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Interfacial adsorption in two-dimensional pure and random-bond Potts models
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We use Monte Carlo simulations to study the finite-size scaling behavior of the interfacial adsorption of the
two-dimensional square-lattice q-states Potts model. We consider the pure and random-bond versions of the Potts
model for q = 3,4,5,8, and 10, thus probing the interfacial properties at the originally continuous, weak, and
strong first-order phase transitions. For the pure systems our results support the early scaling predictions for the
size dependence of the interfacial adsorption at both first- and second-order phase transitions. For the disordered
systems, the interfacial adsorption at the (disordered induced) continuous transitions is discussed, applying
standard scaling arguments and invoking findings for bulk critical properties. The self-averaging properties of
the interfacial adsorption are also analyzed by studying the infinite limit-size extrapolation of properly defined
signal-to-noise ratios.
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I. INTRODUCTION

Critical interfacial phenomena have been studied exten-
sively over the past decades, both experimentally and the-
oretically [1–4]. A well-known example is wetting, where
the macroscopically thick phase, e.g., the fluid, is formed
between the substrate and the other phase, say, the gas.
Liquid and gas are separated by the interface. An interesting
complication arises when one considers the possibility of
more than two phases. A third phase may be formed at the
interface between the two other phases. An experimental
realization is the two-component fluid system in equilibrium
with its vapor phase [2,5]. Both of the above scenarios may
be mimicked in statistical physics in a simplified fashion, by
either the two-state Ising model in wetting—with the state +1
representing, say, the fluid, and −1 the gas—or for the case
of a third phase via multistate spin models, simply by fixing
distinct boundary states at the opposite sides of the system.
In this latter case, the formation of the third phase with an
excess of the nonboundary states has been called interfacial
adsorption [6,7].

Throughout the years, various aspects of the interfacial
adsorption have been investigated via Monte Carlo meth-
ods and density renormalization-group calculations on the
basis of specific multistate spin models, namely Potts and
Blume-Capel models [6,8–16]. Additional scaling and analytic
arguments have been presented [6,9,12,17–20], though not
all of them have been concretely confirmed numerically,
due to the restricted system sizes studied and the apparent
underlying scaling corrections (in some cases also because of
the uncertainties in the location of critical points). However,
notable results in the field include the determination of
critical exponents and scaling properties of the temperature
and lattice-size dependencies, as well as the clarification
of the fundamental role of the type of the bulk transition,
with isotropic scaling holding at continuous and tricritical
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bulk transitions, and anisotropic scaling at bulk transitions
of first-order type.

More recently, the role of randomness on the interfacial
properties has been studied [21] and was found to affect,
especially, the position of the interface, the excess or interfacial
adsorption, and the form of the histograms resulting from the
different random realizations. Still, predictions of the isotropic
finite-size scaling description for the interfacial adsorption at
continuous phase transitions were observed to hold, at least for
the particular case of the dilute eight-state Potts model studied
in Ref. [21]. Attention should be drawn to related previous
work on interfacial phenomena in dilute ferromagnetic Potts
models, in particular, considering hierarchical lattices, i.e.,
applying the Migdal-Kadanoff real space renormalization to
the square lattice [22] or performing a preliminary Monte Carlo
study for the square lattice model [23].

Motivated by Ref. [21], in the present work we study
the scaling behavior of the interfacial adsorption of several
two-dimensional pure and random-bond Potts models. In
particular we consider the disordered q = 3 and pure q = 8
models that complement our previous work [21], and we
furthermore extend these studies by presenting additional
results for both the pure and disordered versions of the q = 4,
5, and 10 models. For the case of pure and randomness-
induced continuous transitions, we present concrete numerical
evidence in favor of the standard isotropic scaling with
exponents that can be traced back to the best-known estimates
of the bulk critical exponent ratio β/ν of the Potts model, where
β and ν are the bulk critical exponents of the order parameter
and correlation length, respectively, thus reinforcing the main
result of Ref. [21] for the q = 8 case. For the first-order
phase transitions corresponding to the pure q = 5, 8, and 10
Potts models, our numerical data and scaling analysis strongly
support the early scaling predictions for the size dependence
of the interfacial adsorption at first-order transitions [9]. In
the present paper we also discuss the self-averaging properties
of the interfacial adsorption of the disordered Potts models in
terms of properly defined signal-to-noise ratios. Various forms
of corrections to scaling are discussed, and depending on the
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number of states q of the Potts model, some expectations from
the literature are used as the best possible choices. However,
the overall observed scaling behavior does not drastically
change by the use of such corrections.

