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Development and regression of a large fluctuation
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We study the evolution leading to (or regressing from) a large fluctuation in a statistical mechanical system. We
introduce and study analytically a simple model of many identically and independently distributed microscopic
variables nm (m = 1,M) evolving by means of a master equation. We show that the process producing a nontypical
fluctuation with a value of N = ∑M

m=1 nm well above the average 〈N〉 is slow. Such process is characterized by
the power-law growth of the largest possible observable value of N at a given time t . We find similar features
also for the reverse process of the regression from a rare state with N � 〈N〉 to a typical one with N � 〈N〉.
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I. INTRODUCTION

The occurrence of fluctuations is at the heart of most
physical phenomena [1]. Typically, in an extended system
made of a large number M of microscopic constituents, like
those usually considered in equilibrium thermodynamics, a
collective variable N (like the particle number or the energy)
evolves as to stay most of the time close to its average value
〈N〉. Large deviations are rare and become progressively less
frequent as N moves away from the average. For this reason
they are neglected in many practical applications. However,
in some cases they can have important consequences. This
happens, for instance, when their occurrence leads the system
to an absorbing state, namely, a configuration that cannot be
escaped [2]. Examples include the extinction of a species,
the failure of a device, or the bankruptcy of a company. The
latter indeed was the first problem for which the rigorous
results of large deviation theory were applied [3]. In addition,
large deviations play a prominent role in many nonequilibrium
phenomena, e.g., in the decay of metastable states [4].

Configurations corresponding to a large fluctuation are
usually very different from those typically observed when
N � 〈N〉 (to ease the notation we use the same symbol for
the stochastic variable and its possible outcomes), because
the system explores a seldom visited region of phase space
that may have peculiar properties. Hence, the question arises
of how the representative point moves to reach such low-
probability sectors, or, in other words, what are the properties
of the dynamical process producing a large deviation. This
issue is not only an important and largely unexplored topic
in large deviation theory, but might also represent a first step
towards the detection and control of fluctuations, with impor-
tant applications concerning the predictability of catastrophic
events. Likewise, the reverse process, whereby the typical
behavior is recovered after a rare event, has also theoretical
and practical interest.

In this paper we study such problems in a simple but
sufficiently general model where N = ∑M

m=1 nm is the sum
of a large number M of independent variables nm = 0,1, . . .

identically distributed with probability p(nm). The creation
of a fluctuation is studied by evolving the initial distribution
p(n,0) = p(nm = n,t = 0) of the microvariables nm in a
typical state of the system with N = 〈N〉, until a deviation
with N �= 〈N〉 is observed. Solving the master equation yields

the evolution of the probability P (N,M,t) that the collective
variable takes a given value N . This quantity provides a
detailed description of the whole fluctuation spectrum of N ,
characterizes the event whereby the fluctuation is built, and
identifies its relevant properties. In the same way, one can study
the disruption of a large deviation by studying the evolution
from an initial condition with N �= 〈N〉.

In the present article we choose the master equation
governing the dynamics of p(n,t) such as to have the stationary
solution

pst (n) ∝ (n + 1)−k. (1)

Systems with fat tail distributions analogous to the one
considered here are found in natural sciences, social sciences,
and economics. Among many examples we can mention the
magnitude of earthquakes [5], the spreading of forest fires [6],
rain events [7], size of cities [8], wealth distribution [9],
price returns of stock indices [10], and degree distribution
of networks [11].

Our choice of pst not only is motivated by its ubiquitous
character, but also stems from general considerations regarding
the actual probability to observe large fluctuations. As we
discuss below, such probability is particularly large for the
model under consideration.

We have already mentioned that in extended systems the
large deviations of a collective variable N are generally
strongly suppressed. Indeed, the probability P (N,M) usually
obeys [12] the following large deviation principle (LDP):

lim
M→∞

ln P (N,M) = −MR(ρ), (2)

where ρ = N
M

and R is the rate function. For simplicity, in the
above equation and in the following we omit the dependence on
t . Equation (2) implies that P (N,M) is always exponentially
small (in M) except for the values of the density ρ for which
R(ρ) = 0. Notice that at least one such configuration is bound
to exist in order to preserve normalization of probability as
M → ∞. The simplest case is when there is a single value
of ρ yielding R(ρ) = 0. This value trivially coincides with
the average 〈ρ〉 = 〈N〉

M
for large M . In this scenario, the

outcome of a measurement is almost always close to 〈ρ〉,
whereas sizable fluctuations are extremely rare and can be
observed only in systems of mesoscopic scale, namely, with
M not too large. The same mathematical structure applies to
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all those cases where N is formed by the addition of many
microscopic contributions. This is nicely illustrated by the
much studied [13] problem of the fluctuations of a charge
N = ∫ τ

0 j (t) dt , j being a current, flowing in a certain time
interval τ through a system.

Despite all of the above, there are important cases where
large fluctuations are not exponentially suppressed as in
Eq. (2), because the LDP breaks down for some range of
values of N . In this situation, R(ρ) can vanish not only for
one (or some isolated) specific value(s) of ρ, but in a whole
interval ρ ∈ \I:

R(ρ) ≡ 0, for ρ ∈ \I, (3)

In this case Eq. (2) must more properly be rewritten as

ln P (N,M) � −M[R(ρ) + R(M,ρ)], for large M. (4)

When the LDP holds, R is finite and the second term on the
right-hand side of the equation above is a correction to the
leading behavior for finite M: limM→∞ R(M,ρ)

R(ρ) = 0. Then, in
the large-M limit, Eq. (2) is meaningful, since fluctuations
are fully described by R. However, if Eq. (3) holds, then R
becomes the relevant term and Eq. (2) is useless. This implies
that fluctuations are reduced more softly in \I than where Eq. (2)
holds, and, depending on the system, significant deviations
may have a good chance to form and be detected.

Situations where Eq. (3) holds are observed in a variety of
systems. A first notable example is represented by magnetic
materials where, below the critical temperature, the probability
distribution of the (fluctuating) spontaneous magnetization N

exhibits [14] a structure like the one in Eq. (4), where M is
the number of spins. In this case R vanishes in the whole
region \I such that ρ ∈ [−ρ0,ρ0], where ρ0 is the absolute
value of the (average) spontaneous magnetization (per spin).
Another example is the case of a Brownian walker on a
line, with hopping rates retaining memory of the previous
history [15]. The probability of moving a certain distance
N after M steps takes a form like the one of Eq. (4). For
instance, for a particular choice of the memory term, R

vanishes in the entire region ρ > 0, i.e., when the particle,
starting from the origin, moves to the right. Other examples
include fluctuations of driven Maxwell-Lorentz particles [16],
quantum quenches [17], disordered systems [18], and many
others [12,19].

As already anticipated, the model that we will study in
this article is conceived in such a way that the station-
ary probability Pst (N,M) obeys the crucial LDP-breaking
property [Eq. (3)]. Indeed, it is well known [20] that
assuming the distribution Eq. (1) with k > 2, it follows
that − limM→∞ M−1 ln Pst (N,M) = Rst (ρ) = 0 in the entire
range \I ≡ {ρ | ρ > 〈ρ〉}. Correspondingly, the LDP [Eq. (2)]
does not apply in that region (notice that the same phenomenon
does not occur for k � 2; see the discussion in Sec. III). As
a consequence, the condition for the observability [in the
sense discussed above, after Eq. (3)] of large deviations is
met in the interval ρ ∈ \I. The detailed theoretical study of the
formation and regression of a large deviation that we will carry
out in the present article for an analytically tractable model
could therefore pave the way to the experimental investigation
of such processes. Moreover, the model studied here could

represent a simple paradigm for a class of systems, like those
mentioned above, where the condition (3) is satisfied. For
example, in the previously discussed magnetic context, the
problem at hand would correspond to study the spontaneous
process whereby a typical configuration with ρ = ρ0 evolves
to a probabilistically unfavored one with ρ < ρ0 due to thermal
fluctuations, and the regression to the initial state.

