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Recent large deviation results have provided general lower bounds for the fluctuations of time-integrated
currents in the steady state of stochastic systems. A corollary are so-called thermodynamic uncertainty relations
connecting precision of estimation to average dissipation. Here we consider this problem but for counting
observables, i.e., trajectory observables which, in contrast to currents, are non-negative and nondecreasing in
time (and possibly symmetric under time reversal). In the steady state, their fluctuations to all orders are bound
from below by a Conway-Maxwell-Poisson distribution dependent only on the averages of the observable and of
the dynamical activity. We show how to obtain the corresponding bounds for first-passage times (times when a
certain value of the counting variable is first reached) and their uncertainty relations. Just like entropy production
does for currents, dynamical activity controls the bounds on fluctuations of counting observables.
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I. INTRODUCTION

In this paper we try to connect three recent developments
in the theory of stochastic systems. The first are general
bounds on the fluctuations of time-integrated currents [1–4].
Obtained by means Level 2.5 [5–7] dynamical large deviation
methods [8–12], these results stipulate general lower bounds
for fluctuations at any order of all empirical currents in the
stationary state of a stochastic process [1–4]. A corollary
are thermodynamic uncertainty relations [13–15] connecting
the estimation error of time-integrated currents to overall
dissipation.

The second development are fluctuation relations for first-
passage times (FPTs) [16–18], similar to those of more
standard observables such as work or entropy production.
From these an uncertainty relation connecting dissipation to
the time needed to determine the direction of time can be
derived [16]. These results indicate a relation between the
fluctuations of observables in dynamics over a fixed time, with
fluctuations in stopping times.

The third development is trajectory ensemble equivalence
[19–22] between ensembles of long trajectories subject to
different constraints. For example, for long times, the ensemble
of trajectories conditioned on a fixed value of a time-integrated
quantity is equivalent to that conditioned only on its av-
erage [19,20] (cf. microcanonical or canonical equivalence
of equilibrium ensembles [23]). Similarly, the ensemble of
trajectories of fixed total time and fluctuating number of
jumps is equivalent to that of fixed number of jumps but
fluctuating time [21,22] (cf. fixed volume and fixed pressure
static ensembles [23]).

The works in Refs. [1–4] and [13–18] focus on trajectory
observables asymmetric under time reversal, such as empirical
currents, which can be positive or negative and can increase
and decrease with time. Here we consider instead trajectory
observables which are always non-negative and strictly non-
decreasing with time. We call these counting observables. An
example is the total number of configuration changes in a
trajectory, or dynamical activity [11,24,25], sometimes also
called “traffic” or “frenesi” [5,26,27]. Here we show that

from the bounds to the rate functions of counting observ-
ables, via trajectory ensemble equivalence, we can derive the
corresponding bounds for arbitrary fluctuations of FPTs.

After introducing the basics of dynamical large deviations,
in Sec. III we show that the rate functions of counting observ-
ables are bounded from above by a Conway-Maxwell-Poisson
distribution (a generalization of the Poisson distribution that
allows for non-Poissonian number fluctuations [28]). The
corresponding bound for the cumulant generating function
was first found in Ref. [2] (called “exponential bound”);
here we rederive it straightforwardly via Level 2.5 large
deviations; cf. [1]. In Sec. IV we consider the large deviations
of FPTs and establish the correspondence between the FTP and
observable generating functions. This allows us, in Sec. V, to
derive a general bound on FPT rate functions from the large
deviations of the observable distributions. From these bounds
FPT uncertainty relations follow. An important observation is
that the bounds on fluctuations of a counting observable and
its FPTs are controlled by the average dynamical activity, in
analogy to the role played by the entropy production in the case
of currents [1,13]. We hope these results will add to the growing
body of work applying large deviation ideas and methods
to the study of dynamics in driven systems [29–41], glasses
[25,42–47], protein folding and signaling networks [48–51],
open quantum systems [52–64], and many other problems in
nonequilibrium [65–72].