The outline of the article is as follows: In Sec. II the
model and the interfacial adsorption are introduced and
in Sec. III the numerical method implemented is outlined.
Our main finite-size scaling analysis and results are pre-
sented in Sec. IV. The summary, Sec. V, concludes the
article.

II. MODEL AND INTERFACIAL ADSORPTION

We study the nearest-neighbor q-state Potts model on the
square lattice described by the Hamiltonian

H = −
∑
〈ij〉

Jij δσi ,σj
. (1)

The Potts variable at site i, σi , takes the values 1,2, . . . ,q

[24] and the ferromagnetic random couplings Jij > 0 between
nearest-neighbor sites i and j are either J1, with probability
p, or J2, with probability 1 − p. In the case J1 > J2, one has
either strong or weak bonds. Then, the ratio r = J2/J1 defines
the disorder strength. Clearly, the value r = 1 corresponds to
the pure model.

In this article, we shall consider the system at its self-dual
point, where both couplings occur with the same probability,
p = 1/2. Then, the phase-transition temperatures between
the ordered ferromagnetic phase and the high-temperature
disordered phase are known exactly from self-duality for
arbitrary values of the internal states q and disorder-strength
ratios r [25]

(e(J1/kBTc) − 1)(e(rJ1/kBTc) − 1) = q. (2)

From the above equation one may easily numerically calculate
kBTc/J1 for any given value of r (r = 1/10 at the present
study). Thus, via Eq. (2), analyses of the critical behavior of
the interfacial adsorption of the disordered Potts model, based
on Monte Carlo simulation data, as done in the present paper,
are significantly simplified.

Bulk criticality of such disordered Potts models on the
square lattice has attracted much interest, partly because the
transition is of continuous type for all values of q, while
being, in the pure case, of first order for q > 4 [24,26]. Exact
values of the critical exponents are only known in the clean
case [24]. Numerical analysis in the dilute case suggest that
the bulk critical exponents depend rather mildly on q [26].
Then, the analysis of the interfacial adsorption in these models
may be simplified by the fact that isotropic finite-size scaling
is expected to hold at continuous transitions [6,9,10]. Static
and dynamic bulk critical properties of the disordered Potts
models have been estimated, using a variety of predominantly
numerical methods [26].

The degeneracy between the q equivalent Potts states may
be lifted by appropriate boundary conditions. In order to study
the interfacial adsorption, denoted hereafter as W , we shall
employ special boundary conditions, distinguishing the cases
[1 : 1] and [1 : 2]. For the case [1 : 1], the Potts variable is
set, at all boundary sites, equal to q = 1, while for the case
[1 : 2], the variable is set equal to 1 at one half of the boundary

FIG. 1. Typical equilibrium Monte Carlo configurations of an
L = 100, q = 10, pure (upper panel) and random-bond r = 1/10
(lower panel) Potts model at kBT/J1 = 0.98kBTc/J1. In both cases,
red color depicts the q = 1 states and blue color denotes the q =
2 states, whereas the nonboundary states (q � 3) adsorbed at the
interface are shown in black. Note that the fixed boundaries [1 : 2]
are also included in these illustrations.

sites and to 2 at the opposite half of the boundary sites. Then,
the boundary condition [1 : 2] introduces an interface between
the 1-rich domain (or phase) and the 2-rich domain (or phase).
By examining typical Monte Carlo equilibrium configurations,
as shown in Fig. 1 for an instance of the pure (upper panel)
and disordered (lower panel) q = 10 Potts model, it is seen
that at the interface between the 1- and and 2-rich domains
an excess of the nonboundary states is generated compared
to the case of the absence of an interface. As expected, in
the dilute case, the position of the interface, as well as the
extent of the intervening third phase of nonboundary states,
may be strongly affected by the spatial distribution of the
couplings.
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Then, the interfacial adsorption measuring the surplus of
nonboundary states induced by the interface between the 1- and
2-rich regions for lattices with L2 nonboundary sites, where L

denotes the linear dimension of the lattice, is defined following
Eq. (2) of Ref. [12] by

