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Understanding the spatiotemporal structure of most probable fluctuation pathways to rarely occurring states is
a central problem in the study of noise-driven, nonequilibrium dynamical systems. When the underlying system
does not possess detailed balance, the optimal fluctuation pathway to a particular state and relaxation pathway
from that state may combine to form a looplike structure in the system phase space called a fluctuation loop.
Here, fluctuation loops are studied in a linear circuit model consisting of coupled RC elements, where each
element is driven by its own independent noise source. Using a stochastic Hamiltonian approach, we determine
the optimal fluctuation pathways, and analytically construct corresponding fluctuation loops. To quantitatively
characterize fluctuation loops, we study the time-dependent area tensor that is swept out by individual stochastic
trajectories in the system phase space. At long times, the area tensor scales linearly with time, with a coefficient
that precisely vanishes when the system satisfies detailed balance.
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I. INTRODUCTION

Noise-induced transitions to rarely occurring states play an
important role in processes throughout the natural sciences
such as neuron dynamics [1], climate modeling [2–5], nonlin-
ear electronic transport structures [6], and micromechanical
oscillators [7,8]. Two central questions associated with such
transitions are (1) how do they occur dynamically, i.e., what
is the typical time that it takes to reach a rare state from
a given initial state, and (2) what is the most likely path
through phase space to reach the rare state? An important
subclass of systems exhibiting this type of behavior can be
represented as a high-dimensional and linear set of stochastic
differential equations. Such models typically arise through the
linearization of nonlinear and nonequilibrium models about
stable fixed points. In addition, there are important physical
systems that are well described as linear stochastic dynamical
systems, for example, climate models for predicting El Niño
events [2] and models for active biological systems such as
beating flagella [9] and fluctuations in the actin cytoskeleton of
cells [10]. Interestingly, such systems, including the preceding
two examples, typically do not possess detailed balance when
they describe systems that are not in thermal equilibrium.
Most previous work on such systems has focused on numerical
simulation of systems of linear Langevin equations [2,11,12],
with relatively little analytical work concerning the dynamics
of optimal fluctuational paths. In this paper, we focus on the
analytical derivation and numerical exposition of fluctuation
loops which generically occur in systems that do not possess
detailed balance.

We start by considering a stochastic dynamical system
that is characterized by a deterministic velocity field on
N -dimensional configuration space, and a state-independent
noise tensor. We assume that the velocity field has critical
points, and we take the origin x = 0 of configuration space to
coincide with one of them. We examine stochastic trajectories
in a sufficiently small neighborhood of x = 0, where the
velocity field u(x) is well approximated by its linearization,

u(x) ∼ Jx, (1)
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where J is the Jacobian tensor at x = 0. Within this linear
approximation, the stochastic differential equation (SDE) that
produces stochastic trajectories x = x(t) can be written:

ẋ = Jx + σw(t), (2)

where each component of w(t) is an independent unit white
noise, and σ is the state-independent noise tensor. Each
component wi(t) of w(t) is a unit white noise if the
associated Brownian motion Bi(t) := ∫ t

0 wi(t ′)dt ′ has mean
square deviation 〈B2

i (t)〉 = 2t .
Detailed balance, or breaking thereof, refers to a property of

the stochastic differential equation (2). Letting ρ(x,t) denote
the ensemble probability density, the associated probability
current is

j(x,t) = Jxρ(x,t) − D∇ρ(x,t), (3)

where D := σσT denotes the diffusion tensor. Suppose we
isolate a bounded region of configuration space with nonab-
sorbing walls (i.e., vanishing normal component of j on the
boundary) and the density inside relaxes to a time independent
steady state. Then, we have detailed balance if the steady j
vanishes identically throughout the interior, and

∇ log ρ = ∇ρ

ρ
= D−1Jx. (4)

The right hand side of (4) is a gradient only if D−1J is
symmetric. Equivalently, the stochastic vorticity tensor ω with
components

ωij = (D−1J )ji − (D−1J )ij (5)

vanishes identically [13]. Breaking of detailed balance means
that there is no density that gives j = 0, because the vorticity
is nonzero.