II. STOCHASTIC DYNAMICS AND LARGE DEVIATIONS
OF COUNTING OBSERVABLES

We consider systems evolving as continuous time Markov
chains [73], with master equation

∂tPt (x) =
∑

x,y �=x

WyxPt (y) −
∑

x

RxPt (x), (1)

where Pt (x) is the probability being in configuration x at time
t , Wxy the transition rate from x to y, and Rx = ∑

y �=x Wxy the
escape rate from x. In operator form the master equation reads

∂t |Pt 〉 = L|Pt 〉, (2)
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with probability vector |Pt 〉 = ∑
x Pt (x)|x〉, where {|x〉} is an

orthonormal configuration basis. The master operator is

L = W − R =
∑

x,y �=x

Wxy |y〉〈x| −
∑

x

Rx |x〉〈x|, (3)

whereW andR indicate the off-diagonal and diagonal parts of
L, respectively. This dynamics is realized by stochastic trajec-
tories, such as ω = (x0 → xt1 → · · · → xtK ). This trajectory
has K jumps, with the jump between configurations xti−1 and
xti occurring at time ti , with 0 � t1 � · · · tK � t , and no jump
between tK and t . We denote by πt (ω) the probability of ω

within the ensemble of trajectories of total time t .
Properties of the dynamics are encoded in trajectory

observables, i.e., functions of the whole trajectory, A(ω),
which are time additive, that is, on average they increase
linearly with the time extent of trajectories. For this reason
these observables are sometimes also called “time extensive”
(even though for a given trajectory ω the value of A(ω)
may not necessarily always grow linearly in time). Examples
include time-integrated currents or dynamical activities. Time
extensivity of their averages implies that at long times their
probabilities and moment generating functions have large
deviation forms [8–12],

Pt (A) =
∑

ω

δ[A − A(ω)]πt (ω) ≈ e−tϕ(A/t), (4)

Zt (s) =
∑

ω

e−sA(ω)πt (ω) ≈ etθ(s), (5)

where the rate function ϕ(a) and the scaled cumulant generat-
ing function θ (s) are related by a Legendre transform [8–12],

ϕ(a) = − min
s

[θ (s) + s a]. (6)

In what follows we focus on trajectory observables defined
in terms of the jumps in a trajectory,

A(ω) =
∑
xy

αxyQxy(ω), (7)

where Qxy(ω) is the number of jumps from x to y in trajectory
ω. We will assume all αxy � 0. This means that A(ω) is
non-negative and nondecreasing with time. We call A(ω) a
counting observable as it counts the number of certain kinds
of jumps in the trajectory. Furthermore, when αxy = αyx these
observables are symmetric under time reversal, in contrast
to time-integrated currents which are antisymmetric (and
therefore neither necessarily positive nor nondecreasing with
time). An important example of a counting observable is the
total number of jumps or dynamical activity [5,11,24],

K(ω) =
∑
xy

Qxy(ω). (8)

For observables such as Eq. (7) the moment generating
function Eq. (5) can be written as

Zt (s) = 〈−|etLs |x0〉, (9)

where Ls is the tilted operator [8–12],

Ls = Ws − R =
∑

x,y �=x

e−αxysWxy |y〉〈x| − R, (10)

and 〈−| = ∑
x〈x|. The function θ (s) is then given by the

largest eigenvalue of Ls .

III. LEVEL 2.5 AND FLUCTUATION BOUNDS

The computation of large deviation functions as the ones
in Eqs. (4) and (5) for arbitrary observables and dynamics is
difficult in general. There is however one case where the rate
function can be written down explicitly [5–7].

Consider a trajectory ω of total time extent t . Imagine that
in this trajectory the system visits configuration x a number of
times: there is a jump into x at time t

(in)
x,1 and out of it at time

t
(out)
x,1 , another jump into x at t

(in)
x,2 and out of it at t

(out)
x,2 , and so

on. Adding up all these time intervals gives the overall amount
of time Mx(ω) that ω spends in x, or residence time, Mx(ω) =
(t (out)

x,1 − t
(in)
x,1 ) + (t (out)

x,2 − t
(in)
x,2 ) + · · · . Repeating this analysis

for all configurations x, and dividing by t , we can define a
probability vector �m(ω) with components mx(ω) = t−1Mx(ω),
with

∑
x mx(ω) = 1. The vector �m(ω) is called the empirical

measure of trajectory ω, as it provides the estimate that can
be inferred from the states visited during this trajectory to the
true average distribution over configurations of the dynamics.