Probabilistic setups, similar in spirit to the one intro-
duced and studied in the present work, have been already
considered in models of simplicial quantum gravity [21,22],
non-equilibrium-driven systems [23], Lévy walks [24], and
other systems [25] (see Sec. II for more details). However, to
the best of our knowledge, the process whereby fluctuations
form and regress has never been previously investigated.

Due to the analytical tractability of the model, we can
derive several significant results from its solution. First, the
nature of the process associated with the production and
regression of fluctuations is radically different if it occurs in
the region I ≡ {ρ | ρ � 〈ρ〉} where the LDP holds, or in \I,
where it is violated. In the former case the evolution is fast and
relatively simple, with an exponential convergence towards
the stationary form. In the latter, it displays a slow nontrivial
evolution. This happens because the mechanism whereby
P (N,M,t) approaches Pst (N,M) is effective only up to a
typical finite fluctuation scale N ∼ ν(t), while larger values of
N are left untouched. The characteristic value ν(t) increases
slowly in an algebraic way. This leads to an everlasting
aging phenomenon, which closely resembles the dynamics
of systems crossing a phase transition [26]. The probability
P (N,M,t) attains the stationary value for increasingly large
values of N . However, at each time there will always exist a
sufficiently large value of N beyond which stationarity is not
reached.

Second, considering the growth of spontaneous fluctua-
tions, the mechanism whereby LDP breaks down, starting
from an initial configuration that satisfies it, shows a nontrivial
interplay between M and t . Specifically, while violations of
LDP are enhanced at large times, as expected, they are reduced
by increasing M . This shows that, when studying the large time
behavior of a fluctuating system, attention should be paid to the
order of the limits limM→∞ and limt→∞, which again reminds
us of the physics of phase transitions.

This paper is organized as follows: In Sec. II we introduce
the statistical model and set the notations. In Sec. III we
discuss the properties of the model in the large-time limit when
stationarity is reached. The breakdown of LDP is discussed
and related to a condensation phenomenon. In Sec. IV the
formation (Sec. IV A 1) and suppression (Sec. IV B) of
fluctuations are studied by solving analytically the master
equation for the microscopic probabilities p(n,t) and inferring
the time evolution of the global probability P (N,M,t). The
phenomenon of partial condensation is also discussed. Finally,
in Sec. V we briefly summarize our results and draw our
conclusions.

II. THE STATISTICAL MODEL

We consider M independent random variables that take
integer values nm = 0,1,2, . . . (m = 1,M) subject to a
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probability distribution p(nm), which in general depends on
some parameters among which, possibly, the time t .

The closely related problem where nm are continuous
variables behaves very similarly. In the following, in order
to make the idea more concrete, we will speak of M boxes
containing a total number

N =
M∑

m=1

nm (5)

of particles, with an average value 〈N〉 = ∑M
m=1〈nm〉, where

〈nm〉 = ∑
n n p(n).

Particles can be exchanged with the external environment.
Assuming that the dynamics amounts to elementary moves
where a single entity can be added to or removed from a
specific box, the probability p obeys the following master
equation:

dp(n,t)

dt
= −[w+(n) + w−(n)]p(n,t)

+w−(n + 1,t)p(n + 1,t)

+w+(n − 1,t)p(n − 1,t), (6)

where w+(n) is the transition rate to increase the number of
particles, i.e., n → n + 1, and w−(n) the one to decrease it,
n → n − 1. Here and in the following we denote by p(n,t) the
probability, making the time dependence explicit. The master
equation (6) is completely general for systems of discrete
variables where N is not conserved as, e.g., spin models (Ising,
Potts, Clock, etc.) [27]. We consider the following transition
rates:

w+(n) = (n + 2)−k

w−(n) = n−k(1 − δn,0).
(7)

The Kronecker δ function guarantees that particles cannot
be extracted from an empty box. The form (7) is such that
the evolution of a large cluster of n particles located in a
single box is much slower than in the less populated ones,
similarly to what happens in certain models of irreversible
aging processes [28]. Notice that the transition rates (7) obey
detailed balance:

w+(n − 1)

w−(n)
= pst (n)

pst (n − 1)
, ∀n > 0, (8)

where

pst (n) = ζ−1(k)(n + 1)−k (9)

and the normalization factor ζ (k) = ∑∞
n=0(n + 1)−k is the

Riemann ζ function. Let us stress that the more general choice
for a transition rate obeying the detailed balance condition (8)
is w+(n) = (n + 2)−kg(n + 1), w−(n) = n−k(1 − δn,0)g(n),
where g is an arbitrary function. Here we make the simplest
choice g(n) ≡ 1.

The form of pst above provides an average occupation

〈ρ〉 = 〈n〉 = ζ (k − 1)

ζ (k)
− 1, (10)

a result that will be useful in the following. Notice also that 〈ρ〉
exists only for k > 2, and, similarly, there is a finite variance
only for k > 3.

With the w± of Eq. (7) the master equation (6) reads

dp(n,t)

dt
= −[(n + 2)−k + n−k]p(n,t) + (n + 1)−k[p(n + 1,t) + p(n − 1,t)] , ∀n > 0

dp(0,t)

dt
= −2−kp(0,t) + p(1,t).

(11)

The probability to have a total number N of particles at time t

is

P (N,M,t) =
∑

n1,n2,...,nM

p(n1,t)p(n2,t) · · ·p(nM,t) δN ,N

= 1

2πi

∮
dz eM[ln Q(z,t)−ρ ln z], (12)

where N = ∑M
m=1 nm, we have used the representation

δN ,N = 1
2πi

∮
dz z−(N−N+1) and

Q(z,t) =
∑

n

p(n,t)zn (13)

with ρ = N+1
M

� N
M

is the particle density.
The relation

P (N,M,t) =
N∑

n=0

π (n,N,M,t) (14)

with

π (n,N,M,t) = P (N − n,M − 1,t) p(n,t) (15)

is easily proved; see, for instance, Ref. [22]. π (n,N,M,t)
is the conditional probability that, at time t , there are n

particles in the Mth box, given that a total number N is found
in all the boxes. Since the random variables are identically
distributed, the same probability applies to a generic box, not
only to the Mth. The recursion (14) allows one to determine
the probability distribution of M variables from the one for
M − 1. Specifically, once p is known from the solution of
the evolution equations (11), Eqs. (14) and (15) can be used
with the boundary condition P (N,M = 1,t) = p(n = N,t) to
obtain P , step by step, for larger and larger values of M .

It should be stressed that Eq. (14) makes the exact
determination of P feasible also for reasonably large values
of N and M . Indeed, the computational complexity using this
formula is only polynomial, whereas there is an exponential
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number of redundant operations involved in the determination
of P by using the first line of Eq. (12). This point is discussed
in more detail in Appendix A.

