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Dynamical stationarity as a result of sustained random growth
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In sustained growth with random dynamics stationary distributions can exist without detailed balance. This
suggests thermodynamical behavior in fast-growing complex systems. In order to model such phenomena we
apply both a discrete and a continuous master equation. The derivation of elementary rates from known stationary
distributions is a generalization of the fluctuation-dissipation theorem. Entropic distance evolution is given for
such systems. We reconstruct distributions obtained for growing networks, particle production, scientific citations,
and income distribution.
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I. INTRODUCTION

Statistical physics methods are applied to problems related
to complex system evolution in an increasing manner. While
these are powerful enough to describe essential properties of
statistical data and their distributions, the meaning of parame-
ters behind such distributions can be understood more deeply
if derived from dynamical models. Following the principle of
Occam’s razor (among competing hypotheses, the one with
the fewest assumptions should be selected), simple rules for
the dynamics are welcome.

The dynamics of many complex systems can be studied
by using a simple master-equation approach [1–4]. Besides
physics, such studies are also popular in network science
[5–9], biology [10], economics [11], chemistry [12], epidemics
[13,14], scientometrics [15,16], and sociology [17]. Generally,
such dynamical processes tend to a stationary state with an
invariant limiting distribution [18].

In the master equation approach to the evolution of general
probability distributions, we know several statements for
systems satisfying the detailed balance condition in their
stationary state [19], but much less is known for fast-growing
complex systems without detailed balance. In particular, if the
microprocesses are not reversible, the entropy growth and the
global stability of stationary solutions are not guaranteed even
for generalized entropies. Such cases occur in open systems.

In this paper we investigate a promising subset of unbal-
anced master equations leading to stationary distributions.
Such an approach can be applied to understand several
complex phenomena. We refer to application examples for
emerging particle distributions in high-energy accelerator
experiments to income distributions following from redistri-
bution and taxation strategies to scientific citation dynamics
and to evolution of growing complex networks.

We focus on dynamics where in an elementary step only
growth transitions are allowed from a state with n quanta to a
state with (n + 1) quanta. A first master equation for such a
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process writes as

dNn(t)

dt
= μn−1Nn−1(t) − μnNn(t), (1)

where Nn(t) denotes the number of elements with n quanta
at time moment t and μn is the time-independent transition
rate from a state with n quanta to a state with n + 1 quanta.
Such a process alone will not lead to any nontrivial stationary
distribution. One can easily realize this by adding up the
equations (1) from n = 1 to ∞:

∞∑
n=1

dNn

dt
= μ0N0. (2)

The total number of elements in the system is

N (t) =
∞∑

n=0

Nn(t) = N0(t) +
∞∑

n=1

Nn(t). (3)

For a constant number of elements, dN/dt = 0 and Eq. (2)
leads to an exponential relaxations of N0 to 0:

dN0

dt
= dN

dt
− μ0N0 = −μ0N0. (4)

This recursively will lead to an exponential relaxation to 0 for
all Nn numbers.

In order to get a final stationary distribution, one must
complement this process with a finite chance for “resetting”
the state with n quanta to the state 0 or to consider a constant
dilution of the system by increasing the total number of
elements, N . We illustrate such processes by the dynamics
sketched in Fig. 1(a).

The master equation is now written as

dNn(t)

dt
= μn−1Nn−1(t) − μnNn(t) − βnNn(t), (5)

where βn is the rate of resetting a state with n quanta (naturally,
β0 = 0). Repeating our previous arguments we get:

dN0

dt
= dN

dt
+

∞∑
n=1

βnNn − μ0N0. (6)
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FIG. 1. Schematic illustration for the growth process in the
Nn number dynamics (a) and in the corresponding probability
dynamics (b).

The total number of elements in the system, N , may increase
or not, and in general a nontrivial stationary distribution might
emerge.