Detailed balance or its breaking is manifested in the
individual stochastic trajectories. If x = 0 is a stable critical
point, stochastic trajectories spend most of their time within a
characteristic distance of the origin l ∼ |D−1J | [14]. Rarely,
a stochastic trajectory will reach some small neighborhood
of a distant destination point x = b, far from x = 0 in the
sense |b| � l. Subsequently, it will typically relax quickly
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back to within O(l) of x = 0. Such stochastic trajectories in
configuration space are called fluctuation loops. Provided that
the noise intensity is sufficiently small, large deviation theory
[15,16] predicts that the segment of loop from zero to b closely
follows a unique most probable escape path, and the segment
from b to zero closely follows the deterministic relaxation
path from b to zero. In a detailed balance system, the escape
segment is the reversal in both space and time of the relaxation
segment [12]. If detailed balance is broken, the escape and
relaxation segments do not coincide.

The structure of the paper is as follows. Section II presents
the construction of fluctuation loops for the linearized stochas-
tic dynamics by solving the effective Hamilton equations
of motion of large deviation theory [12,15,17]. Section III
applies this construction to a simple network of two coupled
RC circuits which is also a good candidate for actual
physical experiments. More generally, such linear coupled
circuit models are often useful for describing the dynamics
of nonlinear electronic transport systems (e.g., semiconductor
superlattices and tunnel diodes) in the neighborhood of their
stable equilibria [6,18]. The state space is two dimensional, so
the fluctuation loops are plane curves. Section IV presents a
dynamical area tensor, the time evolution of which provides
a quantitative characterization of detailed balance breaking.
Given the segment C of a stochastic trajectory in configuration
space corresponding to times between zero and t , the area
tensor A(t) is defined by its components:

Aij (t) :=
∫

C

xidxj − xjdxi . (6)

Furthermore, we show that the ensemble average 〈A〉 is zero
for a detailed balance system. However, if detailed balance
is broken, its time rate of change d〈A〉/dt is found to
asymptote to a nonzero constant which is equivalent to the
long time limit of the single trial ratio A(T )/T as T → ∞.
The paper concludes with two Appendices, the first of which
derives a pair of fluctuation-dissipation theorems that are
useful for nondetailed balance systems. The second Appendix
explores the connection between detailed balance breaking
and nonequilibrium thermodynamics for the RC network of
Sec. III.

II. BASIC THEORY OF FLUCTUATION LOOPS IN LINEAR
STOCHASTIC DYNAMICAL SYSTEMS

The construction of fluctuation loops is based on the
Hamiltonian dynamics of most probable paths in the small
noise limit, with effective Hamiltonian [15,17,19]:

H = p · (Dp + Jx). (7)

Here, x in RN is the vector of configuration space coordinates,
and p is the vector of conjugate momenta. We assume that
the Jacobian tensor has a complete set of eigenvectors, and
that the diffusion tensor D is symmetric and nonsingular. The
Hamilton equations are

ṗ = −J T p, (8)

ẋ − Jx = 2Dp. (9)

The linear momentum dynamics (8) is decoupled from x,
and this suggests that the 2N -dimensional vector space of
solutions to (8),(9) be represented as the direct sum of
deterministic and momentum subspaces. The N -dimensional
deterministic subspace is characterized by p(t) = 0, and x(t)
is a deterministic trajectory in configuration space satisfying
ẋ = Jx. If the eigenvalues of J all have negative real parts,
then x = 0 is a stable critical point, and deterministic tra-
jectories x(t) decay exponentially to zero. This means that the
relaxation segments of fluctuation loops lie in the deterministic
subspace. The N -dimensional momentum subspace consists
of curves (x(t),p(t)) in R2N , where p(t) is a solution of the
momentum dynamics (8), and x(t) is a solution of (9), uniquely
determined by p(t). When x = 0 is a stable critical point, this
unique determination is simple: the eigenvalues of −J T are
negatives of the eigenvalues of J , so all nonzero momentum
trajectories p(t) are exponentially growing in t . Given any
one of these, the corresponding x(t) is the unique solution of
(9) which vanishes as t → −∞. Thus the escape segment of
fluctuation loops lie in the momentum subspace.