Besides Eq. (14), which is always exact, for large M one
can alternatively determine P by evaluating the integral in
Eq. (12) by the method of steepest descent

P (N,M,t) � e−MR(ρ,t), (16)

where

R(ρ,t) = − ln Q[z∗(ρ,t)] + ρ ln z∗(ρ,t) (17)

is the rate function and z∗ is the value of z for which the
exponential argument in Eq. (12) is maximum. This is provided
by the following saddle-point equation:

z∗ Q′(z∗,t)
Q(z∗,t)

= ρ. (18)

As we will see soon, however, a straightforward saddle-point
evaluation of the integral in Eq. (12) is not always doable.

In this paper the model introduced insofar is studied to
understand the basic mechanisms governing the occurrence of
fluctuations and the mathematical structure behind. As already
pointed out in the introduction, its formulation is similar to
other, physically inspired and intensively studied models of
statistical mechanics.

To begin with, collections of independent identically
distributed random variables obeying Eq. (9) have been
introduced as a simple description of quantum gravity [21,22].
This same model is also sometimes referred to as urn model, or
balls and boxes model. In this approach N is an external control
parameter. This means that, at variance with our analysis,
fluctuations of this quantity are forbidden by construction.
What is usually studied in that context are, instead, the
properties of the stationary state as the control parameters k

and N are varied. The nonequilibrium dynamics following an
abrupt change of k (playing the role of an inverse temperature)
has also been considered in [29]. The evolution of the model
in that case, however, is ruled by a N -conserving stochastic
equation different from Eq. (11).

Another class of related problems are descriptions of
non-equilibrium-driven systems with particles hopping on a
lattice, like the zero range process [23]. In these systems
the probability at stationarity is factorized into single-site
distributions that, for particular choices of the hopping rates,
can take the form (9) [23]. N is a conserved quantity also
in these cases. Furthermore, the properties of independent
random variables distributed according to Eq. (9) have been
discussed in relation to a wealth of different physical situations,
like in the notable case of Lévy walks [24] and in other
models [25].

III. STATIONARY STATE

Equation (11) has the stationary solution (9). The properties
of the probability Pst (N,M) in the stationary state have been
studied elsewhere [20]. Here we briefly mention some basic
results that will be needed in the following. We first derive them
in a somewhat simplified framework that provides physical
hints to the mathematically more refined exposition that will
be presented in the following section.

A. Simplified framework

A relatively simple description of the properties of the
stationary state can be obtained by considering the large-k
behavior. In this limit 〈ρ〉 → 0. In fact, given the form of the
microscopic probabilities pst in Eq. (9), as k grows the chance
of a nonvanishing outcome n becomes progressively smaller.
This result can be easily derived from the exact expression (10).
Then, for large k, deviations with 〈ρ〉 � ρ � 1 are possible.
We will focus our analysis in this range of densities.

Since the variables nm are identically distributed there is an
obvious symmetry among the boxes. Then, if such a symmetry
is not spontaneously broken, the representative configurations
of the stationary state are expected to have the N balls fairly
distributed among all the boxes. In this case, given that ρ � 1,
most of them will be empty, and a comparatively smaller
number, of order N , will contain one ball. Given that k is large,
the chance for a single box to host more than one particle is very
small and will be neglected in the following. The probability
to have states with fairly distributed particles is

Psym(N,M) = pst (1)N · pst (0)M−N · �(N,M)

= ζ (k)−M · 2−kN · �(N,M), (19)

where �(N,M) = (MN ) is the number of ways to choose the N

occupied sites out of the total M and we have used Eq. (9).
We show now that, for large M , the probability Psym of

this symmetric state can be negligible compared to that of
a condensed one, where the symmetry among the boxes is
broken and a macroscopic number nc ∝ M of particles is
accumulated in one of them. The probability Pcond of such
a state is

Pcond(N,M) = M · pst (nc) · Psym(N − nc,M − 1). (20)

Here the first term, M · pst (nc), represents the probability to
place nc particles in the condensing box (the factor M in
front accounts for the M ways to choose it). The last term,
Psym, is the probability [given by Eq. (19)] associated with
the remaining N − nc, which are uniformly spread among the
remaining M − 1 boxes.

At large M , using the Stirling approximation for � and
introducing the density ρ of balls in noncondensing boxes
through nc = (ρ − ρ)M one finds

Psym(N,M)

Pcond(N,M)
� e−Mk{(ρ−ρ) ln 2−k−1[s(ρ)−s(ρ)]}, (21)

where s(x) = −x ln x − (1 − x) ln(1 − x) and subdominant
terms have been dropped. Equation (21) shows that the forma-
tion of the condensed state is surely favored for ρ > ρ, because
for large k the first term in the argument of the exponential,
namely, the positive quantity (ρ − ρ) ln 2, prevails over the
second. Similarly, the formation of the condensed phase is
unfavored for ρ < ρ.

The discussion presented insofar is valid for large k.
However, the basic results apply also to the small-k regime,
provided that k > 2. This will be shown with the somewhat
more refined calculation sketched in Sec. III B. We will also
identify ρ with the average value 〈ρ〉, given in Eq. (10), and
establish that condensation always occur, when k > 2, for
ρ > 〈ρ〉.
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B. Some mathematical refinements

We now show how the results obtained with the simple
approach of the preceding section are confirmed by a more
accurate treatment of the model equations where the condition
of large k is released. At stationarity and for large M one has

Q(z) = ζ−1(k)
∞∑

n=0

(n + 1)−kzn = ζ−1(k)
Lik(z)

z
, (22)

where Lik(z) is the polylogarithm (Jonquière’s function), and
therefore

zQ′(z) � ζ−1(k)
Lik−1(z) − Lik(z)

z
. (23)

The saddle-point condition (18) then reads

Lik−1(z∗)

Lik(z∗)
= ρ + 1. (24)

For k � 2 this equation always admits a solution and this
corresponds to the fact that condensation does not occur. In
the following we will concentrate on the sector with k > 2.
In this case Eq. (24) has solution only in the region I with
ρ � 〈ρ〉 [21,22,25,29], where 〈ρ〉 is given in Eq. (10). In this
range Eq. (16) holds with

Rst (ρ) = − ln

{
ζ (k)−1 Lik[z∗(ρ)]

z∗(ρ)

}
+ ρ ln z∗(ρ). (25)

In the complementary sector \I, that is for ρ > 〈ρ〉, a
straightforward saddle-point approach is not available and the
phenomenon of condensation occurs, namely, a macroscopic
number nc � N − 〈N〉 of particles, those that cannot be
accommodated in the normal state, is accumulated in a single
box, as discussed in Sec. III A. In this case Pst (N,M) is,
for large N , determined by the probability Mpst (N − 〈N〉)
that a single box contains such a huge amount of particles.
Comparing with Eq. (20), this shows that ρ = 〈ρ〉. In summary,
one finds the following behavior:

Pst (N,M) ∼
{
e−MRst (ρ) for ρ � 〈ρ〉
Mpst (N − 〈N〉) for ρ � 〈ρ〉, (26)

with Rst given in Eq. (25).
The above expressions, covering the regions ρ � 〈ρ〉 and

ρ � 〈ρ〉 only, can be derived analytically in the large-M limit.
The exact expression for Pst , which is valid for any M and ρ,
can instead only be obtained by iteration of the recursion (14),
and is plotted in the lower half of Fig. 1 (continuous green
curve) considering the case with k = 3 and M = 100. The
curve has a maximum around 〈N〉 � 36.84. We also compare
the exact solution with the power-law behavior of Eq. (26)
(dashed violet line), finding perfect agreement for N � 〈N〉.