Turning now, instead of Nn(t), to the probability that a
state has n quanta, Pn(t) = Nn(t)/N(t), we replace Nn(t) =
N (t)Pn(t) into Eq. (5) to obtain:

N
dPn

dt
+ Pn

dN

dt
= μn−1NPn−1 − (μn + βn)NPn. (7)

Dividing this by N and rearranging, one obtains the master
equation:

dPn/dt = μn−1Pn−1 −
(

μn + βn + 1

N

dN

dt

)
Pn. (8)

Assuming now a Hubble-like exponential expansion of the
system (true for many complex system) dN/dt = αN , the
master equation of the process writes with time-independent
rates

dPn

dt
= μn−1Pn−1 − (μn + γn)Pn, (9)

where γn = βn + α. The dynamics in Pn(t) is illustrated in
Fig. 1(b).

Possible physical interpretations of the rate γn are various.
For citation of publications (and for other similar popularity
measures) Nn(t) is the number of publications cited n times
in a given period of time, t , while N (t) is the total number of
publications. Observations indicate an exponential growth in
the total number of papers [20]. Pn(t) in this case stands for
the fraction of publications among all which were cited exactly
n times.

In gambling games and financial market models the
dependence of the growth rate μn on the already-achieved state
can expresses a “rich gets richer” preference. Concurrently, βn

describes the probability rate to lose everything in a single
step (characteristic to Black Fridays and similarly rare total
resetting events). On the evolution time scale of life on Earth,
massive extinctions can also lead to a constant rate β.

In high-energy physics a quark-gluon plasma blob can
transform from containing the energy for n hadrons to n + 1
with the rate μn, while it remelts all hadrons with the rate βn.

Finally, in complex networks n is the number of connections
of a node and Pn(t) is the degree distribution. The rate of

FIG. 2. Schematic view of master equations for balanced (a) and
sustained random growth (b) processes. In the balanced growth we
denoted by λn the reverse rates.

acquiring a new connection while already having n is μn,
while the probability to become isolated by some technical
misfortune or directed attack on the network is βn. In such
applications the number of nodes can also increase in an
exponential manner with a rate α.

In our framework, the stationary distribution, Qn, is deter-
mined by two microscopic rates: μn describes the transition
rate from a state with n quanta to n + 1 inside a chain of states,
while γn describes a loss rate for the state n towards zero
via an unspecified accident and/or an exponential dilution.
We assume that there is no n to n − 1 process, so the
transition dynamics is unidirectional. Already for constant and
linearly n-dependent rates a rich structure of possible solutions
emerges.

Since there is no reverse process inside the chain of states,
a detailed balance condition cannot be fulfilled. We illustrate
the difference between the classical scheme allowing detailed
balance and the presently discussed one-sided growth picture
with the flow diagrams on Fig. 2.

State-dependent loss rates, γn �= 0, open the door to non-
trivial stationary distributions. Usually models are constructed
with assumed transition rates μn and γn and the stationary
(limiting) distribution, Qn, is derived. However, the reverse
problem is also interesting: By observing a distribution, Qn,
and knowing the interaction rate with the environment, γn,
one wishes to reconstruct the internal dynamics of the system
governed by the rates, μn.

We present both a master equation approach over discrete
states labeled by n and its continuous limit. Finally, the stability
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of stationary distributions obtained from given transition rates
is investigated in terms of a generalized entropic distance.

II. MASTER AND FLOW EQUATION FRAMEWORK

Now we turn to the definition of the underlying mathemat-
ical formalism. We consider linear and first-order time evo-
lution equations for the distribution, Pn(t), and its continous
version, P (x,t). The corresponding stationary distributions,
Qn and Q(x), respectively, shall be determined by the same
equations with vanishing time derivative. Beyond finding out
what stationary distributions, i.e., results of the long-term
evolution, belong to given rates μn,γn [or μ(x), γ (x)], one
is interested in the whole process starting from arbitrary initial
distributions as well as in the stability and basin of attraction
for the final distribution.