For (x,p) in the momentum subspace, the unique x(t)
associated with p(t) is determined by a mapping tensor M

such that

x(t) = Mp(t). (10)

Substituting (10) for x(t) into (9) and using (8), we find

JMp + MJT p = −2Dp. (11)

Equation (11) holds for all p in RN provided that

JM + MJT = −2D, (12)

a matrix Lyapunov equation which can be shown to have
a unique, nonsingular solution for M provided that D is
nonsingular [20]. For the case of a stable fixed point where
all of the eigenvalues of J have negative real part, the solution
can be explicitly written in the form [21]

M = 2
∫ ∞

0
dτ eJτD eJT τ . (13)

We are now in a position to assert the following properties
for fluctuation loops about a stable critical point. If the
eigenvalues of J all have negative real part and the diffusion
tensor D is positive, then (12) has a unique symmetric,
nonsingular solution for M . Given the N -dimensional vector
space of exponentially growing momentum trajectories p(t),
we have an N -dimensional vector space of escape trajectories
x(t) in configuration space induced by the mapping (10). Hence
we can reach any destination point b in configuration space
by an escape trajectory from the origin. Finally, the relaxation
segment of the fluctuation loop is determined by the solution
of the deterministic equation, ẋ = Jx, starting from b.

III. CAPACITIVELY COUPLED RC CIRCUIT MODEL
AND ITS NONDIMENSIONALIZATION

To make the construction of fluctuations loops concrete,
we analyze a two-dimensional, capacitively coupled network
of RC circuit elements, where each element is driven by an
independent noise source. In the circuit of Fig. 1, v1(t) and v2(t)
denote voltages at the upper left and right nodes, respectively.
The lower two nodes are grounded, with voltage set to zero.
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FIG. 1. Two-element, capacitively coupled network of RC circuit
elements, each with its own independent noise source.

We have included noise sources in series with the resistors R.
The noise voltages are

δvi = sjwj (t), j = 1,2, (14)

where w1(t) and w2(t) are independent unit white noises and
s1 and s2 are given noise amplitudes [22]. Detailed balance
is broken by taking the noise amplitudes to be different
from one another. In the system, the presence of a large
deviation corresponds physically to the development of a large
“spontaneous” voltage across one or both of the resistors, after
which the system quickly relaxes back to the neighborhood of
the zero voltage state.

The circuit dynamical equations for v1(t) and v2(t) are

cv̇1 − C(v̇2 − v̇1) = −v1 − s1w1(t)

R
, (15a)

cv̇2 − C(v̇1 − v̇2) = −v2 − s2w2(t)

R
. (15b)

Introducing the half-difference and average of voltages,

x1 := v2 − v1

2
, x2 := v1 + v2

2
, (16)

and transforming to dimensionless time in units Rc, the
equivalent dynamical system for x1(t), x2(t) is

ẋ1 = −μx1 − μs1

2
w1 + μs2

2
w2, (17a)

ẋ2 = −x2 + s1

2
w1 + s2

2
w2, (17b)

where μ is the dimensionless parameter

μ := 1

1 + 2C
c

. (18)

The Jacobian, noise, and diffusion tensors of this stochastic
dynamical system are respectively given by

J =
(−μ 0

0 −1

)
, (19)

σ = 1

2

(−μs1 μs2

s1 s2

)
, (20)

D = σσT =
(

μ2(d1 + d2) μ(d2 − d1)
μ(d2 − d1) d1 + d2

)
, (21)

x1

-0.05 0    0.05 0.1  0.15 

x2

-1

-0.5

0

0.5

1

FIG. 2. Numerically generated segment of stochastic trajectory
passing through the target region (marked by a cross) and showing
a clockwise looping structure. Noise intensities are d1 = 0.01 and
d2 = 0.1 so that the system violates detailed balance.

where

di := si
2

4
, i = 1,2. (22)

The vorticity is

ω := (D−1J )21 − (D−1J )12 = 1

4

(
1

μ
− 1

)(
1

d2
− 1

d1

)
,

(23)

or, using the definition of μ from (18),

ω = C

2c

(
1

d2
− 1

d1

)
. (24)

We observe that the sense of circulation is determined by
the sign of the (scalar) vorticity ω: clockwise for ω < 0,
counterclockwise for ω > 0.

The velocity field u = Jx with J in (19) represents inde-
pendent relaxations of x1, x2 to zero with dimensionless time
constants μ and 1, respectively. Physically, x1 is proportional to
the charge on the “connecting” capacitor C, so the x1 relaxation
expresses the discharging of this connecting capacitor. If
x1 = 0, only the capacitors c in parallel with resistors R

have nonzero charge, and the relaxation of x2 represents the
discharge of these capacitors. In the limit 0 < μ 	 1, the x2

relaxation is much faster than the x1 relaxation, and the critical
point (x1,x2) = (0,0) is a fast slow node.