Equation (26) shows that fluctuations with ρ � 〈ρ〉 behave
normally, in the sense that a large-deviation principle with rate
function Rst is obeyed. On the other hand, fluctuations with
ρ > 〈ρ〉 are peculiar since Pst is not exponentially suppressed
in M and relatively large fluctuations are possible. Indeed,
rewriting the second line of Eq. (26) in terms of the density as

Pst (N,M) ∼ M1−kζ−1(k)(ρ − 〈ρ〉)−k for ρ � 〈ρ〉,
(27)

001011
N

10-6

10-4

10-2

P st
(N

,M
)

1 00101
n+1

10-4

10-2

1

π st
(n

,N
,M

)/π
st
(0

,N
,M

)

N=10
N=20
N=<N>
N=50
N=100
N=150
N=200
N=250
N=300

FIG. 1. In the upper panel the quantity πst (n,N,M)
πst (0,N,M) of Eq. (28) is

plotted against n + 1 in a double logarithmic scale, for M = 100
and different values of N (see key). The dotted green line is the
small-n behavior (n + 1)−k . In the lower panel the exact probability
Pst (N,M) with k = 3 and M = 100, obtained by iteration of Eq. (14)
using the form (9) in Eq. (15), is plotted against N with double
logarithmic scales. The dashed violet curve is the behavior (N −
〈N〉)−3 of Eq. (26).

one sees that, upon increasing M , a fluctuation with ρ � 〈ρ〉
is reduced only as M1−k . This gives a much better chance to
detect large deviations with respect to a case where the LDP
holds.

Condensation can be understood by considering the condi-
tional probability πst (n,N,M) [Eq. (15) at stationarity], which
is shown in the upper part of Fig. 1. Here πst is plotted for
k = 3 and M = 100 and is normalized by πst (n = 0,N,M) in
order to better compare curves for different values of N . In
this figure πst is obtained from Eq. (15) by evaluating Pst by
means of the recurrence (14).

Let us discuss the properties of πst . Given its meaning,
which is expressed below Eq. (15), it is clear that πst (n >

N,N,M) = 0 in all cases, as can be seen in the upper half of
Fig. 1. Furthermore, by plugging Eq. (26) into Eq. (15) one
has

πst (n,N,M)

∼
{

e−MRst (ρ− n
M

)(n+1)−k for N−n � 〈N〉
M1−k

(
ρ−〈ρ〉− n

M

)−k
(n + 1)−k for N−n � 〈N〉,

(28)

where we have replaced M − 1 with M and neglected 1
M

for
large M .

This equation shows that, for fixed N and M ,
limn→0 πst (n,N,M) ∝ (n + 1)−k for any value of N . However,
what makes the big difference between the normal and the
condensed case is the behavior of πst at large n � N . Indeed,
for N � 〈N〉 a simple study of Eq. (28) found in Appendix B)
shows that πst (n,N,M) is a monotonically decreasing function
of n. Hence, large values of n are associated with a very small
probability πst , and this implies that condensation, namely, a

032136-5



FEDERICO CORBERI PHYSICAL REVIEW E 95, 032136 (2017)

large fraction of particles in a single box, is probabilistically
negligible.

This can be checked in the upper panel of Fig. 1 The cases
with N � 〈N〉 discussed above are represented by the curves
with N = 10 and N = 20, because using Eq. (10) with k = 3
one finds 〈N〉 � 36.84. These curves decay monotonically, as
expected.

Conversely, when condensation occurs, there is an extensive
number nc of particles in a box, meaning that πst must be
non-negligible also for values of n as large as n = nc. Indeed,
for N > 〈N〉 (curves with N � 50), πst (n,N,M) develops a
pronounced maximum [30], as can be seen in Fig. 1 (upper
panel). The location of the peak (see Appendix B) is in

n = nc(N ) = η (N − 〈N〉), (29)

where η � 1 is a function weakly dependent on N and M such
that η → 1 as N or M become large (the dependence on N

can be checked by inspection of Fig. 1).
The phenomenon of condensation of fluctuations is not

restricted to the present model, but it has been observed in
a variety of different systems [17,31,32], not only related
to physics. Despite different in principle from the usual
condensation on average occurring in the prototypical example
of a boson gas [33] and in many other systems [29,34], these
two kinds of condensation are related, as explained in Ref. [31],
and a strong mathematical similarity exists.

IV. DYNAMICS

In the stationary state, for large M , a typical observation
of the system will give a value Nobs of N very close to 〈N〉.
However, if one waits enough, starting from this initial state
a fluctuation with N �= 〈N〉 will develop spontaneously. The
aim of this paper is to describe the properties of the dynamical
process associated with the formation of such large deviations.
This is particularly interesting for a fluctuation with N > 〈N〉,
since in this case a macroscopic number nc of particles must
pile up in a single box whose occupancy was initially very
small, and this might be a slow and complex phenomenon.
Furthermore, once such a fluctuation sets on, it must regress
and this implies once again the dislocation of a large number
nc of particles. These two processes will be studied in the
following sections. In order to do that, we start at t = 0 with
the typical form of the single-variable probabilities in a system
where the value N = Nobs is observed [35]. Recalling the
meaning of π [Eq. (15) and discussion below], this reads

p(n,t = 0) = πst (n,Nobs,M)

Pst (Nobs,M)
. (30)

For instance, we will consider in the following section the
case where Nobs = 〈N〉 is the most likely value of N in order
to study how a large deviation forms. Then we will consider
the evolution of the p’s by means of Eq. (11), and, from the
knowledge of p(n,t) at all times, we will derive the form of
P (N,M,t) and of π (n,N,M,t) using Eqs. (14) and (15) and/or
Eqs. (16) and (17).
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FIG. 2. The single-variable probability p(n,t) with k = 3 is
plotted against n + 1 with double logarithmic scales for different
times (see key) exponentially spaced. The dotted green line is the
asymptotic form (9). In the lower inset data collapse is tested by
plotting p(n,t)

pst (n) against n+1
ν̃(t) . The quantity ν̃(t) is plotted against t in the

upper inset, in a double logarithmic plot. The dashed magenta line is
the expected long-time behavior (33).

A. Creation of a fluctuation

1. Evolution of the single-variable probabilities p(n,t)

In this case we take Nobs = 〈N〉. The dependence on n

of the initial condition (30) is contained in the function
πst (n,Nobs = 〈N〉,M). As discussed regarding Eq. (28), this
quantity behaves as p(n,0) � (n + 1)−k for small n and goes
rapidly to zero for n � 〈N〉. This can be seen in the upper panel
of Fig. 1 (curve with N = 〈N〉) or in Fig. 2 (leftmost black
curve, for t = 0, corresponding to the initial condition (30)
with Nobs = 〈N〉). Hence we can write p(n,0) � pst (n)f [(n +
1)/ν], where ν � 〈N〉 and f has the properties

f (x) �
{

1 for x � 1
0 for x � 1. (31)

For long times one must approach the stationary condition (9).
Therefore, for large t , we search for a scaling solution of
Eq. (11) of the form

p(n,t) = σ (t) pst (n)f

[
n + 1

ν(t)

]
, (32)

where f (x) has the properties (31), ν is an increasing function
of t , and σ is a weakly time-dependent normalization such
that limt→∞ σ (t) = 1. Plugging this ansatz into the first line
of Eq. (11) and performing the calculations as detailed in
Appendix C one can determine the exact form of the scaling
function f (x) and of the growth law of ν,