W = 1

L

∑
n

∑
i

(〈
δσi ,n

〉
[1:2] − 〈

δσi ,n

〉
[1:1]

)
. (3)

The summation is over all nonboundary sites i and all
nonboundary states n = 3,4, . . . ,q and the thermal average
is taken. For a disordered system now, the above definition
denotes the interfacial adsorption of a single realization. In
this case, a second average over the disorder distribution needs
to be taken, as is also done in the present work. The above
definition of the interfacial adsorption has been successfully
used in the past [6,8–12] and although its implementation
demands Monte Carlo simulations on two systems with
different boundary conditions, it offers a simple and physically
appealing method to estimate the width of the interface by
reflecting quantitatively the difference in fluctuations of the
two systems. Thus, W is geometrically interpreted as the
effective width of the domain of nonboundary states between
the 1- and 2-rich domains. In the case of second-order phase
transitions, normalizing Eq. (3) with 1/L produces an effective
width that gives divergencies of the form ∼L(1−β/ν) [6,8,9].
However, one may also argue that it makes more sense to
normalize Eq. (3) with 1/L2. In this case the corresponding
effective width scales as ∼L−β/ν with the system size and
we should recognize that in this practice the effective width
becomes of zero measure compared to the system’s size.

III. SIMULATION DETAILS

In our simulations of the Potts models we applied the
Metropolis [27] and the cluster-flip Wolff algorithms [28]. Of
course, cluster flips violating the boundary conditions are not
allowed [29]. As usual, small lattices may be simulated using
the Metropolis algorithm, while the Wolff algorithm [28] is
more efficient and is preferred for larger, say L > 30, system
sizes [30]. Overall, we studied lattices with up to 100 × 100
sites for both pure and disordered Potts models. Only for the
pure q = 3 Potts model have data for system sizes up to 2002

sites been generated and taken from Ref. [21].
Certainly, equilibration and averaging times depend on the

lattice size. Moreover, for disordered models, we observed
that the given bond realization may affect these times. In the
case of the Metropolis algorithm, eventually simulations with
107 Monte Carlo steps per site for L = 10 were performed,
increasing the length of the runs, roughly, with L2. On the
other hand, for the application of the Wolff algorithm, the
number of (Wolff) clusters used in our simulations varied from
2 × 107 for the smaller systems sizes up to 3 × 109 for the
larger sizes considered. The Wolff clusters are constructed as
usual with the appropriate acceptance probability from the set
of the neighboring lattice sites sharing the same value of the
spin [28].

In disordered systems, the main source of errors stems
from the fact that the simulation data may vary drastically
among different random configurations. In this work, the
corresponding histograms or distributions have been recorded

for r = 1/10 and all values of q considered. Bulk properties
of the random-bond Potts model for various values of r and q

have been studied quite extensively before [26,31–37] and the
obtained pool of results will prove to be extremely useful
for the analysis in the following section. The histograms
at the critical point show nearly Gaussian shapes, but are
weakly tailed, in accordance with previous observations and
discussions in our previous work [21] and in Ref. [22] for the
dilute Potts models on hierarchical lattices. The standard errors
resulting from an ensemble average over bond realizations
decrease with the number of configurations, N , as ∼1/

√
N .

The proportionality factor seems to become somewhat smaller
for larger lattices. To obtain reasonable accuracy, we averaged
over a large number of different bond configurations, varying
from N = 20 × 103 for the smaller system sizes studied down
to 103 for the larger ones. For pure Potts models (r = 1)
error bars follow from averaging over a few hundreds of
Monte Carlo runs employing different random numbers, as
usual. Finally, for the application of finite-size scaling on the
numerical data in terms of characteristic power-law fittings as
will be discussed below, we employed the standard criterion
of the χ2/DOF, where DOF denotes the number of degrees of
freedom.