Figure 2 shows direct numerical simulation of the circuit
SDE (using Euler-Maruyama integration) for parameter values
μ = 0.1 and d2 = 10d1 = 0.1, i.e., the difference in noise
intensities is relatively large. The fluctuational part of the
trajectory is shown in gray and is constructed by plotting
the system position for several dimensionless time units prior
to its first hitting a small target ball marked by a cross.
The relaxational part of the trajectory is shown in black
and is obtained by plotting the system position for the next
several dimensionless time units as the system relaxes towards
the stable equilibrium. The looping structure and clockwise
circulation are clearly apparent; furthermore, different in-
dividual trials reveal qualitatively similar behavior. On the
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FIG. 3. (a) Numerically generated segment of stochastic tra-
jectory passing through the target region under detailed balance
conditions with noise intensities are d1 = d2 = 0.1. (b) Segment of
stochastic trajectory computed for parameters d1 = 0.1 and d2 =
0.09. The system is nondetailed balance but the expected looping
structure is not discernible.

other hand, when the difference in noise intensities is smaller,
it becomes increasingly difficult to distinguish between the
detailed balance and nondetailed balance behavior by simply
plotting the time-dependent system position. Thus Fig. 3(a)
shows typical fluctuational and relaxational trajectories for
detailed balance conditions corresponding to parameters d2 =
d1 = 0.1: as expected, there is no apparent vorticity. However,
Fig. 3(b) shows the trajectories for parameters d1 = 0.1 and
d2 = 0.09, which violates detailed balance. In this case, while
the theory indicates a nonzero vorticity [cf. Eq. (5)], it is not
possible to discern characteristic looping behavior by simply
plotting the individual stochastic trajectories.

We turn now to the analytical construction of the most-
probable escape path: given J and D in (19), (21), the solution
of (12) for the mapping tensor is

M =
(

μ(d1 + d2) 2μ

1+μ
(d2 − d1)

2μ

1+μ
(d2 − d1) d1 + d2

)
. (25)
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FIG. 4. (a) Calculated most-probable fluctuational and relax-
ational paths for clockwise vorticity: d1 = 0.01, d2 = 0.1, and μ =
0.1. (b) Calculated most-probable fluctuational and relaxational paths
for counterclockwise vorticity: d1 = 0.1, d2 = 0.01, and μ = 0.1.

Given an eigenvalue λ of J , and a corresponding left
eigenvector p, any multiple of

x(t) := eλtMp (26)

is an escape trajectory. The eigenvalues of J are −μ and −1
with respective left eigenvectors:

(1 0), (0 1). (27)

Using (26), the specific trajectories are

eμt

(
1 + μ
2(d2−d1)
d1+d2

)
, et

(
μ 2(d2−d1)

d1+d2

1 + μ

)
, (28)

and the general escape trajectory is a linear combination of
these. The vector coefficients of the exponentials in (28)
represent “slow” and “fast” escape directions. Figures 4(a)
and 4(b) show the calculated fluctuation loops for three typical
“destination” points, b, b′, and b′′.

Escape segments of fluctuation loops connecting the origin
(x1,x2) = (0,0) to these destination points are solid red lines,
and the relaxation segments are dashed blue lines. The
orientations of fluctuation loops are indicated by the sign of the
vorticity (23). The clockwise loops in Fig. 4(a) are based on
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FIG. 5. Most probable escape path (MPEP) and relaxation path
(RP) determined by averaging 744 individual trajectories using a
target ball centered at (0.1,0.1). System parameters are μ = 0.1,
ε = 0.01, d1 = 0.01, and d2 = 0.1.

d2 = 0.1 > 0.01 = d1, for which the vorticity (23) is negative.
The shape of the calculated fluctuational trajectories can be
qualitatively understood by recalling that d2 is proportional
to the noise intensity associated with the dynamical variable
v2 := x1 + x2. Thus, for d2 � d1, noisy fluctuations will tend
to align with the direction associated with v2, i.e., x2 
 x1.
More precisely, for μ 	 1, fluctuational trajectories near the
origin will tend to lie parallel to the line x2 = 2(d2−d1)

(d1+d2)(1+μ)x1,
associated with the slow escape direction of (28). Referring
to Fig. 4(a), this implies a relatively short fluctuational path
to target point b′′, which moves out from the origin along the
line x2 
 1.49x1. On the other hand, the fluctuational path to
b is much longer since it first moves out from the origin along
x2 
 1.49x1 into the lower left-hand quadrant before swinging
up to b along the fast direction of (28), i.e., in a direction
parallel to the line x2 
 6.72x1. In Fig. 4(b) with values of d1,
d2 reversed, the orientation of loops is counterclockwise, and
the sign of the vorticity changes to positive. In this case, we
can see that the fluctuational paths move away from the origin
along the slow direction calculated for these di values using
(28), i.e., parallel to the line x2 
 −1.49x1.