ν(t) = bt
1

k+2 , (33)

where b is a constant.
The behavior of p(n,t) as a function of n at different

times, obtained by numerical integration of Eq. (11), is shown
in Fig. 2. In the lower inset of this figure we illustrate
the data collapse obtained by plotting p(n,t)

pst (n) against n+1
ν̃

,
according to the scaling (32) [recalling that σ (t) � 1]. The
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FIG. 3. The probability P (N,M,t) with k = 3 is plotted against
N with double logarithmic scales for different times (see key),
exponentially spaced. The dotted green line is the exact asymptotic
form given by iteration of Eq. (14), using the form (9) in Eq. (15) (it is
the same curve as the green one plotted in the lower panel of Fig. 1).
The dashed violet curve is the behavior (N − 〈N〉)−3 of Eq. (26).
In the inset P (N,M,t) is plotted against ρ for t = 4.85 × 108 and
different choices of M (M = 10,20,50,100,200,500 starting from
the curve on the top) on a double logarithmic scale. The dashed violet
curve is the behavior (N − 〈N〉)−3.

function ν̃(t) [eventually to be identified with ν(t)] has been
obtained looking for the best superposition of the curves at
different times. As shown in the upper inset, ν̃ satisfies the
behavior Eq. (33) asymptotically. The collapse of the curves
displayed in the lower inset shows some correction at short
times, progressively improving with increasing t . Furthermore,
data fall on a master curve that is almost indistinguishable
from the exact form of the scaling function f (x) given in
Eq. (C6) of Appendix C, when the undetermined parameter
a appearing in that expression is appropriately tuned. This
confirms the validity of our solution based on the scaling
ansatz.

2. Evolution of the collective probability P(N,M,t)

Once the form of the microscopic probabilities p is found
at all times, one can obtain the exact time evolution of the
probability P of the collective quantity N by inserting p(n,t)
in the recurrence equation (14). The outcome of this procedure
is shown in Fig. 3, where P (N,M,t) is plotted against N and
different curves correspond to different times (see caption).
One observes that in the region N < 〈N〉, where condensation
does not occur, the asymptotic form Pst (dotted green line)
is reached already at an early stage. On the contrary, in the
condensing part with N > 〈N〉 the recovery towards Pst is
slow and proceeds gradually from small to large values of N

as time goes on. In this way, at any time, no matter how long,
there exists a region of sufficiently large values of N where
stationarity is not yet reached.

This behavior can be understood analytically. The analysis
is presented in Appendix D. The main outcome of this study
is that, at any time t , the dynamical probability P (N,M,t)

catches up with its stationary value Pst (N,M) for densities

ρ − 〈ρ〉 � ν

M(k − 1)
(34)

larger then the average value. Recalling the discussion in
Sec. III, this implies that the LDP is violated. Violation
of the LDP in the dynamics occurs due to a mechanism
analogous to the one operating at stationarity. Indeed, also
in the dynamical case, the steepest descent evaluation of the
integral in Eq. (12) cannot be done straightforwardly. We also
show that, for ρ > 〈ρ〉 outside the range (34), the validity of
the LDP is restored, because the integral in Eq. (12) does admit
a saddle-point evaluation. Clearly, this is trivially true in any
case also for small densities ρ � 〈ρ〉.

Notice that the interval (34) shrinks to zero as M in-
creases. Hence, for any finite value of ν, e.g., at any time,
the validity of the steepest descent solution is recovered
by considering a number M of boxes sufficiently large.
However, if ν = ∞ (namely, in the stationary state), the
saddle-point evaluation fails for any ρ > 〈ρ〉 and condensation
occurs. Let us remark that the above analysis implies that
limM→∞ limt→∞ P (N,M,t) �= limt→∞ limM→∞ P (N,M,t).

This interplay between N (or equivalently ρ) and M is
shown in the inset of Fig. 3, where P is plotted against ρ

for t = 4.85 × 108 (corresponding to the third to last curve in
the main picture), for different values of M . Here it is clearly
seen that, according to Eq. (34), the region of ρ where P

coincides with Pst shrinks as M is increased until, at M = 500
it is practically absent, meaning that the LDP is recovered
basically everywhere. The dashed violet line illustrates the
large-N behavior of Eq. (26).

It is clear that in the range of Eq. (34) something akin
to condensation occurs, although its mathematical definition
is less sharp than in the stationary state, since we cannot let
M → ∞ because the interval (34) would shrink to zero. This
is supported by the observation that for ranges of ρ increasing
with time P (N,M,t) becomes basically indistinguishable from
Pst (N,M) (see Fig. 3). This implies that in such ranges
condensation occurs as at stationarity. For larger values of
ρ, however, P departs from Pst , signaling that condensation is
absent. Since LDP is recovered, P decays exponentially fast
in M , like in Eq. (2), as opposed to the much softer algebraic
decrease, expressed by Eq. (27). This explains why P (N,M,t)
drops off faster than Pst (N,M) (violet dashed line).

In order to understand the differences between the dy-
namical and the stationary state, it is useful to consider
the conditional probability π (n,N,M,t) of Eq. (15). We
have evaluated this quantity at time t = 4.85 × 108, which
coincides with the time at which we have plotted the third to
last indigo curve in Figs. 2 and 3. From Fig. 2 one can infer that
ν(t) � 120 at this particular time. Indeed, one sees that p(n,t)
(indigo curve) is practically identical to pst (dotted green line)
up to this cutoff value of n, above which p decreases much
more rapidly then pst .

We have plotted π (n,N,M,t) in Fig. 4 (normalized by
π (n = 0,N,M,t)). It is useful to contrast this probability with
πst (n,N,M) plotted in the upper half of Fig. 1. Figure 4 shows
that π behaves similarly to πst for N � ν: Upon increasing
N a peak is developed around a value n = nc(N ) [given
in Eq. (29)] growing with N . However, while for πst this
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FIG. 4. The quantity π (n,N,M,t)
π (0,N,M,t) for t = 4.85 × 108 of Eq. (28) is

plotted against n + 1 in a double logarithmic scale, for M = 100 and
different values of N (see key). The dotted green line is the small-n
behavior (n + 1)−k .

continues to be true for any value of N , no matter how large, the
position of the relative maximum of π saturates around n � ν.
This means that not all the N − 〈N〉 particles exceeding the
average condense, but only a quantity of order ν. This partial
condensation is obviously related to the fact that, for n > ν,
the microscopic probability p(n,t) rapidly vanishes and the
probability to condense more than ν balls is negligible.

In conclusion, at a given time t the probability P (N,M,t)
has reached the stationary form Pst (N,M) only up to a value
of ρ given in Eq. (34), while for larger values it is strongly
suppressed. Correspondingly, in the range (34) a condensation
phenomenon similar to the one observed at stationarity is
observed, with a number nc(N ) in Eq. (29) of particles
populating a single box. For larger values of N , outside the
interval (34), only an incomplete condensation occurs and a
reduced number nc(ν) < nc(N ) (with respect to what occurs
at stationarity) of particles is accumulated. Notice that the
approach of P to Pst is a slow, everlasting process, since it is
regulated by the power-law growth (33) of ν.