IV. FINITE-SIZE SCALING ANALYSIS

To determine critical properties from Monte Carlo data
we use finite-size scaling arguments. For the interfacial
adsorption, W , one expects [6]

W ≈ La�(tL1/ν), (4)

where the critical exponent a is determined as mentioned above
by the bulk critical exponents β and ν via [6]

a = 1 − β

ν
, (5)

t = |T − Tc|/Tc is the reduced critical temperature, and � is
the scaling function. A more refined ansatz invokes corrections
to the asymptotic scaling behavior, as will be discussed below.
Note, however, that in the present work, we are not interested
in the temperature dependence of W , but rather only on its size
dependence. From the above scaling assumption (4) we derive
that the leading critical behavior of the interfacial adsorption
is given by W ∼ La [6].

At the critical (and tricritical) points, the singularities in the
interfacial adsorption are induced by bulk critical fluctuations.
On the other hand, at first-order transitions there are no bulk
critical fluctuations and the divergence of W arises from an
interface delocalization transition [38]. In the latter case, for
lattices of square shapes, a linear divergence of the form W ∼
L is expected for the interfacial adsorption at the transition
point according to the arguments of Selke et al. [9].

The above scaling predictions have been confirmed reason-
ably well in previous Monte Carlo simulations for pure q = 3
Potts and Blume-Capel models showing continuous transitions
[6,8–10]. On the other hand, for the case of first-order
transitions where metastability effects cast further difficulties
in the scaling analysis, the expected linear divergence has
been only partially supported by the numerical data at hand
[9,11]. In the present study, we extend and refine previous
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FIG. 2. Finite-size scaling of the interfacial adsorption of the pure
and random-bond q = 3 Potts model. The inset illustrates the infinite
limit-size extrapolation of the effective exponent a(eff)

r .

results on the size dependence of the interfacial adsorption
by considering the pure Potts model for various values of the
internal states q as well as by including bond randomness in
the system.

We start our presentation of results by contrasting the
critical interfacial adsorption of the pure and disordered
three-state Potts model in Fig. 2 (the underscore symbols p(r) in
Fig. 2, and following figures as well, refer to the pure (random)
cases, respectively). The data for the pure model (filled circles)
were taken from Ref. [21] and have been analyzed according
to that paper by fitting them (black line in Fig. 2) to equation

W ∼ La(1 + bL−x), (6)

taking into account a possible leading corrections-to-scaling
exponent x. After fixing x to the expected value 4/5 [39–
42], the resulting estimate for the critical exponent ap =
0.870(3) agrees within errors with the predicted exact value
a = 13/15 = 0.866 . . . (we remind the reader that (β/ν)p =
2/15 = 0.133 . . . ) [24]. Accordingly, the findings on the pure
three-state Potts model strongly support the correctness of
the finite-size scaling description (4). However, we point out
that the influence of the corrections-to-scaling exponent x is
only marginal in these estimations, since using x = 1 we find
ap = 0.873(4), which is a bit larger than the expected result,
whereas using x = 3/5 we find ap = 0.867(2), which is closer
to the exact value.

We continue our presentation with the disordered q = 3
Potts model. Following previous considerations on its bulk
critical properties, we set r = 1/10, where the randomness
dominated behavior is expected to show up already for mod-
erate lattice sizes. The arguments leading to this observation
were originally discussed by by Wang et al. [43] for the dilute
Ising model and later used for other Potts model as well
[26,31–37]. In particular, we monitored, in our simulations,
the size dependence of the critical interfacial adsorption.
Numerical results for the q = 3 disordered model are depicted
by the open triangles in Fig. 2. Since for the present case

and for the subsequent random cases (apart from the q = 4
case for which logarithmic corrections are known to exist and
will be taken into account) there is no clear information with
respect to the leading corrections-to-scaling in the literature,
and in the light of the above discussion for a marginal effect of
the corrections-to-scaling exponent in the fits, we will use the
value x = 1 in Eq. (6), which is the simplest choice leading
to reasonable fits. In this way we obtain effective exponents
by varying the lower system size Lmin included in the fits.
A second-order polynomial extrapolation of these effective
exponents, as illustrated in the corresponding inset of Fig. 2,
provides us with the value ar = 0.868(11). This estimate of ar

is compatible to the value 0.8679(3), if one accepts Eq. (5) and
the estimate (β/ν)r = 0.1321(3) for the bulk critical exponent
ratio of the dilute q = 3 Potts model given in Ref. [35]. Thus,
we may conclude that for the disordered q = 3 case as well
ar = 1 − (β/ν)r, in accordance with the finite-size scaling
ansatz (4), although it is true that for this particular case there
seems to be hardly any difference among the exact value of the
exponent ratio β/ν of the pure model and the corresponding
estimates for the disordered model. This fact has also been
underlined in an extensive study of the magnetization of the
q = 3 random-bond Potts model by Picco [33].