A. Discrete state space master equation

The sustained growth master equation hereafter is given as
depicted in the lower part of Fig. 2, repeating Eq. (9):

Ṗn = μn−1Pn−1 − (μn + γn)Pn (10)

for n � 1. The corresponding equation for the n = 0 term can
be obtained from the normalization condition

∑∞
n=0 Pn(t) = 1:

Ṗ0 = 〈γ 〉P − (μ0 + γ0)P0. (11)

Here we used the abbreviation 〈γ 〉P = ∑∞
n=0 γnPn. This

system allows for stationary solutions satisfying:

μn−1Qn−1 = (μn + γn)Qn (12)

for n � 1 and Q0 = 〈γ 〉Q/(μ0 + γ0). Equations (10) and (11)
constitute a specific realization of a general, continuous-time
Markov process:

Ṗn =
∑
m

(wn←mPm − wm←nPn) (13)

with

wn←m = μmδm,n−1 + γmδn,0. (14)

The inflow and outflow in each patch in Fig. 2 balance each
other in the stationary state. This also offers a strategy to
reconstruct the link connection probability rate to a link with
already m connections or to increase a conveniently discretized
income from m to m + 1, μm, by observing the stationary
distribution, Qn, and the loss rate, γn. We simply sum up
Eq. (12) from n = m + 1 to infinity and obtain

μm = 1

Qm

∞∑
n=m+1

γn Qn. (15)

This relation is like the fluctuation-dissipation theorem, in
particular when the stationary distribution is exponential,
Qn = e−βn/Z = (1 − q)qn, and the loss rate due to environ-
mental effects is constant γn = γ . In this case Eq. (15) delivers
a constant inner-chain rate that is similar to the quantum Kubo
formula:

μexp
m = γ

q

1 − q
= γ

1

eβ − 1
. (16)

The general solution of the recursion represented by Eq. (12)
is given as a ratio of n-fold products,

Qn = Q0

∏n−1
i=0 μi∏n

j=1(μj + γj )
. (17)

Q0 can either be obtained from the normalization condition∑∞
n=0Qn = 1 or by applying Eq. (11) with Q̇0 = 0. It is not

trivial that these are equivalent procedures: The product form
(17) and the definition of the expectation value delivers

Q0 = 〈γ 〉Q
μ0 + γ0

= Q0

∞∑
n=0

γn

μn

n∏
i=0

μi

μi + γi

. (18)

Consistency can easily be reformulated in terms of the basic
ratios, ri = γi/μi , after dividing both sides with Q0 �= 0:

1 =
∞∑

n=0

rn

n∏
i=0

1

1 + ri

. (19)

It is at the first glance surprising, but true, that this identity
is fulfilled for any infinite series of ri �= −1 ratios. A short
mathematical proof is given in the Appendix.

B. Continuum approach

It is instructive to obtain the above equations in a continuous
version. We set up the following Markovian framework:

∂

∂t
P (x,t) =

∫
[w(x,y)P (y,t) − w(y,x)P (x,t)] dy (20)

with

w(x,y) = 1

�x
μ(y) δ(y − x + �x) + γ (y) δ(x). (21)

Next we take the �x → 0 limit leading to

∂

∂t
P (x,t) = − ∂

∂x
(μ(x)P (x,t)) − γ (x)P (x,t) + 〈γ 〉P δ(x).

(22)

Please note that this is an integrodifferential equation contain-
ing

〈γ 〉P =
∫

γ (y)P (y,t) dy − μ(0)P (0,t). (23)

Equation (22) describes a flow with general velocity field,
μ(x), a loss rate, γ (x), and a feeding at x = 0. From now on
we restrict the discussion to x > 0, and all effects stemming
from the singular term 〈γ 〉P δ(x) are treated by enforcing the
normalization condition.

The large-N limit in the familiar approach suppresses the
diffusion term by 1/N and leaves one with a conserved flow
equation [10]. It is equivalent with Eq. (22) for γ (x) ≡ 0.

The stationary distribution in the continuous model satisfies

d

dx
(μ(x)Q(x)) = −γ (x) Q(x), (24)

revealing the solution

Q(x) = K

μ(x)
e
− ∫

γ (x)
μ(x) dx

. (25)
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The constant, K , is specified by the normalization∫ ∞
0 Q(x)dx = 1.