B. Regression of a fluctuation

1. Evolution of the single-variable probabilities p(n,t)

In order to study the process of the regression of a large
fluctuation we take Nobs � 〈N〉. According to Eq. (28) and
the following discussion, the n-dependence of the initial
condition (30) is given by the quantity πst (n,Nobs,M). This
behaves like p(n,0) � (n + 1)−k for small n and there is a
peak at large n, centered around the value nc(Nobs) of Eq. (29),
as shown in the upper part of Fig. 1. The initial condition is
represented in Fig. 5 (curve for t = 0, black). We can express
these features with the form

p(n,0) � pst (n)f

[
(n + 1)

ν

]
+ ν−αg

[
(n + 1)

ν

]
, (35)

where ν � nc(Nobs), f has the properties (31), and ν−α and g

are an amplitude and a function describing the behavior of the
condensate (the peak), respectively.
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FIG. 5. The single-variable probability p(n,t) with k = 3 is
plotted against n + 1 with double logarithmic scales for different
times (see key), exponentially spaced. The dotted green line is the
asymptotic form (9). In the upper inset data collapse is tested by
plotting q(t)[p(n,t) − pst (n)] against x = n+1

ν̃(t) . The dashed indigo

line is the behavior x4. In the lower inset the quantities ν̃(t) (below)
and q(t) (above) are plotted against t in a double logarithmic plot.
The dashed magenta line (below) is the expected behavior (33), and
the dashed turquoise line (above) is the behavior ∼ t3/2.

Proceeding as in Sec. IV A 1, for large t we search for a
scaling solution of the form

p(n,t) = σ (t)pst (n)f

[
n + 1

ν(t)

]
+ ν−α(t)g

[
n + 1

ν(t)

]
, (36)

where ν, σ , and f have the same meaning as in Sec. IV A 1,
α is a dynamical exponent and the scaling function g has the
following limiting behaviors:

limx→0 g(x) = 0
limx→∞ g(x) = 0.

(37)

Inserting the form (36) into the first line of Eq. (11) and pro-
ceeding like in Appendix C one has the time dependence (33)
of ν together with the form (C6) of f (x). The expression for
g(x) can also be determined. This is detailed in Appendix E.

The behavior of p(n,t) as a function of n at different
times, obtained by numerical integration of Eq. (11), is
shown in Fig. 5. According to Eq. (36) a superposition
of curves at different times should be obtained by plotting
να{p(n,t) − σ (t)pst (n)f [ n+1

ν
]} against n+1

ν
. Given that σ (t) �

1 for long times and f (x) � 1 for x � 1, data collapse can be
checked by plotting να{p(n,t) − pst (n)} as well.

Since the value of α cannot be obtained from the above
calculation, we evaluate it from the numerical data as follows:
The second term in Eq. (36) describes the peak of p observed
in Fig. 5. The amplitude ν−α of such contribution at the
peak position nc(t) can then be estimated by measuring the
difference q−1(t) = p(nc,t) − σ (t)pst (nc)f [ nc+1

ν(t) ]. For large
times it is σ (t) � 1, nc(t) � ν(t), and the first term in Eq. (36)
behaves as pst (n) up to n � ν(t) � nc(t) (given the form of
the function f ; see inset of Fig. 2). Therefore the quantity
q−1(t) can be approximately simplified to q−1(t) � p(nc,t) −
pst (nc).
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In the upper inset of Fig. 5 we plot q(t){p(n,t) − pst (n)}
against x = n+1

ν̃(t) , where ν̃(t) is defined like in Sec. IV A 1.
As pointed out above, data collapse of the curves at different
times is expected in this plot in the region of the peak. In this
figure, in fact, an excellent superposition is found for long
times. Notice that, using the small-z behavior Lλ

n(z) � const
of the Laguerre polynomials entering the form of g [Eq. (E2)
in Appendix E], one has g(x) ∼ xk+1 for small x, which is
indeed very well observed in the upper inset of Fig. 5. The
behavior of ν(t) and q(t) ∼ ν(t)α ∼ t

α
k+2 as time changes is

shown in the lower inset of the figure. This plot confirms the
growth law (33) of ν and indicates a value of α consistent with
α = 15/2 for the case considered here with k = 3.

2. Evolution of the collective probability P(N,M,t)

Equation (36) shows that the single-variable probability is
roughly the one at stationarity with a cutoff at n + 1 � ν(t) and
an extra contribution (the second term on the right-hand side)
concentrated around n + 1 � ν(t). The latter, which represents
the condensed fraction, is clearly visible as a bump in Fig. 5.
Given this form of p(n,t) it is easy to show that the collective
probability P exhibits a series of maxima located in N = N(t)
( = 0,1,2, . . . ) given by

N(t) = 〈N〉 + ν(t). (38)

Indeed, there is an obvious maximum of the probability in the
average value, N0 = 〈N〉. Furthermore, since the p’s have a
large support around ν, the situation where, besides the 〈N〉
particles distributed among the boxes, there are ν marbles
stored in a single box (or, in general, in  boxes) is also
largely probable, thus giving a series of maxima located like
in Eq. (38).

This structure of P with many relative maxima is shown in
Fig. 6. Also in this case P has been computed by inserting the
time-dependent form of the p’s in Eq. (14). Clearly, as time
goes on and ν increases the relative strength of the condensed
term decreases (as ν−α) and the maxima are gradually smeared
out. The location of the maxima (38) can be checked by
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plotting P against N−〈N〉
ν(t) , since on this axis the maxima are

placed on the integer values  = 0,1,2, . . . . This is very neatly
observed in the inset of Fig. (6). From the discussion above
it is clear that the maxima with  > 0 are due to the presence
of the second term on the right-hand side of Eq. (36). In the
region N < N1(t), since the effect of this term is negligible,
one recovers the asymptotic behavior P (N,M,t) � Pst (N,M)
of Eq. (26), as can be seen in Fig. 6.

By computing π (n,N,M,t) one finds a behavior analogous
to the one discussed in Sec. IV A 2, signaling that also in this
case full condensation can occur only for sufficiently small
values of N , whereas only a partial one is possible for larger
N . This is due to the same mechanism already discussed in
Sec. IV A 2, namely, to the fact that the microscopic probabil-
ities p are negligibly small for n > ν. Again, the approach of
P to the stationary form is an everlasting slow evolution.

V. SUMMARY AND CONCLUSIONS

We have investigated the kinetics leading to the formation
or to the resorption of a large fluctuation of a collective
variable N in a statistical system. We have considered a
simple model where N is the sum of a relatively large number
M of stochastic (micro-) variables nm (m = 1, . . . ,M)
identically and independently distributed. We speak of n

balls stored in a box with probability p(n), to make the idea
more concrete. The evolution equation of the p’s is chosen
as to have a stationary solution pst with fat tails, namely
pst (n) ∝ (n + 1)−k (k > 2). It is known that this form induces
a probability Pst (N,M) to observe a given value of N at
stationarity that does not obey the LDP for N > 〈N〉, due to
a condensation phenomenon. This feature implies that large
fluctuations in this range have a better chance to be observed
in a system with finite but large M with respect to a case
where the LDP holds. This possibly makes some of our results
amenable to numerical and/or experimental verification.

We have considered the evolution of the model starting
from (1) a typical situation where the most probable value
〈N〉 is observed and (2) a case where a measurement with
unlikely outcome N > 〈N〉 just happened. In (1) we follow
the dynamical process whereby large fluctuations, which are
not present in the average initial state, form. Conversely, in (2)
we consider a realization where a rare initial state is disrupted
upon approaching stationarity. Both these cases can be solved
analytically. We have worked out the solutions in detail and
reported them in the appendices.