Next, we consider the delicate q = 4 model, for which the
size dependence of the interfacial adsorption has never been
studied previously. As is well known, this is a borderline case
of the Potts universality class, where logarithmic corrections
are known to exist. In particular, Salas and Sokal [44] have
studied in detail the form of these scaling corrections and
have found multiplicative logarithmic corrections as well as
additive logarithmic corrections, some of which are universal.
Of course, numerically observing the existence of logarithmic
corrections is always difficult, and it is almost impossible
to detect logarithmic corrections using system sizes of the
order of L = 100, as in the present work. However, given the
description of these logarithmic corrections in Eqs. (3.21) and
(3.22) in Ref. [44], we may try to fit our numerical data using
this prescription. Accordingly, a plausible finite-size scaling
ansatz for the q = 4 Potts model has the general form [44]

Q ∼ La[ln (L)]ω
(

1 + b
ln [ln (L)]

ln (L)
+ b′ 1

ln (L)

)
. (7)

The corrections exponent ω takes the value −1/16 for the
absolute magnetization, whereas ω = −1/8 for the magnetic
susceptibility and ω = −3/2 for the specific heat [44–46].
In the light of the previous expectations [6], and given that W

scales with an exponent β/ν [see Eq. (5)], which also describes
the finite-size scaling behavior of the absolute magnetization,
one may be tempted to use an exponent ω = −1/16.

However, the term [ln (L)]−1/16 for the system sizes we
studied in the present work is close to 1 and we therefore
expect that it will have no severe effect in the following
fitting attempts. Indeed, we have performed fits of the form
(7) on the numerical data of the pure q = 4 system (shown
by filled circles in the main panel of the figure) for several
candidate values of ω within the regime [−1/16,0] that
verify this expectation. An illustrative plot of our analysis is
presented in the inset of Fig. 3 where the estimated values
of the exponent ap are plotted as a function of the fixed
exponent ω used in the fit. The dashed line marks the value
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FIG. 3. Finite-size scaling of the interfacial adsorption of the pure
and random-bond q = 4 Potts model. The inset shows fitting results
for the exponent ap of the pure system by varying the value of the
corrections exponent ω within the regime [−1/16,0]. The dashed line
marks the value ap = 0.875(9) that corresponds to the case ω = 0.

ap = 0.875(9) that corresponds to the case ω = 0 (illustrated
also by the solid black line in the main panel of the figure
with an χ2/DOF ≈ 0.9 merit of the fit). Correspondingly,
the open triangles in Fig. 3 present our numerical data for
the disordered q = 4 Potts model, for which a fit of the
form (7) with ω = 0 gives the result ar = 0.863(8), as also
indicated in the panel. Again, isotropic scaling and Eq. (5)
is satisfied, to a high accuracy for the pure model, for which
(β/ν)p = 1/8 = 0.125, and within errors for the disordered
model for which (β/ν)r = 0.1385(3) [35].

The second part of our study refers to the interfacial
properties at the originally first-order transition regime of the
Potts model, i.e., for q > 4. We have simulated the model with
internal states q = 5, 8, and 10 in both its pure and disordered
(r = 1/10) version. The data for the disordered q = 8 case
have been taken from Ref. [21].

Our numerical results for the critical interfacial adsorption
and the relevant scaling analysis are illustrated in Fig. 4.
Several comments are in order: (i) For the pure system we find a
clear linear divergence of W for all values of q > 4 as predicted
by scaling arguments [9], since fittings of the form W ∼ Lap

give estimates of ap ≈ 1 without the need of including scaling
corrections. (ii) For the corresponding disordered system
fittings of the form (6) with a fixed correction of x = −1
give estimates of ar that again support the isotropic scaling
and Eq. (5). Note the most accurate existing estimates of the
ratio (β/ν)r are 0.141(3), 0.145(5), and 0.155(5) for q = 5, 8,
and q = 10, respectively [32–37]. (iii) Using a wide range of
internal states within the regime q = 3–10 and two versions
of the Potts model, namely the pure model and its disordered
counterpart, we have shown that isotropic scaling holds, as
well as the relation a = 1 − β/ν.