We note that this form can also directly be obtained from the
discrete solution, Eq. (17), when it is written in the alternative
form

Qn = Q0
μ0

μn

e
− ∑n

j=1 ln(1+ γj

μj
)
. (26)

The approximation, γj/μj = γ (x)�x/μ(x) 	 1, defines the
continuous limit and one arrives at

Qn ≈ Q0
μ0

μn

e
− ∑n

j=1
γ (j�x)
μ(j�x) �x

, (27)

to an obvious analog of Eq. (25) with K = μ(0)Q(0)�x.
Here it is obvious that γn and μn must scale differently in
the continuum limit.

The inner-chain growth rate, μ(x), can be reconstructed
from the known stationary distribution, Q(x), and loss rate,
γ (x):

μ(x) = 1

Q(x)

∫ ∞

x

γ (u)Q(u) du. (28)

The validity of this formula is tested by applying a derivation
with respect to x and Eq. (24). For the exponential distribution,
Q(x) ∼ e−x/T , and constant γ (x) = γ we obtain the analog
of the classical Kubo formula cf. Eq. (16),

μexp(x) = γ T . (29)

The temperature-like parameter in the exponential distribution,
T , becomes a factor between two elementary rates γ and μ.
In a physical picture γ describes dissipation due to drastic
resettings from x to zero, μ(x) random advances towards larger
x values.

III. PARTICULAR RATES AND DISTRIBUTIONS

In the followings we discuss the simplest choices for the
involved rates. First we keep the loss rate a positive constant,
γn = γ > 0, and vary the growth rate, μn. This is relevant
for a wide class of distributions considered in statistics. For a
constant μj = σ we obtain the geometrical distribution,

Qn = γ

σ
(1 + γ /σ )−1−n, (30)

or Qn = (1 − q)qn, with q = σ/(σ + γ ). This is also called
the exponential, or Boltzmann-Gibbs, distribution in the form
Qn = e−βn/Z with Z = 1 + σ/γ and β = ln(1 + γ /σ ) > 0.

For fast-growing systems, like networks, citations, or
energetic hadronization, the most prevalent is the next sim-
plest case, μj = σ (j + b), describing a growth rate with
thresholded linear preference. Often b = 1 is taken when
investigating the evolution of aggregates [21]. Equation (17)
delivers

Qn = γ

σb + γ

(b)n
(b + 1 + γ /σ )n

(31)

with the Pochhammer symbol:

(b)n = b(b + 1) · · · (b + n − 1) = 
(b + n)


(b)
. (32)

The Waring distribution [22–24] in Eq. (31) has a power-law
tail for large n,

lim
n→∞ Qn ∝ n−1−γ /σ . (33)

This limit is based on the leading-order behavior of Gamma
functions for large arguments:

lim
n→∞ nb−a 
(n + a)


(n + b)
= 1. (34)

Our result Eq. (31) coincides with Eq. (7) in Ref. [21] at
b = 1. The asymptotic power is steeper than −1 for positive
rate factors γ and σ , but it can be anything, depending on the
ratio of the universal driving rate γ and the preference scale of
the individual growth rates, σ = μn − μn−1. For γ → 0+ the
stationary distribution tail (33) leads to Zipf’s law [25].

Now we analyze these particular growth rates by a constant
loss rate, γ (x) = γ , in the continuous model. We expect the
same asymptotic behavior for the tail of the distribution. For
a constant growth rate, μ(x) = σ , the stationary probability
density function (PDF) becomes again the exponential distri-
bution,

Q(x) = γ

σ
e−(γ /σ ) x. (35)

This is the γ 	 σ limit of the result in the discrete case,
Eq. (30). For a linearly preferential rate, μ(x) = σ (x + b),
we obtain a cut power law in the form of the Tsallis-Pareto
distribution [25–29],

Q(x) = γ

bσ

(
1 + x

b

)−1−γ /σ

. (36)

Beyond these reassuring results a further question arises: What
is the stationary distribution for weaker or stronger than linear
preferences in the attachment probability rate [30,31]? By
assuming a general power, μ(x) = σ (x + b)a , one obtains the
stretched exponential distribution,

Q(x) = γ

σ (x + b)a
e−α(x+b)1−a

(37)

for a < 1 with α = γ /[σ (1 − a)]. For a > 1 it delivers a
Q(x) ∼ γ /μ(x) tail. Equation (37) represents also a three-
parameter Weibull distribution, with a = 1 − k, b = −θ , and
γ /σ = kλ−k [32]. On the other hand, for an exponential
preference rate, μ(x) = σeαx , one obtains the Gompertz
distribution [33]:

Q(x) = γ /σ

1 − e−γ /σα
e−αx e− γ

ασ
(1−e−αx ). (38)

We note by passing that the particular form for the stationary
distribution, Q(x) in Eq. (25) with constant γ , is term by term
compatible with the usual notions used in survival analysis in
demography, finance and insurance statistics [34]: The PDF
has in this case the form

Q(x) = h(x) e−H (x) (39)

with h(x) being the hazard rate and H (x) = ∫ x

0 h(t)dt the
cumulative hazard. The factor R(x) = e−H (x) is called survival
rate. The growth rate inside the chain is simply related to
the hazard rate: μ(x) = γ /h(x). This is again a special case
for the fluctuation-dissipation correspondence summarized in
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Eq. (28). The same relation has been called the truncated
expectation value theorem in Refs. [35,36]. A similar result has
been derived by generalizing the thermodynamical fluctuation-
dissipation relation between the diffusion and damping coef-
ficients for a general Fokker-Planck equation stemming from
a particularly colored, i.e., energy-dependent, multiplicative
noise Langevin equation [37,38] and Eq. (5.46) in Ref. [39].

Finally, we mention two important examples, frequently
encountered in complex system applications, which do not fit
into the above scheme. We consider loss rates, γn, which can be
negative for some low n. Such a mechanism has been suggested
in Ref. [40] for describing the multiplicity distribution of
hadrons in high-energy collision events. The linear rates

γn = σ (n − kf ), μn = σf (n + k) (40)

will lead to a negative binomial stationary distribution:

Qn = Q0
(f σ )n

∏n−1
i=0 (j + k)

[σ (1 + f )]n
∏n

i=1 i

=
(

n + k − 1

n

)
f n(1 + f )−n−k. (41)

We note that in this case 〈γ 〉Q = 0. In order to achieve a
normalized stationary distribution, obviously γn + μn > 0 for
all n.

A similar arrangement of the rates in the continuous model,

γ (x) = σ (ax − c), μ(x) = σx, (42)

leads to the two-parameter gamma distribution,

Q(x) = K

σx
e− ∫

(a−c/x) dx = ac


(c)
xc−1 e−ax. (43)

This stationary distribution emerges as a result of a pure
(unthresholded) linear preference in the growth rate and a
linear, but not overall positive, loss rate to the environment.
The negative values of γ (x) actually mean a feeding from the
environment (Fig. 3).

Such a gamma distribution fits income data very well
[41]. We risk the conclusion that in the background of such
processes, beyond the linear prefrence rate, μ(x) = σx (often
cited as the Matthias principle in market economies), a taxation
and a social welfare redistribution system acts.

Finally, the question about the rapidness of establishing a
stationary distribution in various systems arises naturally. The
characteristic approach from an arbitrary Pn(0) distribution
towards Qn in the simplest cases contains an exponential factor
e−γ t for a state-independent reset rate γn = γ . In general,
however, it is a lengthy calculation to solve for the time-
dependent Pn(t). The introduction of ξ (x,t) = P (x,t)/Q(x)
in the continuous model approach is somewhat simpler,
delivering a flow picture on this ratio:

∂ξ

∂t
+ μ(x)

∂ξ

∂x
= 0. (44)

Its solution is soliton-like, diminishing the deviation from
Q(x) in a manner depending on μ(x). For constant μ(x) = σ ,
one obtains ξ (x,t) = ξ (x − μt,0), and for a linear thresh-
olded preference rate, μ(x) = σ (x + b), the solution becomes
ξ (x,t) = ξ (z,0) with z = xe−σ t − b(1 − e−σ t ). We save fur-
ther details on this for a future work.

FIG. 3. Schematic illustration of the linear rates leading to the
gamma distribution: At x below the average the environment feeds
the chain, above it detracts from the system. Since 〈γ 〉Q = 0, there is
no extra feed at the beginning of the chain.