Figure 5 depicts conditioned, ensemble-averaged x1 − x2

phase plane trajectories based on direct numerical solutions
of the stochastic ODE (17). Trajectories are launched at t = 0
from an initial disk about the origin with radius l ∼ |D−1J |.
During a maximum specified run time, a small subset of these
trajectories reach a destination disk of radius l about point b,
|b| � l. Given any one of these, we record the time of flight T1

from the initial disk to the destination disk, and then continue
the trajectory from t = T1 until it again reaches the initial disk
at time t = T1 + T2. The phase plane trajectory depicted in
Fig. 5 is the result of averaging 744 individual trials over the
time interval 0 < t < 〈T1 + T2〉.

IV. STOCHASTIC AREA TENSOR:
QUANTIFYING THE FLUCTUATION LOOPS

We now present a quantitative diagnostic, based on the
recorded history of a single stochastic trajectory x(t), that

FIG. 6. Area swept by a diffusing particle. The striped region
represents positive area, while the dotted region is negative area. The
total area swept is the area of the striped region minus the area of the
dotted region.

allows us to detect the breaking of detailed balance in
the underlying dynamics. This diagnostic does not require
knowledge of the Jacobian J , nor of the diffusion tensor D. Let
C : x = x(t ′),0 < t ′ < t be a segment of stochastic trajectory
between times zero and t > 0. We define the area two-form
A(t) associated with this segment with components

Aij (t) := 1

2

∫
C

xidxj − xjdxi = 1

2

∫ t

0
(xi ẋj − xj ẋi)(t

′)dt ′.

(29)

This two-form has a simple geometric interpretation. To see
this, let a, b be two linearly independent vectors in RN . We
can map the N -dimensional configuration space into a two-
dimensional plane whose coordinates are

y1 = aixi, y2 = bixi, (30)

where the repeated index i implies summation from 1 to N . For
example, one can think of y1 and y2 as a pair of independent,
experimentally measurable observables. Let c be the image of
C in the y1, y2 plane. Then, the line integral

A (t) := 1

2

∫
c

y1dy2 − y2dy1 (31)

represents an oriented area swept out between times zero and
t (cf. Fig. 6). Notice that clockwise loops caused by self-
intersection give negative contributions to A (t). It should also
be noted that, provided that the Jacobian J of the deterministic
flow is a stable node (i.e., all eigenvalues are real and negative),
the projected fluctuation loops are expected in general to be
topologically equivalent to circles [20]. By contrast, for linear
systems with other types of equilibrium points (e.g., spirals)
and certainly for nonlinear systems the possibility of nontrivial
folds in the projected fluctuation loops cannot be dismissed.

The area tensor defined here is related to the probability
angular momentum tensor recently introduced to describe
the dynamics of nondetailed balance systems that move in
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discrete or continuous spaces [23–25]. An important differ-
ence between the two is that while the probability angular
momentum tensor explicitly depends on the velocity field,
the area tensor does not. Additionally, it should be noted that
a general circulation expression has recently been introduced
for general N -dimensional stochastic dynamical systems [26];
the area tensor defined here is closely related to the projection
of this expression onto an arbitrary two-dimensional plane.
Substituting (30) into (31), we derive the relation of A (t) to
A(t),

A (t) := aibj

2

∫
C

(xidxj − xjdxi) = Aij (t)aibj . (32)

Next, we analyze the time evolution of the ensemble average
〈A〉(t). Evoking the stochastic ODE (2) for x(t), we have

〈Aij 〉(t) := 1

2

∫ t

0
[Jjk〈xixk〉(t ′) − Jik〈xjxk〉(t ′)]dt ′

+ 1

2

∫ t

0
(σjk〈xiwk〉 − σik〈xjwk〉)dt ′. (33)