We have shown that the convergence to stationarity is, in
any case, a slow, everlasting process akin to those observed
in aging systems. This happens because the evolution is
slaved by the power-law growth of a characteristic value
N = ν(t) of N separating a region N < ν(t), where the
stationary behavior has been attained, from one with N > ν(t),
where reminiscence of the initial condition is retained. During
such evolution one observes a condensation phenomenon
with a twofold character: For N � ν(t) the phenomenon is
indistinguishable from the one observed at stationarity, with
the huge number nc(N ) (29) of particles stored in a single box.
For N > ν(t), instead, condensation is incomplete: a relevant
number of balls is still accumulated, but this number only
equals nc(ν), which is smaller than the value expected when
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full condensation occurs. As time passes and ν(t) diverges, full
condensation is gradually recovered on increasing values of N .

Related to that, the interval \I where the LDP breaks down
has a nontrivial time dependence. We stress again that in this
sector large deviations may occur more easily. To assess \I is
therefore of practical interest in nanoscale applications where
fluctuations play an important role. In the stationary state,
full condensation happens, and this gives \I ≡ {ρ|ρ > 〈ρ〉}.
However, at finite times, since condensation is incomplete,
the LDP is spoiled only in the region given by Eq. (34).
This means that, at any time, for a finite M the LDP is
restored for sufficiently large values of ρ, at variance with
what happens at stationarity. The region (34) expands as time
elapses and ν(t) increases. In this way the violation of the
LDP progressively extends towards the whole sector with
ρ > 〈ρ〉, and the stationary properties of P are recovered.
Equation (34) shows that the size of \I can be tuned not only by
changing t , but also by acting on M . Since t and M enter in the
combination ν(t)/M , this implies that t → ∞ and M → ∞
are noncommuting limits.

The simple probabilistic setup discussed in this paper is
suited to describe at an elementary level the dynamics of
fluctuations in a variety of systems ranging from physics to
chemistry, biology, and the social sciences. It has the advantage
of being amenable to analytic investigation. Some of the
general features displayed here rely only on general aspects of
probability, such as the violation of the LDP. Therefore, they
are expected to be observed with similar characteristics in a
class of problems wider than the one considered in this paper,
e.g., with nonidentically and/or nonindependently distributed
microscopic variables. This makes the issue a rather broad and
general research topic worth of further investigations. Finally,
we remark that collective variables defined differently from
the sum N , e.g., energy or heat fluxes in solvable models of
statistical mechanics, have been shown [31] to display a differ-
ent condensation phenomenon, without violation of the LDP.
The question then arises of how the dynamics of fluctuations in
these systems compares with the case considered in the present
paper. This investigation will be the subject of future work.
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APPENDIX A: COMPUTATIONAL COMPLEXITY OF
EQS. (14) AND (12)

Suppose we want to determine P by means of Eq. (14). Let
us consider the procedure at a certain step when P is known for
a number m − 1 of boxes and the task is to determine it for m

of them. Equation (14) says that, in order to find P (N,m,t), we
must preliminarily know π (n,N,m,t) for any value of n. It is
obvious that in order to find π (n,N,m,t) (for any n) by means
of Eq. (15) the value of P (j,m − 1,t) must be previously
known for any j = 0,1, . . . ,N . This means that at any step
π (n,i,m − 1,t) must be determined through Eq. (15) for any
n = 0,1, . . . ,N and i = 0,1, . . . ,N . This requires (N + 1)2

computations. Once π (n,i,m,t) is known in this way, we can
get P (j,m,t) through Eq. (14) with further (N + 1)2 computa-

tions, since we have to sum up N + 1 terms, and this operation
must be repeated for any j = 0,1, . . . ,N . Then, for any step
(namely, going from m − 1 to m) a number of order 2(N + 1)2

of elementary computations is needed. Since the recurrence
must be repeated up to m = M , a total number 2(N + 1)2M

of such calculations is needed. This must be compared with the
exponentially large number (N + 1)M of operations involved
in the determination of P by using the first line of Eq. (12).

APPENDIX B: PROPERTIES OF πst

For N � 〈N〉 the first line of Eq. (28) necessarily applies,
which shows that not only (n + 1)−k decreases upon increasing
n but also e−MRst (ρ− n

M
) = Pst (N − n,M). Referring to Fig. 1

(lower part), this can be understood as follows: In the first line
of Eq. (28), Pst (x,M) is evaluated for x = N − n. Recalling
that the condition N − n � 〈N〉 applies, this value of x is
located on the left of the maximum of Pst located in x = 〈N〉
(or, at most, on the maximum itself). Consequently, raising n

moves the argument x of Pst (x,M) further and further away on
the left of the maximum (which amounts to descend towards
the left along the green curve of the lower panel of Fig. 1).
This makes Pst (x,M) decrease monotonically. The quantity
e−MRst (ρ− n

M
) in the first line of Eq. (28) behaves similarly. Then

large values of n are associated with a very small probability
πst , and this implies that condensation, namely, a large fraction
of particles in a single box, is probabilistically negligible.

Conversely, for N � 〈N〉 and values of n such that the
lower row of Eq. (28) applies [i.e., for N − n � 〈N〉],
while increasing n the term (n + 1)−k decreases, the factor
(ρ − 〈ρ〉 − n

M
)−k increases. The effect of this is the develop-

ment of a pronounced maximum [30] in πst (n,N,M), as can
be seen in Fig. 1 (upper panel) for N > 〈N〉. There is therefore
a relatively high probability of having a macroscopic, namely,
of order N , number nc of particles condensed in a single box.

Using the second line of Eq. (28) the location of the
maximum is at

n = nc(N ) = 1
2 (N − 〈N〉), (B1)

where e = 1/2 is a constant. Notice that the simple calculation
presented above to determine nc is not exact, since the second
line of Eq. (28) is accurate only for N − n � 〈N〉 while nc

is located outside this range. It can be shown, however, that
the result (B1) is basically correct, since the true behavior,
expressed by Eq. (29), differs only by the value of the prefactor.

APPENDIX C: CREATION OF A FLUCTUATION:
SOLUTION OF THE EQUATION FOR THE EVOLUTION

OF THE p’S

Inserting Eq. (32) into the first line of Eq. (11) one arrives at

ν(t)k−1 dν(t)

dt
xk+1

[
ν dσ

dt

σ dν
dt

f (x)

x
− f ′(x)

]

= −
[(

1 + 1

νx

)−k

+
(

1 − 1

νx

)−k]
f (x)

+
[(

1 + 1

νx

)−k

f

(
x + 1

ν

)
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+
(

1 − 1

νx

)−k

f

(
x − 1

ν

)]
, (C1)

where x = (n + 1)/ν like before, and f ′ = df/dx. Now we

make the ansatz that the quantity
ν dσ

dt

σ dν
dt

vanishes in the long-time

limit. This will be checked for consistency at the end of the cal-
culation. In the same limit, when ν is large, we can expand the
terms (1 ± 1

νx
)−k � 1 ∓ k

νx
+ k(k+1)

2ν2x2 and f (x ± 1
ν
) � f (x) ±

1
ν
f ′(x) + 1

2ν2 f
′′(x) to second order in the small quantity

1/(νx), and retaining the leading terms one obtains

−ν(t)k+1 dν(t)

dt
xk+1f ′(x) = f ′′(x) − 2k

x
f ′(x). (C2)