IV. EVOLUTION OF ENTROPIC DISTANCE

The entropy-probability connection is also interpreted
as a measure of a distance to the minimal information
state. The well-known Boltzmann-Gibbs-Shannon formula
is a special instance of the more general entropic distance,
ρ(P,�), between two distributions. For such generalized
entropic distances, the following requirement should hold:
ρ(P,�) � 0 and reaches zero only for identical distributions
[ρ(P,P ) = 0 and ρ(P,�) > 0 for P �= �]. We consider in this
paper univariate distributions, Pn, �n indexed with a natural
number, n, and normalized as

∑∞
n=0Pn = 1 and

∑∞
n=0�n = 1,

respectively.
By considering random dynamics in fast-growing complex

systems, dominantly unidirectional changes in the quantity
n are considered. The general question arises whether there
exists a quantity, possibly expressed as an expectation value
of a function of the respective probability values at the same
state indexed by n, which changes only in one direction during
the dynamical evolution. In particular, the entropic distance
to a stationary distribution, Qn, from any starting distribution,
Pn = Pn(0), should decrease during such an evolution:

d

dt
ρ(P,Q) � 0. (45)

A trace form for the entropic distance from a nonconstant
stationary Qn is given by

ρ(P,Q) =
∞∑

n=0

s(Pn,Qn) Qn. (46)

It is very common to deal with entropic distances defined via a
function of the ratio of the respective probabilities only, s(ξn)
with ξn = Pn/Qn. Then, from the property of zero distance
from itself one concludes that s(1) = 0, and differs from zero
if there is an index n such that ξn �= 1.
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The change of the entropic distance is governed by its
definition and the evolution equation for the distribution. The
entropic distance of an actual, time-dependent distribution,
Pn(t), to the stationary distribution, Qn, has the trace form
[42]:

ρ =
∑

n

s(ξn)Qn. (47)

For all concave s(ξ ) functions, the following Jensen inequality
applies:

ρ � s

(∑
n

ξnQn

)
= s

(∑
n

Pn

)
= s(1) = 0. (48)

The time derivative of this entropic distance is given by

ρ̇ =
∑

n

s′(ξn)ξ̇nQn =
∑

n

s′(ξn)Ṗn. (49)

Now we utilize Eq. (13) and obtain

ρ̇ =
∑
n,m

s′(ξn) [wn←mQmξm − wn←mQnξn]. (50)

As a first step, we write ξm = ξn + (ξm − ξn) and use the
property

0 =
∑
m

[wn←mQm − wm←nQn] (51)

for the stationary state. The above formula transforms to

ρ̇ =
∑
n,m

s′(ξn) (ξm − ξn)wn←mQm. (52)

In the second step, we use the remainder theorem for Taylor
series in its Lagrange form:

s(ξm) = s(ξn) + (ξm − ξn)s′(ξn) + 1
2 (ξm − ξn)2s′′(cnm) (53)

with the internal point cnm lying between ξn and ξm. Expressing
the first-order term in Eq. (53), Eq. (52) becomes

ρ̇ =
∑
m,n

[s(ξm) − s(ξn)]wn←mQm

− 1

2

∑
n,m

(ξm − ξn)2s′′(cnm) wn←mQm. (54)

Here the first sum on the right-hand side vanishes due to
the stationarity (51). This can be seen by exchanging the
summation indices m and n in the first part, leading to∑

n

s(ξn)
∑
m

[wm←nQn − wn←mQm] = 0. (55)

For positive transition rates, wn←m > 0, the remainder term is
always negative for concave, s′′(ξ ) > 0 functions.

In the special case of the avalanche dynamics with loss,
wn←m = μmδm,n−1 + γmδn,0, we obtain

ρ̇ = −1

2

∑
n

(ξn − ξn−1)2s′′(cn,n−1)μn−1Qn−1

− 1

2

∑
n

(ξn − ξ0)2s′′(cn,0)γnQn. (56)

For positive rates γn and μn therefore ρ̇ < 0 unless the
stationary state is achieved where ξn = 1 for all n.