In Appendix A, we show that

〈xiwk〉 = σik, (34)

so that the second integral on the right hand side of (33)
vanishes. This leaves

〈Aij 〉(t) = 1

2

∫ t

0
[Jjk〈xixk〉(t ′) − Jik〈xjxk〉(t ′)]dt ′

= 1

2

∫ t

0
[m(t ′)J T − Jm(t ′)]ij dt ′, (35)

where mij = 〈xixj 〉 are the components of the second moment
tensor. The component-free form is

〈A〉(t) = 1

2

∫ t

0
[m(t ′)J T − Jm(t ′)]dt ′. (36)

From the Fokker-Planck equation associated with the stochas-
tic ODE (2), one can show that the second moment tensor
satisifies the matrix ODE

mJT = ṁ − Jm − 2D. (37)

The calculation behind (37) is reviewed in Appendix A along
with a useful extension. The time-independent version of
(37) is typically referred to as the fluctuation-dissipation
relation for the stochastic process [3]. By (12), the mapping
tensor M satisfies the same fluctuation-dissipation relation.
Furthermore, if we assume that all the eigenvalues of J have
negative real part, then it is straightforward to show that
m(t) → M as t → ∞; this convergence is exponentially fast
with time scale determined by the deterministic relaxation
time, i.e., the inverse of the (negative) eigenvalue of J with
smallest magnitude [3,20]. By (37), we can substitute for mJT

in (36) to find

〈A〉(t) =
∫ t

0

(
1

2

dm

dt ′
− Jm(t ′) − D

)
dt ′

= 1

2
[m(t) − m(0)] −

∫ t

0
[Jm(t ′) + D]dt ′. (38)

Due to the rapid convergence of m(t) to M , we have for
times t large compared to the deterministic relaxation time
the following asymptotic relation:

〈A〉(t) ∼ −(JM + D)t, (39)

provided that JM + D �= 0. On the other hand, if JM + D =
0, then one can show directly from (37) that 〈A〉(t) ∼ 0 at
long times, so that (39) is valid in either case. Taking the time
derivative of (39), we have

d〈A〉
dt

→ −(JM + D) as t → ∞. (40)

If the stochastic dynamical system (2) has detailed balance,
then it is easy to show directly that JM + D = 0. We can
see this by noting that, for a detailed balance system, the
probability current (3) associated with the time-independent
probability density vanishes, so that

Jij xjρ − Dij∂jρ := 0. (41)

Multiplying by xk , and integrating over all space with respect
to x, we obtain

Jijmjk − Dik = 0, (42)

where we are assuming that the eigenvalues of J all have
negative real part. In this case, m is really the mapping
tensor, and (42) is just the component form of JM + D = 0.
Conversely, JM + D �= 0 implies the breaking of detailed
balance which can be detected by asymptotic linear growth
of the area two form as t → ∞. In practice, one picks experi-
mental coordinates y1 and y2 made from linear combinations
of the “original” coordinates x1, . . . ,xN , and a linear growth
of the area A (t) in (32) is observed. The asymptotic rate of

t
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FIG. 7. Numerically determined stochastic area function for three
cases: clockwise vorticity (d1 = 0.01, d2 = 0.1), detailed balance
(d1 = d2 = 0.1), and counterclockwise vorticity (d1 = 0.1, d2 =
0.01). The inset shows expected quadratic dependence for short times.
These plots are generated using Euler-Maruyama iteration of (17) to
determine the area function using (29). The area was then averaged
over 1000 trials.
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FIG. 8. Here we show the swept area divided by time for one long
stochastic trial, i.e., there is no ensemble averaging in this case. Note
that this scenario is relatively easy to implement for a real experiment.

growth is

d〈A 〉
dt

→ −(JM + D)ij aibj . (43)

In Fig. 7, the ensemble-averaged area tensor versus time is
numerically computed for the two-dimensional circuit system
(17). At long times, the linear dependence with time is clear and
is fully consistent with the analytical prediction (40). At short
times (relative to the deterministic relaxation times, that is),
the time dependence for nondetailed balance systems exhibits
quadratic behavior which can be analytically confirmed by
evaluating (33) in the appropriate limit.

Figure 8 shows the behavior of A12(t)/t for individual
stochastic trials over much larger time intervals than used in
the preceding figure. At shorter times, the behavior is erratic
and trial dependent with large differences between different
trials. However, we find that for sufficiently long times, the
ratio A12(t)/t approaches the ensemble averaged value as in
(40), that is,

A12(t)

t
→ d〈A12〉

dt
→ −(JM + D)12 as t → ∞. (44)

This is significant because, in many experimental systems, it is
impractical to compute ensemble averages directly from data.
On the other hand, one typically does collect individual time
series of great length, suggesting the usefulness of Eq. (44) as
an potentially useful metric for discerning the presence or lack
of detailed balance directly from experimental data.