As mentioned in Sec. II, time extensive observables obey
a LD principle for long times, Eqs. (4)–(6). This goes by
the name of “level 1” of LDs [12]. Given that the entries of
the empirical measure are also time extensive observables it
follows that the whole �m(ω) vector also obeys a LD principle at
long times [8–12], Pt ( �m) = ∑

ω πt (ω)
∏

x δ[mx − mx(ω)] ≈
e−tI ( �m), where I ( �m) is the corresponding LD rate function.
This is known at “level 2” of LDs [8–12].

A trajectory also has transitions between configurations.
We denote by Qxy(ω) the total number of jumps between
configurations x and y in trajectory ω, and we collect them as
the elements of the matrix Q(ω) which contains the number of
jumps between any two configurations in the trajectory. If we
divide by the total trajectory time t we obtain the flux, q(ω) =
t−1 Q(ω), which corresponds to the empirical rates for all the
possible transitions as estimated from the trajectory. As for the
case of the empirical measure, given that the entries of Q(ω)
are time additive, the whole of q(ω) obeys a LD principle at
long times [8–12], Pt (q) = ∑

ω πt (ω)
∏

xy δ[qxy − qxy(ω)] ≈
e−tI (q), with I (q) the corresponding rate function.

Just like for LD at level 1, in general it is difficult to find
explicit forms for the rate functions of either the empirical
measure or the flux. However, the rate function I (q, �m) for the
joint probability of the empirical measure and the flux, where

Pt (q, �m) =
∑

ω

πt (ω)
∏
x

δ[mx − mx(ω)]

×
∏
xy

δ[qxy − qxy(ω)] ≈ e−tI (q, �m), (11)

has an explicit form in the stationary state dynamics of
Eq. (2). This remarkable result is known as “level 2.5” of
large deviations [5–7]. The joint rate function reads

I (q, �m) =
∑
xy

qxy

[
ln

(
qxy

mxWxy

)
− 1

]
+

∑
x

mxRx, (12)
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where �m and q must obey the probability conserving condi-
tions, ∑

x

mx = 1,
∑

y

qxy =
∑

y

qyx. (13)

This rate function is minimized (its minimum value being zero)
when �m and q take the stationary average values

mx = ρx, qxy = ρxWxy, (14)

where ρx is the stationary distribution, L|ρ〉 = 0. The rate
function for a trajectory observable such as Eq. (7) can then
be obtained by contraction [8–12],

ϕ(a) = min
q, �m:a=Tr(α·q)

I (q, �m), (15)

where Tr(α · q) = ∑
xy αxyqxy and a = A/t .

An upper bound for ϕ(a) can be obtained following the
procedure of Ref. [1]. From Eq. (15), any pair of empirical
measure �m and flux q that satisfies Eq. (13) and has a =∑

xy αxyqxy will give an upper bound to ϕ(a). A convenient
and simple choice is

m∗
x = ρx, q∗

xy = a

〈a〉ρxWxy, (16)

where 〈a〉 = ∑
xy αxyρxWxy . We then get, with I∗(a) =

I (q∗, �m∗),

ϕ(a) � I∗(a) = 〈k〉
〈a〉

[
ln

(
a

〈a〉
)

− (a − 〈a〉)
]
, (17)

where 〈k〉 = ∑
xy ρxWxy = ∑

x ρxRx is the average dynami-
cal activity (per unit time). The rate function on the right side
of Eq. (17) is that of a Conway-Maxwell-Poisson (CMP) dis-
tribution [28], a generalization of the Poisson distribution for
a counting variable with non-Poissonian number fluctuations.

From the Legendre transform Eq. (6), the upper bound
Eq. (17) also implies a lower bound for the scaled cumulant
generating function θ (s),

θ (s) � θ∗(s) = 〈k〉
[

exp

(
−s

〈a〉
〈k〉

)
− 1

]
. (18)

The expression on the right is the scaled cumulant generating
function of a CMP distribution. This last result was first derived
in Ref. [2] in a slightly different manner.