Finally, let us briefly discuss cases when some γn can be
negative. We encountered this for processes leading to negative
binomial or gamma distributions. The remainder result (56) in
such a case does not guarantee a steady approach towards
the stationary distribution in terms of a general entropic
distance. Henceforth further investigations are necessary also
with respect to nonequilibrium thermodynamics [43].

V. CONCLUSION

In the present work we have proposed a unified mathe-
matical framework based on a master equation approach to
complex systems governed by random dynamics. In particular,
we have focused on transition rates which do not lead to a
detailed balance. A wide variety of stationary distributions
known from complex network research, particle physics,
scientometrics, econophysics, biology, and demography are
successfully reproduced.

This view is able to clarify why only the linear preference
rate leads to a power-law tailed degree distribution in random
networks as well as to a Pareto-type distribution of wealth
when the preference expressed by “the rich gets richer”
principle is linear. Similarly, the distribution of scientific
citations, known to be power-law tailed, has been explained
earlier on the basis of such an evolution equation [15]. The
exponential (geometrical) distribution is obtained for constant
rates and the power-law tailed Waring (in the continuum limit
Tsallis-Pareto) distribution for a linear pereference growth
rate. The method outlined in this paper is able to deliver
further well-known and frequently used distributions, such
as the Weibull or the Gompertz distribution or the stretched
exponential.

Beyond the above-mentioned practical application possi-
bilities, we have established connections to the fundamental
fluctuation-dissipation relation central in statistical physics. In
the simplified version with a constant loss rate, γn = γ , the
stationary PDF, Q(x), are proved to be related to quantities
familiar from general statistics: The necessary growth rate
is reciprocal to the hazard rate, μ(x) = γ /h(x). The corre-
spondence between this hazard rate and the cumulated hazard
was generalized to a “fluctuation-dissipation”-type relation
between the growth rate, μ(x), and the loss rate, γ (x), in
Eq. (28). A similar general relation was derived for the discrete
version in Eq. (15). The specific case m = 0 gives the key to
reconstruct the first attachment rate μ0 from observing Qn and
measuring 〈γ 〉Q: μ0 = 〈γ 〉Q/Q0 − γ0.

Finally, while seeking answer to the question regarding
which entropy formula could be the optimal one for such
unbalanced growth processes in random systems, we proved
that any entropic distance based on a general concave function
of the probability ratio, s(ξ ), will decrease to zero for γ (x) > 0.

Generalizing further the dynamics for γn containing both
positive and negative elements, we have discussed two models.
First, with γn = σ (n − f k) and μn = σf (n + k), a model
for high-energy hadron production, leading to a negative
binomial stationary distribution was evoked. Second, with
γ (x) = σ (ax − b) and μ(x) = σx, a continuous model for
the income distribution was recited. This model assumes a
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constant percentage taxation and social welfare amendments,
leading to a gamma distribution.

The unified mathematical treatment outlined in this paper
should be a primary tool in understanding intriguing universal-
ity classes reported in complex systems. Important questions
are left open for further research, including what the precise
conditions are for entropy growth in cases involving partially
negative γ (x) rates [while γ (x) + μ(x) > 0 is still satisfied],
what the minimal conditions are for gaining a stationary
distribution in unbalanced random processes, or how the
transient dynamics towards the stationary state is displayed
with time.
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Discussions with A. Telcs and Zs. Lázár are gratefully
acknowledged. Z.N. acknowledges support by UEFISCDI
(Grant No. PN-II-IDPCE-2011-3-0348).

APPENDIX

Here we prove Eq. (19). We define the summed expression
of product chain as

S0 =
∞∑

n=0

rn

n∏
i=0

1

1 + ri

. (A1)

The first few terms are

S0 = r0

1 + r0
+ 1

1 + r0

r1

1 + r1
+ 1

1 + r0

1

1 + r1

r2

1 + r2
+ . . . .

(A2)

By rearranging the sum starting at the second term,

S0 = r0

1 + r0
+ 1

1 + r0

(
r1

1 + r1
+ 1

1 + r1

r2

1 + r2
+ . . .