For all systems studied we also recorded, in addition to the
interfacial properties, standard thermodynamic quantities, for
both types of boundary conditions. In particular, we measured

FIG. 4. Finite-size scaling of the interfacial adsorption of the pure
and random-bond Potts model for various values of the internal states
q in the originally first-order regime, as indicated.

the specific heat C1:1 and C1:2 and the order parameter given by
the majority fraction of the Potts states [24], m1:1 and m1:2. Fits
of m1:1 and m1:2, vanishing at Tc as ∼ L−β/ν , gave estimates of
the magnetic exponent ratio compatible to the above presented
results, thus giving further credit to the current numerical data.
It is also interesting to note that although the specific-heat data
for the pure q > 4 systems could not be fully described by the
standard L2 scaling behavior for systems with linear sizes up
to L = 100 (possibly due to strong corrections, especially for
the case of the q = 5 weak first-order transition), we have been
able to probe nicely the first-order character of the transition
based on the linear divergence of the interfacial adsorption
shown for system sizes L � 100.

As a large part of the current contribution is based on the
disordered version of the Potts model, we close this section
with an illustration of the self-averaging properties of the
interfacial adsorption. As we know, our numerical studies
of disordered systems are carried out using finite samples;
each sample is a particular random realization of the quenched
disorder. A measurement of a thermodynamic property, say W

for the interfacial adsorption considered here, yields a different
value for every sample. In an ensemble of disordered samples
of linear size L the values of W are distributed according to
a probability distribution. The behavior of this distribution is
directly related to the issue of self-averaging. In particular,
by studying the behavior of the width of this distribution,
one may address qualitatively the issue of self-averaging, as
has already been stressed by previous authors. In general, we
characterize the distribution by its disorder average [W ], and
also by the relative variance RW = VW/[W ]2, where VW =
[W 2] − [W ]2. The limiting value of this ratio is indicative of
the self-averaging properties of the system [47,48]. In Fig. 5 we
show the infinite limit-size extrapolation of the ratio RW for the
random-bond (again r = 1/10) Potts model and two selected
values of q as indicated in the figure, namely the values q = 3
(filled circles) and q = 10 (open circles). For both cases we
find that RW → 0 as L → ∞, indicating that the interfacial
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FIG. 5. RW as a function of the inverse linear system size for two
values of q, as indicated. The solid lines are second-order polynomial
extrapolations to the limit L → ∞.

adsorption restores self-averaging in the thermodynamic limit.
Similar fitting attempts for other values of q, not shown here
for brevity, support our conclusion based on these data.

V. CONCLUSIONS

We performed extensive Monte Carlo simulations to study
the critical interfacial properties in pure and disordered
ferromagnetic q-state Potts models on the square lattice for

various values of the internal states q ∈ {3–10}. Interfaces have
been introduced by fixing the Potts variables at opposite sites
in two different states. The local Metropolis and cluster-flip
Wolff algorithms have been used to simulate all systems at their
critical points, taking advantage of the existing self-duality.
For the disordered models an extensive disorder averaging
has been performed in order to control the sample-to-sample
fluctuations of the model. The finite-size scaling analysis
on our wide-range numerical data allowed us to safely
conclude that the isotropic finite-size scaling description for
the interfacial adsorption at (pure and randomness-induced)
continuous phase transitions holds. Additionally, for the pure
q > 4 systems that undergo a (weak: q = 5, or strong: q = 8
and q = 10) first-order phase transition, we have been able
to probe the linear divergence of the interfacial adsorption,
verifying the early predictions of the scaling theory. Finally, we
have discussed the self-averaging properties of the interfacial
adsorption by studying the infinite limit-size extrapolation of
properly defined signal-to-noise ratios and we have found that
self-averaging is restored in the thermodynamic limit.
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