Figure 1 illustrates the bounds Eqs. (17) and (18) for
the elementary example of a two-level system. The exact
rate function ϕ(a) and the upper bound I∗(a) have the same
minimum at 〈a〉, but the fluctuations of a are larger than
those given by I∗(a) for all a. The exact cumulant generating
function θ (s) and its lower bound θ∗(s) have the same slope at
s = 0, but θ∗(s) has derivatives which are smaller in magnitude
to all orders that those of θ (s), again indicating that the
CMP approximation provides lower bounds for the size of
fluctuations of a.

As occurs with the analogous bounds on time-integrated
currents [1–4], an immediate consequence of the bounds on
the rate function or cumulant generating function are the
thermodynamic uncertainty relations [13–15]. From Eq. (17)
or Eq. (18) we get a lower bound for the variance of the
observable in terms of its average and the average activity

FIG. 1. Bounds on observable fluctuations for a two-level system.
Transition rates are W10 = γ and W01 = κ . We consider as observable
A the total number of 1 → 0 jumps. In the stationary state 〈a〉 =
〈A〉/t = γ κ/(γ + κ). The average activity per unit time is 〈k〉 =
2〈a〉. Panel (a) shows the rate function ϕ(A/t) [full (black)] for
γ = 5 and κ = 1.25. The rate function is bounded from above
everywhere by a CMP rate function, Eq. (17) [dashed (red)]. We
also show for comparison a Poisson rate function with mean 〈a〉
[dotted (blue)]. Panel (b) shows the corresponding scaled cumulant
generating function θ (s) = 1

2 [
√

(γ − κ)2 + 4γ κe−s − (γ + κ)] [full
(black)]. It is monotonic in s since A � 0, and is bounded from
below, Eq. (18), by θ∗(s) = 2γ κ

γ+κ
(e−s/2 − 1) [dashed (red)]. For the

case κ = γ the bounds become exact in this simple model.

(cf. [2])

var(a) = θ ′′(0)

t
� θ ′′

∗ (0)

t
= 〈a〉2

〈k〉 t
. (19)

This in turn provides an upper bound for precision of
estimation of the observable A in terms of the signal-to-noise
ratio (i.e., inverse of the error),

SNR(A) = 〈A〉√
var(A)

�
√

〈K〉 , (20)

where 〈K〉 = t〈k〉. Just like in the case of integrated currents
[13–15], where there is an unavoidable tradeoff between
precision and dissipation, the uncertainty in the estimation
of a counting observable is bounded generically by the overall
average activity in the process.

IV. LARGE DEVIATIONS OF FIRST-PASSAGE
TIME DISTRIBUTIONS

We consider now the statistics of first-passage times (FPT)
(also called stopping times), the times at which a certain
trajectory observable first reaches a threshold value. This
implies a change of focus from ensembles of trajectories
of total fixed time to ensembles of trajectories of fluc-
tuating overall time [21,74,75]. Recently, distributions of
FPT associated with entropy production have been shown
to obey fluctuation relations [16–18] reminiscent of those
of currentlike observables. This suggests a duality between
observable and FPT statistics, which in turn is connected to the
equivalence between fixed time and fluctuating time trajectory
ensembles; see e.g. [21,22].

We focus on stopping times for counting observables
as defined in Eq. (7). For simplicity we assume that the
coefficients αxy are either zero or 1, so that A(ω) counts a subset
of all possible jumps in a trajectory and takes integer values.
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(These assumptions can be relaxed at the expense of slightly
more involved expressions without changing the essence of
the results.)

Let us consider the structure of trajectories associated with
FPT events for a fixed value A of the observable A(ω). Such a
trajectory will have A jumps for which αxy = 1, occurring
at times 0 � t1 � · · · tA−1 � tA = τ with τ being the FPT
through A(ω) = A. In between these jumps the evolution will
be one where only jumps with αxy = 0 occur. The weight of
this trajectory is related to the amplitude of a matrix product
state [76],

〈y| W̃ e(tA−tA−1)L∞ · · · W̃ e(t2−t1)L∞ W̃ et1L∞ |x〉. (21)

This expression is the weight of all trajectories starting in x and
ending in y, after A jumps that contribute to the observable,
occurring at the specified times ti (i = 1, . . . ,A), and with an
arbitrary number of the other jumps. Here L∞ is the tilted
operator Eq. (10) at s → ∞, so that all transitions associated
to A(ω) are suppressed. The factors etL∞ encode dynamics
which do not contribute to increasing the observable and which
occur between the times ti . The operator

W̃ = L − L∞ (22)

includes all the transitions that increase A(ω) by one unit,
and Eq. (21) has A insertions of W̃ . Integrating Eq. (21) over
intermediate times and summing over the final configuration
formally yields the FPT distribution,

Fx(τ |A) =
∫

0�t1···�τ

〈−| W̃ e(τ−tA−1)L∞ · · · W̃ et1L∞ |x〉.