)
,

(A3)

we realize that

S0 = r0

1 + r0
+ 1

1 + r0
S1 (A4)

with an obvious notation, S1, for the same infinite sum starting
with terms containing r1. After a linear rearrangement it is
convincing that this relation,

(S0 − S1) = r0(1 − S0), (A5)

holds for an arbitrary r0 if and only if S1 = S0 = 1. The same
proof is valid for starting at any mth element. S0 = 1 proves
the original statement.

[1] H. P. Breuer and F. Petruccione, Continuum Mech. Thermodyn.
7, 439 (1995).

[2] N. Boccara, Modeling Complex Systems (Springer, New York,
2004).

[3] R. Cohen and S. Havlin, Complex Networks: Structure, Robust-
ness, and Function (Cambridge University Press, Cambridge,
2010).

[4] M. Mitchell, Complex Systems: A Gudied Tour (Oxford Univer-
sity Press, Oxford, 2009).

[5] J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976).
[6] A. L. Barabási, R. Albert, and H. Jeong, Physica A 272, 173

(1999).
[7] R. Albert and A. Barabási, Rev. Mod. Phys. 74, 47 (2002).
[8] S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin, Phys.

Rev. Lett. 85, 4633 (2000).
[9] S. N. Dorogovtsev and J. F. F. Mendes, Phys. Rev. E 62, 1842

(2000).
[10] L. R. de Oliveira, G. Castellani, and G. Turchetti, Commun.

Nonlinear Sci. Numer. Simul. 20, 461 (2015).
[11] R. N. Mantegna and H. E. Stanley, Introduction to Econophysics

(Cambridge University Press, Cambridge, 1999).
[12] N. van Kampen, Stochastic Processes in Physics and Chemistry,

3rd ed. (Elsevier, Oxford, 2007).
[13] M. E. J. Newman, Phys. Rev. E 66, 016128 (2002).
[14] M. E. J. Newman, Networks: An Introduction (Oxford University

Press, New York, 2010).
[15] A. Schubert and W. Glänzel, Scientometrics 6, 149 (1984).
[16] A. L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and
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[43] T. Tomé and M. J. de Oliveira, Phys. Rev. Lett. 108, 020601

(2012).

032130-8

https://doi.org/10.1098/rstl.1825.0026
https://doi.org/10.1098/rstl.1825.0026
https://doi.org/10.1098/rstl.1825.0026
https://doi.org/10.1098/rstl.1825.0026
https://doi.org/10.1016/0165-4896(85)90033-2
https://doi.org/10.1016/0165-4896(85)90033-2
https://doi.org/10.1016/0165-4896(85)90033-2
https://doi.org/10.1016/0165-4896(85)90033-2
https://doi.org/10.1007/BF00531527
https://doi.org/10.1007/BF00531527
https://doi.org/10.1007/BF00531527
https://doi.org/10.1007/BF00531527
https://doi.org/10.1103/PhysRevLett.94.132302
https://doi.org/10.1103/PhysRevLett.94.132302
https://doi.org/10.1103/PhysRevLett.94.132302
https://doi.org/10.1103/PhysRevLett.94.132302
https://doi.org/10.1016/j.nuclphysa.2006.06.148
https://doi.org/10.1016/j.nuclphysa.2006.06.148
https://doi.org/10.1016/j.nuclphysa.2006.06.148
https://doi.org/10.1016/j.nuclphysa.2006.06.148
https://doi.org/10.1143/PTP.98.1289
https://doi.org/10.1143/PTP.98.1289
https://doi.org/10.1143/PTP.98.1289
https://doi.org/10.1143/PTP.98.1289
https://doi.org/10.1103/RevModPhys.81.1703
https://doi.org/10.1103/RevModPhys.81.1703
https://doi.org/10.1103/RevModPhys.81.1703
https://doi.org/10.1103/RevModPhys.81.1703
https://doi.org/10.3390/e18020042
https://doi.org/10.3390/e18020042
https://doi.org/10.3390/e18020042
https://doi.org/10.3390/e18020042
https://doi.org/10.1103/PhysRevLett.108.020601
https://doi.org/10.1103/PhysRevLett.108.020601
https://doi.org/10.1103/PhysRevLett.108.020601
https://doi.org/10.1103/PhysRevLett.108.020601



