in x ∈ [0,1/2) and decreasing in x ∈
(1/2,1], thus being designated the “frowning” solution. For
�� < �̂ instead, the density profile is monotonously decreasing
within x ∈ [0,1/2) and increasing within x ∈ (1/2,1], thus
being designated the “smiling” solution (see Fig. 5).
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FIG. 6. The trajectory of the calculation of J . The green thin line
is the conductivity profile σ , which plays the part of a potential. The
yellow dotted line is the “total energy” − 1

2K
. The purple dot represents

the boundary value �L = �R = �̂. (a) The trajectory for the smiling
solution (in thick blue). (b) The trajectory for the frowning solution
(in thick red).

Since the sign of the density profile gradient is fixed for
x ∈ [0,1/2), we can take the square root of (B1) and obtain

d�

dx
= ± |J |

D(�)

√
[1 + 2Kσ (�)], (B2)

with plus or minus for the frowning or smiling solutions,
correspondingly (note that the solution is indifferent to the
sign of J ). From (B2), one can obtain an integral expression
to the current

|J | = ±2
∫ �̂

��

d�
D(�)√

1 + 2Kσ (�)
, (B3)

with again plus or minus for the frowning or smiling solutions,
correspondingly. The choice of the ± sign depends on the
�� ≷ �̂ case.

Using the density profile gradient of Eq. (B2) and the value
of the current in Eq. (B3), we can find the expression for the

FIG. 7. The large deviation function �(J ) corresponding to the
two solutions of �(x) of Eq. (B1). The solid red line depicts solutions
with d�

dx
> 0 at x = 0 (the frowning solution). The dashed blue line

depicts solutions with d�

dx
< 0 at x = 0 (the smiling solution). Note

that the smiling solution is attainable only from Jtransition � 4.906,
where it is the favorable solution. The transition is indicated by the
dotted yellow line.

large deviation function,

�±(J ) = ±2
∫ �̂

��

d�
D(�)

σ (�)

[
1 − 1 + Kσ (�)√

1 + 2Kσ (�)

]
, (B4)

where, again, plus or minus corresponds for the frowning or
smiling solutions. Solving numerically and comparing the two
AP solutions for the Mexican flat hat (see Fig. 7), we observe
that for �̂ = 0.55 and for A = 1,B = −20, there is a single
solution (frowning) for low currents, as expected. For higher
currents where the two solutions exist, the smiling solution is
favorable and marks the onset of a first-order DPT as the two
solutions are not equal at the transition.

We find that the solution of this method corresponds to the
behavior of the density profiles produced with the previous
numerical approach, i.e., solving directly the AP Eqs. (7).
The plot of �±(J ) for the long-range hopping with exclusion
process is qualitatively the same as in the Mexican flat hat
model given in Fig. 7, and thus it is not included here. We used
this method to evaluate λc1 of the main text for both of these
models.
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