This expression simplifies via a Laplace transform,

F̂x(μ|A) =
∫ ∞

0
dt e−μτ Fx(τ |A) = 〈−|FA

μ |x〉, (23)

where the transfer operator reads

Fμ = W̃ (μ − L∞)−1. (24)

When A is large, A � 1, the Laplace transformed FTP
distribution has a large deviation form,

F̂x(μ|A) ≈ eAg(μ), (25)

where eg(μ) is the largest eigenvalue ofFμ. Note the similarities
between Eqs. (23)–(25) and Eqs. (5)–(10).

The eigenvalues of Fμ and Ls are directly related. From
Eqs. (10), (22), and (24) we can write

e−sFμ = (Ls − μ)(μ − L∞)−1 + 1. (26)

Consider now a row vector 〈l| which is a left eigenvector both
of Fμ and Ls , with eigenvalue eg(μ) and θ (s), respectively.
Multiplying Eq. (26) by 〈l| and rearranging we get

(e−s+g(μ) − 1)l| = [θ (s) − μ]〈l|(μ − L∞)−1. (27)

We see that for 〈l| to be a simultaneous eigenvector of Fμ and
Ls we need to have g(μ) = s and θ (s) = μ. That is, g is the
functional inverse of θ and vice versa,

θ (s) = g−1(s), g(μ) = θ−1(μ). (28)

For the case where the counting observable is the dynamical
activity, Eq. (8), the analysis above is that of “x-ensemble”

of Ref. [21], i.e., the ensemble of trajectories of fixed total
number of jumps but fluctuating time.

For the general problem of the FPTs for arbitrary counting
observables, Eqs. (23)–(24) coincide with the FPT distri-
butions first obtained in Ref. [17] in a different way. The
derivation in Ref. [17] proceeds in the standard manner used
for example in the proof of FPT distributions for diffusion
processes [73]. It relates the probability of having accumulated
A up to time t , to the probability of reaching A at time τ � t

for the first time followed by no increment in A from τ to t ,

Pt (A|x) =
∑

y

∫ t

0
dτ Pt−τ (0|y)Fxy(τ |A), (29)

where Pt (A|x) is Eq. (4) with the initial condition made
explicit, and Fxy(τ |A) refers to the FPT distribution for time
τ and final configuration y. If we transform from A to s,
cf. Eqs. (4), (5), and (9), we can rewrite Eq. (29) as matrix
elements of

etLs =
∫ t

0
dτ e(t−τ )L∞F̂s(τ ), (30)

where 〈y|F̂s(τ )|x〉 = ∑
A e−sAFxy(τ |A). After a Laplace

transform and rearranging we get

F̂sμ = (μ − L∞)(μ − Ls)
−1. (31)

This last expression is the same as that in Ref. [17] after a
discrete Laplace transform from A to s. We can invert the
A → s transformation as follows. The left-hand side (LHS) of
Eq. (31) is

F̂sμ =
∞∑

A=0

e−sAF̂μ(A), (32)

while the RHS can be rewritten as

(μ − L∞)(μ − Ls)
−1

= [1 − e−sW̃(μ − L∞)−1]−1

=
∞∑

A=0

e−sA[W̃(μ − L∞)−1]A. (33)

Equating Eqs. (32) and (33) term by term we get that

F̂μ(A) = FA
μ , (34)

with Fμ given by Eq. (24), showing that our derivation is
equivalent to that of Ref. [17]. The advantage of expressing
the FPT distribution in terms of its generating function Eq. (24)
as we have done here is that it allows for a direct extraction
of its large deviation function, see Eqs. (25) and (28), giving
access to the full statistics of FPTs in the limit of large A.