Regarding Eq. (C2) in the variables x,t , since the right-hand
side does not depend on t one must have, on the left-hand
side, νk+1dν/dt = a, where a > 0 is a constant. Hence

ν(t) = bt
1

k+2 , (C3)

where b = [a(k + 2)]
1

k+2 . Equation (C2) then reads

f ′′(x) +
(

axk+1 − 2k

x

)
f ′(x) = 0, (C4)

which, with the limiting behaviors (31), has the solution

f ′(x) = −cx2ke− a
k+2 xk+2

, (C5)

where c > 0 is a constant. Integrating once again one arrives at

f (x) = �
(− 3

k+2 , axk+2

k+2

)
�

(− 3
k+2

) − u
(
1 + k+2

k2+k−2xk+2
)

x3
e− a

k+2 xk+2
,

(C6)
where �(α) and �(α,y) are the � and the incomplete �-

function, and u = [ (k+2)k+5

a3 ]
1

k+2

3�(− 3
k+2 )

. This form depends on the single

parameter a, which is difficult to determine since our solution
is exact only asymptotically. The quantity σ (t) in Eq. (32) can
be easily obtained from the normalization of the probability as

σ (t) − 1 ∝ ν(t)1−k. (C7)

Finally, from this equation and Eq. (C3) it is easy to verify the

ansatz made after Eq. (C1), namely, that
ν dσ

dt

σ dν
dt

→ 0 for t → ∞.

APPENDIX D: BEHAVIOR OF THE COLLECTIVE
PROBABILITY P

Equation (32) shows that the form of the single-variable
probability p is basically the one at stationarity with a cutoff
at n + 1 � ν(t). We simplify the discussion about the evolution
of P by assuming that such cutoff is sharp. This amounts to
approximate the actual behavior of f given by Eq. (C6) with
the schematic form f (x) = 1 − θ (x − 1). Reparametrizing
time in terms of ν by means of Eq. (33), let us study the left-
hand side, S(z,ν) = zQ′(z,ν)

Q(z,ν) of the saddle-point equation (18),
for arbitrary z. Since now

Q(z,ν) =
ν∑

n=0

pst (n)zn = ζ−1(k)
ν∑

n=0

(n + 1)−kzn, (D1)

one has

S(z,ν) =
∑ν

n=0 n(n + 1)−kzn∑ν
n=0(n + 1)−kzn

. (D2)

Notice that, in the two equations above, the notation should be
specified since n must run up to an integer number, e.g., the
closest to ν. However, this would not change the discussion
below, and we prefer to keep the simple notation of Eqs. (D1)
and (D2). As a function of z, S rises steeply from S(z =
0,ν) = 0 to an asymptotic value (for large z) that can be easily
determined by retaining only the dominant term with n = ν in
the sums defining S in Eq. (D2):

lim
z→∞ S(z,ν) = ν. (D3)

This asymptotic value is assumed for z � zr , where zr can
be evaluated as follows. Let us consider the numerator on the
right-hand side of Eq. (D2). For z � 1, as a function of n, the
terms n(n + 1)−kzn decrease down to a value nr given by the
largest solution of the following equation:

ln z = k

nr + 1
− 1

nr

. (D4)

For n > nr , the argument of the sum in the numerator of
Eq. (D2) very rapidly diverge, because of the term zn. A similar
analysis for the denominator shows that it behaves similarly,
but with a slightly larger value of nr , that we denote by nr,D ,
given by ln z = k

nr,D+1 . Starting from nr = ∞ when z = 1, nr

decreases upon raising z. Notice that, if z is too close to unity,
one has nr > ν, meaning that such value is not contained in
the sums defining S in Eq. (D2). Therefore a critical value zr

exists,

ln zr = k

ν + 1
− 1

ν
, (D5)

such that, for z > zr this term starts to be contained in the
sums in Eq. (D2), and, beyond that value, these sums rapidly
diverge. A similar analysis carried out for the denominator of
Eq. (D2) leads to a value, denoted by zr,D , given by ln zr,D =

k
ν+1 . Since zr < zr,D , S(z,ν) is a very steep function for values
of z close to zr , and then flattens when z also crosses zr,D and
the denominator diverges as well. As Eq. (D5) shows, zr � 1
for large ν, which allows one to expand ln zr around zr = 1
on the left-hand side of Eq. (D5) and to set ν + 1 � ν on the
right-hand side, thus arriving at

zr = 1 + k − 1

ν
. (D6)

This means that when the solution z∗ of Eq. (18) moves the
short distance from z∗ = 1 to the nearby value z∗ = zr given by
Eq. (D6), ρ widely varies from ρ = 〈ρ〉 [according to Eq. (10)]
to a value ρ ∼ ν since, because of Eq. (D3), the left-hand-side
S of the saddle-point equation (18) rapidly converges to this
value as soon as z � zr .

Let us now consider the argument −MR(z,ρ,ν) of the
exponential defining P on the right-hand side of Eq. (12).
Given that the largest contribution to the integral comes from
z � z∗ and, for 〈ρ〉 � ρ � ν, z∗ is close to z∗ = 1, in this range
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of ρ one can write

MR(z,ρ,ν) � −M

[
d ln Q

dz

∣∣∣∣
z=1

(z − 1) − ρ(z − 1)

]
= M(ρ − 〈ρ〉)(z − 1), (D7)

where we have expanded the argument of the exponential in
Eq. (12) to first order in z − 1 and we have used ln Q(1) = 0
[after Eq. (13) and normalization of the probabilities p] and
d ln Q

dz
|
z=1

= 〈ρ〉 [from Eqs. (18) and (10)].
Roughly speaking, for a given value of M , a saddle-point

evaluation of the integral defining P in Eq. (12) is accurate
if the positive quantity of Eq. (D7), as a function of z, has
a pronounced minimum at z = z∗. This in turn means that,
whatever the value of MR at z = z∗ is, it must become much
larger than its value for other choices of z. However, we know
that, in the region ρ � 〈ρ〉 where condensation is possible, z∗
ranges at most up to z∗ = zr . This implies that a saddle-point
solution cannot be invoked if M(ρ − 〈ρ〉)(zr − 1) is not a large
number, namely, if ρ − 〈ρ〉 < [M(z − 1)]−1. Using Eq. (D6),
this means that the steepest descent evaluation breaks down
for all the densities

ρ − 〈ρ〉 � ν

M(k − 1)
(D8)

larger but sufficiently near to the average value. Its validity is
restored only for larger values of ρ (besides, clearly, for small
densities ρ � 〈ρ〉).

APPENDIX E: REGRESSION OF A FLUCTUATION:
SOLUTION OF THE EQUATION FOR THE EVOLUTION

OF THE p’S

Inserting the form (36) into the first line of Eq. (11) and pro-
ceeding like in Appendix C one has the time dependence (33)
of ν and the form (C6) of f (x), whereas for g(x) one arrives
at

g′′(x) + axk+1g′(x) +
[
aαxk − k(k + 1)

x2

]
g(x) = 0, (E1)

where a = νk+1dν/dt > 0 is the same constant introduced
in Appendix C [below Eq. (C2)]. With the boundary condi-
tions (37) the solution is

g(x) = d xk+1 L
2k+1
k+2

− α+k+1
k+2

(
− a

k + 2
xk+2

)
, (E2)

where d is a constant and Lλ
m(z) are the generalized Laguerre

polynomials.
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