V. CONCLUSIONS

In this paper, we have solved the effective Hamilton equa-
tions of large deviation theory to analytically determine the
fluctuational and relaxational trajectories for linear stochastic
dynamical systems that generally do not obey detailed bal-
ance. In particular, a mapping tensor has been defined that
allows the straightforward construction of the most-probable
fluctuational trajectory in terms of the momentum solutions to

the Hamilton equations. Interestingly, the mapping tensor is
closely related to the time-dependent second moment tensor
of the system; in fact, if the fixed point is a stable equilibrium,
then the mapping tensor is precisely the infinite time limit
of the second moment tensor. We have explicitly constructed
fluctuation loops for an experimentally realistic circuit model
consisting of coupled RC elements, where each element is
driven by its own independent noise source.

Another important result of this paper concerns the role of
the area tensor as a quantitative indicator of detailed balance
breaking in any noise-driven linear dynamical system. The
relevance of the area tensor to experimental noisy systems,
such as those mentioned in the Introduction, is succinctly
summarized as follows: take any two independent variables of
linear stochastic dynamics and look at the area A (t) swept out
in the plane of those variables for a single trial. Provided that
the time series is sufficiently long, the ratio A (t)/t approaches
a constant value at large t . When this value is nonzero, the
stochastic dynamics break detailed balance, and we know this,
independent of any detailed knowledge about the system, other
than the linearity of the deterministic flow and the constancy
of the diffusion tensor.

APPENDIX A: DERIVATION OF THE
FLUCTUATION-DISSIPATION RELATION
AND A USEFUL EXTENSION THEREOF

Let ρ(x,t) be the ensemble probability density in con-
figuration space. The second moment tensor m = m(t) has
components

mij = 〈xixj 〉 :=
∫

xixjρ(x,t)dx. (A1)

From the Fokker-Planck equation governing ρ(x,t),

ρt + ∇ · (Jxρ − D∇ρ) = 0, (A2)

we derive the evolution equation (12) for m(t). Let g(x) be any
test function. Its ensemble average is

〈g〉(t) :=
∫

g(x)ρ(x,t)dx. (A3)

Mutiplying (A2) by g(x), integrating over x, and using the
divergence theorem, we find that its time rate of change is

d

dt
〈g〉 =

∫
ρ[Jx · ∇g − ∇ · (D∇g)]dx. (A4)

Taking g(x) = xixj , Eq. (A4) becomes

ṁij =
∫

ρ[(Jklxl)∂k(xixj ) + ∂k(Dkl∂l(xixj ))]dx

=
∫

ρ(Jilxlxj + xixlJjl + 2Dij )dx

= (Jm + mJT + 2D)ij , (A5)

which is the component form of (37).
An extension of (37) allows us to show that

〈xiwj 〉 = σij , (A6)
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which arises in Sec. IV in the analysis of the area tensor. The
idea is to introduce the unit Brownian motions

Bi(t) :=
∫ t

0
wi(t

′)dt ′ (A7)

as additional coordinates in a 2N -dimensional stochastic
dynamics,

ẋ = Jx + σw, Ḃ = w. (A8)

Here B := (B1, . . . ,BN ) is the vector of Brownian motions,
and the 2N × 2N Jacobian, noise and diffusion tensors of this
expanded stochastic dynamics take block forms, respectively,(

J 0
0 0

)
,

(
σ 0
I 0

)
,

(
D := σσT σ

σT I

)
. (A9)

Here, I is the N × N identity tensor. The second moment
tensor of the expanded system has block form(

m m′

m′T 2tI

)
, (A10)

where the off-diagonal block m′ has components m′
ij =

xiBj , and the lower right block comes from 〈BiBj 〉 = 2tδij .
The time-dependent fluctuation-dissipation equation with the
expanded Jacobian, diffusion, and second moment tensors in
(A9), (A10) reproduces (37) for m and, for the “off diagonal”
block m′, we have

ṁ′ = Jm′ + 2σ, (A11)

a key expression for evaluating 〈xiwj 〉. Time differentiation of
m′

ij = xiBj and use of the stochastic ODE (A8) gives

ṁ′
ij = 〈ẋiBj + xiḂj 〉

= 〈JilxlBj + σilwlBj + xiwj 〉
= (Jμ′ + σ )ij + 〈xjwj 〉. (A12)

The last line uses wlBj = Bj ḃl = δjl . Comparing (A11) and
(A12), we see that 〈xiwj 〉 = σij as in (A6).