V. BOUNDS ON FPT DISTRIBUTIONS

Equations (23)–(28) establish a connection between the
statistics of a counting observable, at fixed overall time, and
the statistics of the FPT for a fixed value of said observable.
This connection is due to the equivalence [21,22] between the
ensemble of trajectories of fixed time, but where the observable
is allowed to fluctuate (in a manner controlled by the field
s conjugate to the observable), with the ensemble of fixed
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FIG. 2. Bounds on first-passage time fluctuations for the two-
level system of Fig. 1. The FPT τ is defined as the time when a total
A of up or down jumps 1 → 0 is reached. In the stationary state
〈τ 〉 = A/〈a〉 = A(γ + κ)/(γ κ). Panel (a) shows the rate function
φ(τ/A) [full (black)] for γ = 5 and κ = 1.25, and assuming the initial
state is zero. The rate function is bounded from above everywhere by
φ∗(τ/A), Eq. (37) [dashed (red)]. We also show for comparison the
FPT rate function of a Poisson process with the same mean [dotted
(blue)]. Panel (b) shows the FPT scaled cumulant generating function
g(μ) = ln(γ κ) − ln[(γ + μ)(κ + μ)] [full (black)]. It is bounded
from below, Eq. (35), by g∗(μ) [dashed (red)].

observable but where the time extension of trajectories is
allowed to fluctuate (in a manner controlled by the field μ

conjugate to time). This equivalence holds in the limit of large
observable or time, where the relation between the controlling
fields is given by Eq. (28). We can now use the results of
Sec. III on bounds on observable fluctuations to infer the
corresponding bounds on FPT fluctuations.

The bound Eq. (18) on the cumulant generating function
of A provides a lower bound to the FPT scaled cumulant
generating function g(μ) through Eq. (28). Inverting θ∗ in
Eq. (18) we get

g(μ) � g∗(μ) = −〈k〉
〈a〉 ln

(
μ

〈k〉 + 1

)
. (35)

For large A the FPT distribution also has a large deviation
form,

F (τ |A) ≈ e−Aφ(τ/A), (36)

where φ(τ/A) is obtained from g(μ) by a Legendre transform
similar to Eq. (6). From Eq. (35) we then obtain an upper
bound for the FPT rate function,

φ(τ/A) � φ∗(τ/A)

= −〈k〉
〈a〉

[
ln

(
τ 〈a〉
A

)
−

(
τ 〈a〉
A

− 1

)]
. (37)

Figure 2 illustrates the upper bound of the FPT rate function,
Eq. (37), and the lower bound of the FPT cumulant generating
function, Eq. (35), for the same two-level model of Fig. 1.

The bound function φ∗(τ/A) has its minimum at the exact
value of the average FPT,

〈τ 〉A = A

〈a〉 , (38)

where 〈·〉A indicates average in the FPT ensemble of fixed A.
That the average FPT is given by the inverse of the observable
per unit time follows immediately from Eq. (28). The second

derivative of φ∗(τ/A) at its minimum provides a lower bound
for the variance of the FPT. From Eq. (37), or alternatively
Eq. (35), we get

var(τ )

A
= g′′(0) � g′′

∗ (0) = 1

〈a〉〈k〉 . (39)

This in turn gives a bound on the precision with which one can
estimate the FPT,

SNR(τ ) = 〈τ 〉A√
var(τ )

�
√

〈KA〉, (40)

where 〈KA〉 = 〈τ 〉A〈k〉. As for case of the uncertainty for the
observable, Eq. (20), the precision of estimation of the FPT is
limited by the total average activity, in this case for trajectories
of length t = 〈τ 〉A.

VI. CONCLUSIONS

We have discussed general bounds on fluctuations of
counting observables, hopefully complementing the more
detailed recent results on current fluctuations [1–4]. While
empirical currents are the natural trajectory observables to
consider in driven problems [1–5,29,30,33,35,36,40], counting
observables such as the dynamical activity are central quanti-
ties for systems with complex equilibrium dynamics, such as
glass formers [24,25,42,43,46]. (And even for driven systems
it is revealing to study the dynamical phase behavior in terms of
both empirical currents and activities; see e.g. [33,36,40,45].)

The bounds are a straightforward consequence of the
Level 2.5 large deviation [5–7] description, Eq. (12), which
provides an explicit (and useful) minimization principle for
rate functions. But as remarked in [4], these bounds may be
more or less descriptive depending on whether they are tight
or loose, which in turn depends on how good the variational
ansatz is. As observed in [2], the ansatz Eq. (16) is akin to a
mean-field approximation that homogenizes the connections
between states. For any counting observable which is a subset
of the overall activity the rate function is bound by a CMP
distribution with sub-Poissonian number fluctuations; see
Eqs. (17) and (18). For the elementary example of Fig. 1 the
bound is tight, but more complex problems of interest often
display large (that is, super-Poissonian) number fluctuations
[24,42,43,46,48,53].

For a simple illustration of this consider Fig. 3 which shows
the rate functions for an observable and its FPT in a three-level
system. The observable is the number of jumps between
states zero and 1—see Fig. 3(a) for the level scheme—and
under the conditions of the figure the dynamics is intermittent
and correlated in time. The CMP curves give the bounds to
the rate functions, as described in the previous sections. In
contrast to Figs. 1 and 2 the bounds are not tight. Figures 1
and 2 also showed the corresponding Poisson rate functions,
and due to the particular nature of the two-level system, they
appear to lower bound the true rate functions. But this is not
the case in general, as Fig. 3 shows. It would be interesting
to find alternative yet simple variational ansatzes that can
capture such strong fluctuation behavior. Nevertheless, there
are still important consequences that follow even from these
simple bounds. An immediate one is that the dynamical
activity cannot be sub-Poissonian, which in turn implies an
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FIG. 3. Bounds on rate functions for a three-level system. Tran-
sition rates are W10 = W01 = γ and W02 = W20 = κ . We consider as
observable A the total number of 1 → 0 jumps. Panel (a) shows the
rate function ϕ(A/t) [full (black)] for γ = 1 and κ = 0.5. The rate
function is bounded from above everywhere by a CMP rate function,
Eq. (17) [dashed (red)]. We also show for comparison a Poisson rate
function with mean 〈a〉 [dotted (blue)]. Panel (b) shows the FPT rate
function φ(τ/A) [full (black)]. The rate function is bounded from
above everywhere by φ∗(τ/A), Eq. (37) [dashed (red)]. The CMP
bounds are not tight, due to the intermittent nature of the dynamics
(i.e., events are correlated in time, or “bunched”) making the event
statistics super-Poissonian.

exponential in time complexity for the efficient sampling of
trajectories conditioned on it; cf. [36].

We have also shown how to obtain related general bounds
on the distributions of first-passage times. Again this com-
plements for counting observables, and generalizes, recent

results on FPTs for currentlike quantities [16–18]. We did this
by exploiting the correspondence between the large deviation
functions of observables and those of FPTs, Eqs. (25)–(28).
Note that this correspondence works for observables which are
nondecreasing in time. For these, the zero increment probabil-
ity Pt (0|y), Eq. (29), is directly related to the tilted operator
L∞, leading to the ensemble correspondence, Eqs. (25)–(28).
For currents, however, a zero observable does not imply the
absence of jumps that contribute to the observable (only that
their contribution adds up to zero), and the correspondence
breaks down (or at least we have not been able to relate the
corresponding cumulant generating functions in that case).
Just like in the case of activities, the FPTs are bounded by the
distribution of times of a CMP process, Eqs. (35) and (37), as
illustrated in Fig. 2.

As occurs for currents [13–15], the bounds to rate functions
give rise to thermodynamic uncertainty relations constraining
the precision of estimation of both observables and FPTs,
Eqs. (20) and (40). For empirical currents, which are time-
asymmetric, precision is limited by the average entropy
produced [13–15]. In turn, for counting observables and their
FPTs, the corresponding limit is set by the average dynamical
activity, suggesting that this quantity might play as important
a role in the dynamics as the overall dissipation.
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Phys. Rev. Lett. 115, 250602 (2015).

[17] K. Saito and A. Dhar, EPL 114, 50004 (2016).
[18] I. Neri, E. Roldan, and F. Julicher, Phys. Rev. X 7, 011019

(2017).
[19] R. Chetrite and H. Touchette, Phys. Rev. Lett. 111, 120601

(2013).
[20] R. Chetrite and H. Touchette, Ann. Henri Poincaré 16, 2005
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