APPENDIX B: THERMODYNAMIC INTERPRETATION
OF STOCHASTIC VORTICITY

In the RC network of Sec. III, we assume that the two
resistors are immersed in heat baths of temperatures T1 and T2.
The thermal fluctuations of the voltage across these resistors
are modeled as white noise voltage sources δvi(t) = siwi(t),
i = 1,2. The noise amplitudes si are related to the bath
temperatures Ti by [27]

si =
√

2RkBTi. (B1)

From the circuit differential equation (17), we derive the
energy identity:

d

dt

(
1

2
c
(
v1

2 + v2
2) + 1

2
C(v2 − v1)2

)

= −v1
2

R
+ s1v1

R
w1(t) − v2

2

R
+ s2v2

R
w2(t). (B2)

The left hand side is the rate of change of energy stored in the
capacitors. In the right hand side, v1

2/R and v2
2/R are rates

of heat dissipation into the baths of temperature T1 and T2,
respectively. Evidently, the remaining terms s1v1w1(t)/R and
s2v2w2(t)/R are the rates of work done by the respective baths
through the voltage fluctuations they induce. Hence

ri := −vi
2

R
+ si

R
viwi, i = 1,2, (B3)

is the net rate of energy transfer into the bath of temperature Ti .
We examine the ensemble average energy transfer rates under
stationary conditions. Ensemble averages 〈vi

2〉, 〈viwi〉 can
be computed from an extension of the fluctuation-dissipation
relation. The calculation here exploits a connection between
the energy transfer rates and the area tensor of the stochastic
voltage dynamics. Multiply the first of the circuit differential
equations (15) by v1 to find

(C + c)
d

dt

(
1

2
v1

2

)
− Cv1v̇2 = −v1

2

R
+ s1

R
v1w1 = r1.

(B4)

Assuming the vi(t) have relaxed to stationary processes,
ensemble averaging of (B4) gives

〈r1〉 = −C〈v1v̇2〉. (B5)

Interchanging indices 1 and 2 in (B5) shows that 〈r1〉 is
opposite and equal to 〈r2〉. Using

0 =
〈

d

dt
(v1v2)

〉
= 〈v1v̇2〉 + 〈v̇1v2〉, (B6)

we can recast (B5) as

〈r1〉 = C〈Ȧ12〉, (B7)

where

A12 = 1

2

∫ t

0
(v2v̇1 − v1v̇2)(t ′)dt ′ (B8)

is the 12 component of the area tensor. The actual calculation
of Ȧ12 is simplified a bit by transforming coordinates from v1

and v2 to x1 := (v2 − v1)/2, x2 := (v1 + v2)/2 as in (16). We
have

Ȧ12 = 1
2 (v2v̇1 − v1v̇2) (B9)

= 1
2 [(x1 + x2)(ẋ2 − ẋ1) − (x2 − x1)(ẋ1 + ẋ2)] (B10)

= −(x2ẋ1 − x1ẋ2). (B11)

Under stationary conditions, we have from (43)

〈x2ẋ1 − x1ẋ2〉 = −2(JM + D)12, (B12)

which can also be written as

〈Ȧ12〉 = 2(JM + D)12. (B13)

Since the differential equations are nondimensionalized with
the scaling unit of time Rc, we obtain from (B13) the time
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rate of change of A12 in units of (Rc)−1. Using the explicit
forms of J , D, and M in (19), (21), and (25), and restoring
dimensional time, we have

〈Ȧ12〉 = μ

4

1 − μ

1 + μ

1

Rc

kB(T2 − T1)

c
. (B14)

Finally, using the definition μ = (1 + 2C
c

)−1 we can write (B7)
for the ensemble-averaged energy flow rate into the bath of

temperature T1:

〈r1〉 = 1

8

(1 − μ)2

1 + μ

kB(T2 − T1)

Rc
. (B15)

As expected, the averaged energy flow rate 〈r1〉 is zero
when μ tends to unity, i.e., when the coupling goes to zero.
Additionally, 〈r1〉 is proportional to T2 − T1 which is consistent
with the basic nonequilibrium thermodynamics of the coupled
RC network.
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